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Abstract

Growth and patterning are coordinated during development to define organ size and shape.

The growth, proliferation and differentiation of Drosophila wings are regulated by several

conserved signaling pathways. Here, we show that the Salvador-Warts-Hippo (SWH) and

Notch pathways converge on an enhancer in the expanded (ex) gene, which also responds

to levels of the bHLH transcription factor Daughterless (Da). Separate cis-regulatory ele-

ments respond to Salvador-Warts-Hippo (SWH) and Notch pathways, to bHLH proteins,

and to unidentified factors that repress ex transcription in the wing pouch and in the pro-

neural region at the anterior wing margin. Senseless, a zinc-finger transcription factor acting

in proneural regions, had a negative impact on ex transcription in the proneural region, but

the transcriptional repressor Hairy had no effect. Our study suggests that a complex pattern

of ex transcription results from integration of a uniform SWH signal with multiple other

inputs, rather than from a pattern of SWH signaling.

Introduction

One Drosophila gene that integrates signals from multiple growth pathways is expanded [1–4].

The ex gene encodes a FERM-domain protein that activates the Salvador-Warts-Hippo

(SWH) pathway of tumor suppressors by at least two mechanisms. First, Ex directly binds with

Yorkie (Yki), the Drosophila homolog of Yap and Taz, sequestering Yki in the cytoplasm [5,6].

Secondly, binding of Ex with another FERM domain-containing protein Schip1 can recruit

the Hippo (Hpo) kinase Tao-1 and then phosphorylates Hpo [7]. Phosphorylation of Hpo, and

then Warts, leads to the phosphorylation and cytoplasmic retention of Yki. Both mechanisms

of cytoplasmic Yki retention prevent the expression of growth and survival genes including

cyclin E, diap1, and bantam by this transcriptional coactivator [8–15].

The ex gene is itself a transcriptional target of Yki and could behave as a negative feedback

regulator of the SWH pathway [1]. Since feedback regulators are often among the most general

transcriptional targets of signaling pathways, necessary in multiple contexts, they make good

general reporters. Accordingly, the ex-LacZ enhancer trap is frequently used as a reporter of
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Yki activity. In the third instar wing disc, ex-LacZ is transcribed most highly in the proximal

wing hinge primordium region of the wing disc, at lower levels in the wing pouch, and absent

from the most proximal, wing margin primordium, suggesting a distal-to-proximal gradient

of SWH activity that would allow Yki to promote most growth proximally [3,16] (Fig 1C). This

is consistent with some models of wing disc growth, which suggest that proximal growth is

predominantly under the control of Yki but that growth in the distal wing depends more on

Dpp signaling [17,18], possibly because cells in the proximal wing are stretched in comparison

to distal wing cells that are more compressed [19,20].

One factor potentially contributing to the gradient of Yki activity is Notch signaling, which

is active at the wing margin [21]. Yki-dependent wing growth depends on Sd, Yki’s DNA-

binding protein partner [16,22,23]. Notch induces expression of Vestigial, another Sd-binding

protein that is proposed to compete with Yki for Sd and so limit Yki-induced growth in the

distal wing pouch [3].

Besides Sd/Yki, under certain circumstances ex is transcriptionally regulated by the bHLH

protein Daughterless (Da). In most cells, Da expression is held in check by its inhibitory het-

erodimer partner Emc, but if Emc is mutated Da expression upregulates and activates ex tran-

scription, reducing growth and survival of emc mutant cells by activating the SWH pathway

[4]. Unlike most cells, proneural regions, which are growth-arrested domains within which

neural fate determination occurs, express Emc at low levels, which allows Da levels to rise and

heterodimerize with the proneural bHLH proteins that drive neural fate determination and

differentiation [24]. Unlike emc mutant cells, however, proneural cells do not seem to activate

ex transcription, despite lower Emc and higher Da levels. For example the anterior wing mar-

gin contains a proneural region that gives rise to the innervated sensory bristles of the anterior

wing margin of the adult fly [25,26]. The primordium of the anterior wing margin lies in the

distal center of the wing disc, where ex-LacZ is lowest, despite elevated Da and reduced Emc

levels there [24]. Another proneural region, the morphogenetic furrow of the eye imaginal

disc, also exhibits low ex-LacZ levels despite also lacking Emc protein and expressing elevated

Da [1,24].

Through our analysis of ex regulation by Da, we identified an enhancer within intron 3 that

replicates most features of ex transcription [4]. The enhancer drives reporter gene activity sim-

ilar to that of ex-LacZ in most tissues (Figs 1 and S1, this study). This enhancer is activated by

Da through one or more of 3 E-box sequences, and demonstrably bound by Da in chromatin

from wing imaginal discs [4]. The intron 3 enhancer also contains the sequences that respond

to Sd/Yki [4], and is associated with Yki protein in vivo according to previously-published

ChIP data [27]. Here, we present a further characterization of the ex intron 3 enhancer that

provides insights into the regulation of ex expression and SWH activity by growth-regulatory

pathways in the wing imaginal disc.

Materials and methods

Drosophila genetics

Fly culture and cross were performed according to standard procedures at 25˚C unless other-

wise noted. ex697-LacZ (gift from Claude Desplan; [28]), ExIntron3-GFP (EnhIntron3-GFP; [4]),

and scaD120-LacZ [29] were used to monitor transcriptional activity of ex and to define the pro-

neural regions. Mutant clones were generated by FLP/FRT-mediated mitotic recombination

by crossing mutant strains with [arm-LacZ] FRT80B (BDSC BL#6341; [30]); [Ubi-GFP]M(3)
67C FRT80B [31] and [Ubi-mRFP.nls] FRT40A (BDSC BL#34500). Mutant strains used were

h22 FRT80B [32], sensE2 FRT80B (gift from Hugo Bellen; [33]), da3 FRT40A [34]. Heat shocks

were performed at 36–48 hr after egg laying (AEL) to induce FLP and animals were dissected
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Fig 1. Analysis of the intron-3 enhancer. (A) Evolutionary conservation of the intron-3 enhancer. VISTA plot [41,

42] of the D. melanogaster intron-3 enhancer (ExIntron3) aligned with sequence from D. erecta, D. ananassae, D.

pseudoobscura, D. mojavensis, D. virilis and D. grimshawl. A window size of 100 bp is used, and regions that are greater

than 70% identical are indicated in pink. Regions A-F are defined on the basis of the distribution of sequence

conservation among Drosophila. ABCDEF is 1501 bp. A is 1–183; B is 184–345; C is 346–723; D is 724–842; E is 843–

1010; F is 1011–1501. Putative E-box and Scalloped (Sd) binding sites are indicated. (B) Deletional or mutational

constructs are generated as indicated. Spatial wing expression of each construct is summarized in the table. +++:

strong expression; ++: middle expression; +: weak expression; +/-: much weaker or partial expression; -: no expression.

Region directing expression in the hinge of wing disc is indicated in pink; regions directing expression in the neuronal

precursors of wing disc are pointed in brown; region driving expression in the wing pouch is indicated in blue. (C-K)

Wing expression patterns of ex-LacZ and the indicated genomic sub-fragments of ExIntron3. Note the fragments BCDE,

BCD, BC and CD drive GFP expression in neuronal precursors. Scale bars, 50 μm.

https://doi.org/10.1371/journal.pone.0201317.g001
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at late third instar. For overexpression or knocked-down experiments, the following drivers

were used: en-Gal4 UAS-RFP (BDSC BL#30557), nub-Gal4 (BDSC BL#38418) and dpp40C6-
Gal4 [35]. UAS-da [4], UAS-da-da [4], UAS-sens (gift from Hugo Bellen; [33]), UAS-h (BDSC

BL#36529) transgenes were used to overexpress the corresponding gene products. The Notch,

yki and sd were knocked-down using UAS RNAi transgenes, including UAS-N-RNAi (BDSC

BL#7078; [36]), UAS-yki-RNAi (BDSC BL#31965), and UAS-sd-RNAi (BDSC BL#29352).

Immunohistochemistry

Immunostaining was performed as described previously [37]. Confocal imaging was per-

formed using Leica SP2 and Zeiss LSM 880 microscopy. Primary antibodies used were anti-

Sens (guinea pig, a gift from H. Bellen); beta-galactosidase (mouse, DSHB#40-1a); GFP (rat,

NACALAI TESQUE# GF090R). Species-matched Cy2-, Cy3- and Cy5-conjugated secondary

antibodies were from Jackson ImmunoResearch.

Enhancer dissection

Subfragments derived from ExIntron3 were obtained by PCR amplification using primers with

Bam HI-Xho I or Bgl II-Xho I sites and cloned into the pH-Stinger vector. The putative tran-

scription factor binding sites were predicted using JASPAR database [38] or rVista [39]. Con-

structs carrying mutated E-box sites or Sd-binding sites were generated by PCR mutagenesis

using the QuikChange Site-Directed Mutagenesis kit (Stratagene). For each construct, a mini-

mum of three independent transgenic lines was analyzed for GFP activity. The expression pat-

terns of each construct were reproducible between different transgenic lines because the

pH-Stinger vector contains insulator sequences to eliminate position effects [40].

Results

Deletion analysis of the ExIntron3 enhancer

The ex intron 3 enhancer (ExIntron3; described as EnhIntron3 in our previous paper[4]) was first

recognized as a 1.5 kb segment regulating transcription in a pattern similar to the ex-LacZ
enhancer trap and which is conserved in other Drosophila species (Fig 1A, 1C and 1D; [4]). In

leg, antennal and haltere imaginal discs, ExIntron3–GFP faithfully recapitulated ex-lacZ expres-

sion (S1 Fig). However, some differences may exist. Although ExIntron3–GFP and ex-LacZ
expression are very similar in the wing imaginal disc, there is less ExIntron3–GFP in the wing

pouch than seen for ex-LacZ (Fig 1C and 1D, S1A–S1D Fig). Intriguingly, ExIntron3–GFP

expression reduced faster than ex-LacZ in the wing pouch at early third instar stage (S1C and

S1D Fig). This could be because ex-LacZ is also influenced by other enhancers elsewhere in the

ex gene (or other genes), or it could be that Lac-Z is more stable than GFP so the ex-LacZ pat-

tern is partly reflecting the earlier transcription pattern. In addition, in the eye disc, ex-LacZ is

expressed in a gentle anterior-posterior gradient anterior to the morphogenetic furrow, where

ExIntron3–GFP is expressed very little (S1E and S1F Fig). Several regions of the enhancer are

highly conserved among multiple Drosophila species (Fig 1A).

To dissect the basis for ex transcriptional regulation further, deletion constructs of ExIntron3

were generated and analyzed (Fig 1B). The original 1.5kb region was divided into 6 sections,

ABCDEF. Elements A, D, and E in particular showed conservation in the distantly related spe-

cies D. virilis and D. grimshawi (Fig 1A).

When either element A or F was deleted, the sequences remaining in ABCDE or BCDEF

retained the similar expression pattern as full-length ExIntron3 (Fig 1D–1F). Without both ele-

ments, however, in the BCDE reporter new transcription appeared in the proneural regions
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that flank the anterior wing margin (Fig 1G). These are the regions where sensory structures of

the anterior wing margin develop [43,44]. This suggests that both elements A and F contain

information for blocking ex expression in the wing margin proneural cells, and that either A

or F is sufficient for this. However, elements A and F did not share sequence similarity. Ele-

ment F comprises 1/3 of the entire ExIntron3. Region F alone had weak expression in the distal

wing hinge and antenna imaginal discs, while it showed no reporter activity in the eye and leg

discs (Fig 1I, S1 Fig). The BCDE element did not show major qualitative expression changes in

eye-antennal or leg discs (S1 Fig), indicating that ex is regulated at the wing margin differently

from some other proneural regions such as the morphogenetic furrow of the eye disc. Thus,

positive aspects of ex enhancer activity appear to map within BCDE sequences.

Little further effect on the pattern of wing disc expression was seen when region E was

deleted, but there may be some quantitative differences between BCD-GFP and BCDE-GFP.

In BCD-GFP (which was described as Enh658 in our previous paper [4]), GFP seemed some-

what decreased in the distal hinge but higher in the wing margin proneural cells (Fig 1H).

Overall, though, sequences within the BCD element were sufficient for much of the ex tran-

scription pattern (except for repression of the wing margin proneural cells that was redun-

dantly encoded by elements A and F).

It was the D sequences that showed the greatest evolutionary conservation (Fig 1A). How-

ever, element D alone failed to drive any GFP expression in the wing disc (S1Q Fig). When we

tried subdividing element BCD, element BC-GFP showed similar expression as BCD-GFP,

except that BC-GFP also drove expression in the wing pouch (Fig 1J). CD-GFP drove even

more expression, almost uniformly throughout the wing disc. Although this expression was

largely uniform, it seemed the proneural cells of the anterior wing margin continued to main-

tain slightly higher levels (Fig 1K). Therefore, sequences in region B and D appeared to be nec-

essary to prevent ex transcription in the wing pouch region, excluding the anterior wing

margin proneural cells where repression required element A or F

These studies provide an outline for how the pattern of ex transcription defined by ex-LacZ
and by ExIntron3–GFP arises, and of the minimum regulatory inputs that are to be expected.

The core of the enhancer as illustrated by CD-GFP drives transcription almost uniformly

throughout the wing disc, possibly at a somewhat higher level in proneural cells (Fig 1K).

Sequences within element B and D both repress ex-transcription in the wing pouch region

excluding the proneural cells of the anterior wing margin, whereas sequences A and F redun-

dantly add repression of ex in the proneural cells.

Mutational analysis of transcription factor binding sites in the ExIntron3

enhancer

Because proneural regions are generally defined by bHLH transcription factors, we wondered

whether ex transcription near the wing margin depended on the Achaete-Scute Complex

(AS-C). Since all the AS-C proteins require dimerization with Da to bind DNA, we examined

BCD-GFP expression in da null clones. BCD-GFP expression was reduced in da null mutant

clones within the wing margin proneural cells (Fig 2A), consistent with a role for the AS-C in

wing margin expression.

AS-C/Da heterodimers bind to DNA through E-box sequences (CANNTG). BCD contains

three potential E-box sequences, and these were mutated individually, together, and in combi-

nations (Fig 2, S2A Fig). Mutating all three E-boxes together (in construct BCDmE1,2,3) abol-

ished BCD activity in the anterior wing margin proneural cells (Fig 2F). Whereas E-box 1 and

E-box 3 were dispensable, even when mutated together in construct BCDmE1,3 (Fig 2B, 2D

and 2E), by contrast E-box 2 was essential for BCD-GFP expression in the wing margin cells
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(Fig 2C). Because E-box 2 is the only E-box remaining in the BCDmE1,3 construct that drives

expression very similar to the parent BCD-GFP element (Fig 2E), it is likely that E-box 2 is also

sufficient for ex expression at the anterior wing margin proneural cells (at least within the con-

text of the BCD element).

Interestingly, mutations in any of the E-box sequences also appeared to affect expression

outside of the proneural cells. Each of the constructs BCDmE1-GFP, BCDmE2-GFP,

BCDmE1,3-GFP and BCDmE1,2,3-GFP led to some expression in the whole of the wing

pouch, away from the wing margin (Fig 2B, 2C, 2E and 2F).

Since this enhancer was identified initially as the Daughterless-responsive element of the ex
gene, responsible for Da-dependent Ex over-expression when the emc gene was mutated, we

Fig 2. Effect of bHLH protein on ExIntron3 enhancer. (A) Third instar wing imaginal discs containing da3 mutant

cells (RFP [red] negative) are visualized for BCD-GFP reporter expression (A’, green). Note the decreased levels of

BCD-GFP in da mutant clones within the wing margin proneural region but not hinge. (B-G) GFP reporter expression

driven by the indicated genomic sub-fragments in the third instar wing imaginal discs. (H) Summary of regions

important for spatial expression. Note that + (red): sufficiency; +/-: partial sufficiency; + (green): requirement; -: no

effect. Scale bars, 50 μm.

https://doi.org/10.1371/journal.pone.0201317.g002
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also mapped the sequences conferring Da-response, using nub-Gal4 to over-express Da

throughout the wing pouch region. We had found previously that the core enhancer BCD

retained the induction by Da over-expression, and that E-boxes were required, because no

response was seen to Da over-expression in BCDmE1,2,3 (which was called Enh658-mEbox in

our previous paper[4]). Here, we report that BCDmE1,3 also failed to respond to Da over-

expression (S2C Fig). Thus the response to Da over-expression depended on distinct E-boxes

in comparison to ex expression in response to AS-C and Da at the anterior wing margin.

It has been reported that SWH activity is sufficient to activate ExIntron3 expression. Over-

expression of Sd and Yki was sufficient to activate expression in the wing pouch [4]. To deter-

mine whether SWH pathway was required for the normal activity of ExIntron3, Sd/Yki activity

was knocked down by double-stranded RNAs, expressed under the control of en-Gal4. En-

Gal4 drives gene expression in the posterior compartment, including the posterior wing hinge

region where ExIntron3-GFP is active. GFP expression of ExIntron3 was cell autonomously

decreased by knock-down of either Yki or Sd in the wing or leg discs (Fig 3A–3E, S3A and S3B

Fig), suggesting that Sd/Yki is necessary for endogenous expression of ex in the proximal part

of the wing disc. When Sd and Yki were knocked-down in the background of CD-GFP, which

is expressed throughout the wing disc, expression in the wing pouch region was greatly

decreased (Fig 3F, S3C–S3F Fig), indicating that Sd and Yki are active throughout the wing

disc and needed to activate ex transcription at all locations. Note that the sequences that nor-

mally reduce wing pouch expression map to region B of the enhancer, however, as described

above.

Twelve putative binding sites of Scalloped (Sd) were predicted across the entire ExIntron3

element (Fig 1A), however, only one of these lies within the CD element. We obtained incon-

sistent results from mutating this site. When this putative Sd binding sequence (in region D)

was disrupted in the CD-GFP construct, expression in the pouch was partially reduced, leading

to an expression pattern similar to BC-GFP where the anterior wing margin expression is

clearly higher than that of the surrounding wing pouch (S2A and S2E Fig). When this

sequence was disrupted in BCDmE123-GFP, expression was completely lost (Fig 2F–2G, S2A,

S2D and S2E Fig). Taken together, these studies show that Sd and Yki are required for ExIntron3

expression, and probably at least in part through this Sd site, although it is uncertain whether

other sequences could also be involved.

Regulation of the ExIntron3 enhancer by candidate genes

Because the CD element is expressed throughout the wing disc in response to Sd/Yki, and the

addition of region B is necessary for repressing ex transcription in the distal wing and pouch,

our studies question whether SWH signaling and Sd/yki are responsible for the proximal-distal

gradient of ex transcription. It has been proposed that N contributes to proximo-distal pattern-

ing of ex transcription, by inducing Vg within the wing pouch [45]. Vg could compete with

Yki for Sd and so diminish Sd/Yki activity. Consistent with this model, N knock-down in the

wing pouch de-repressed ex transcription [3]. Using N knock-down, we found that N was

required for wing pouch repression of the full-length enhancer, and of the BCDE construct,

but that the BCD construct remained repressed in the wing pouch even when N was knocked-

down (Fig 4). These results suggest that N represses ex transcription in the wing pouch

through region E of the enhancer. However, N knockdown abolished expression of ex at the

wing margin in BCD-GFP, indicating that N activity contributed to the AS-C/Da-dependent

ex expression that occurs there.

The specific identity of pathways repressing of ex transcription in the wing pouch and at

the anterior wing margin was explored further using mutations in candidate repressor genes.
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Senseless (Sens) was a candidate repressor because low levels of Sens have been reported to act

as a repressor in vivo [46]. The mammalian homolog of Sens, the growth factor independence

1 (Gfi-1) gene, encodes a zinc finger transcriptional repressor that represses several cell cycle

components and proapoptotic Bcl2 family member Bax [47–51]. Sens is expressed in the wing

margin cells [33], and a chromatin immunoprecipitation (ChIP)-chip database of early

embryogenesis [52] reported the association of Sens protein with the intron-3 enhancer region

Fig 3. SWH pathway requires Sd/Yki to regulate ex. (A) Blockage of the SWH pathway by expressing an RNAi

against yki (en>RFP+yki RNAi) leads to the downregulation of ExIntron3-GFP (green) in the posterior compartment

(marked by RFP, red) of wing disc at 25˚C. (B-C) Leg and wing discs of en>RFP+yki RNAi (red) staining for ExIntron3-

GFP (green) at 30˚C. Fly cross and culture was performed at 25˚C. After 36–48 hr AEL, en>RFP+yki RNAi flies were

incubated at 30˚C until dissection at late third instar. Note the autonomous reduction of GFP was more obvious in flies

that were shifted at 30˚C. The altered en domain (marked by RFP, red) at 30˚C suggest that Yki may regulate en
expression. (D-E) Wing disc of en>RFP+sd RNAi (red) staining for ExIntron3-GFP (green) at 25˚C and 30˚C,

respectively. Note the decrease of GFP was more obvious when animals were shifted and incubated at 30˚C. (F) Wing

disc of en>RFP+sd RNAi (red) staining for CD-GFP (green) at 30˚C. Note that CD-GFP was decreased in a cell

autonomous manner. Scale bar, 50 μm.

https://doi.org/10.1371/journal.pone.0201317.g003
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of ex. Interestingly, when a linked Da homodimer was overexpressed in the wing pouch,

ExIntron3 expression was induced as seen previously when Da monomer was expressed [4],

except for sporadic patches of cells that also turned on Sens expression (Fig 5A and 5B). Thus

there was a correlation between Sens expression and silencing ExIntron3 expression, as also

occurs at the normal anterior wing margin.

When Sens was over-expressed using the dpp-GAL4 driver, ExIntron3 expression was reduced

where the Dpp expression domain crossed the proximal wing region dorsally, but this was not

observed ventrally (Fig 5C). When Sens was over-expressed throughout the wing pouch using

nub-Gal4, ExIntron3 expression was slightly reduced (Fig 5D). ExIntron3 expression was

unchanged when Da was co-expressed with Sens, clearly demonstrating the capacity of Sens to

repress expression (Fig 5E).

To examine ex expression in the absence of Sens, ex-LacZ and ExIntron3 –GFP were exam-

ined in sens null mutant clones, but there was little effect; expression remained low in the wing

pouch and wing margin (Fig 5F–5G). These results suggest that Sens over-expression may be

able to suppress ex expression but is not normally required to do so in the wing pouch or at

the anterior wing margin.

Intriguingly, several putative Hairy binding sites were predicted within intron-3 enhancer

(Fig 6A). Proteins of the Hairy/Enhancer of split/Deadpan (HES) family act as a classical tran-

scriptional repressors by binding to C-box (CACNNG) sequence [53–57]. Although Da

expression is independent of hairy [58], Hairy antagonizes neurogenesis via binding to the

enhancer of another proneural gene achaetae [59]. To investigate ex expression in the absence

of hairy (h) activity we used clones homozygous for h null alleles. ExIntron3-GFP was unchanged

(Fig 6B). This suggests that h is not required for repressing ex in the wing margin proneural

region. Also, overexpression of h was not sufficient to repress ExIntron3-GFP (Fig 6D). Previous

studies have shown that ex-lacZ is unaffected in homozygous clones which removes the entire

Enhancer of split (E(spl)) complex and deadpan (dpn)[3]. Together, these findings suggest that

Fig 4. Element E is required for Notch-dependent repression. (A) Blockage of the Notch pathway by expressing an

RNAi against Notch in wing pouch (nub>N RNAi) leads to the upregulation of ExIntron3-GFP (green). (B) GFP

expression under the control of element BCDE in nub> N RNAi wing discs. Note the de-repression of BCDE-GFP in

response to knockdown of Notch. (C) Wing disc of nub>N RNAi staining for BCD-GFP expression. Note that the

BCD-GFP did not respond to downregulation of Notch pathway. (D-F) Wing imaginal discs of nub-Gal4 for ExIntron3-

GFP (D), BCDE-GFP (E) and BCD-GFP (F), respectively. Scale bars, 50 μm.

https://doi.org/10.1371/journal.pone.0201317.g004
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none of HES repressor proteins can account for the repression of ex in the wing although we

cannot completely rule out the possibility that h, E(spl) and dpn might function redundantly.

Because Da protein is elevated in all proneural regions yet examined, yet at the anterior

wing margin this does not seem to elevate ex transcription, we examined some other proneural

regions for comparison. As already mentioned, ExIntron3–GFP is not active in eye imaginal

discs. We double labeled ExIntron3 reporter with sca-lacZ to visualize proneural region in the

notum and wing (Fig 7). Like the anterior wing margin, ExIntron3 reporter was absent from

Fig 5. Sens inhibits Da-mediated ex expression in the wing pouch. (A, B) Wing disc overexpressing Da homodimer

(A, nub>Da-Da) or monomer (B, nub>Da) in the wing pouch and staining for ExIntron3-GFP (green) expression. Note

the upregulation of ExIntron3-GFP caused by Da homodimer is attenuated in Sens-expressing cells (red). (C) Wing

imaginal disc of dpp>Sens staining for ExIntron3-GFP expression. Note the inhibition of ExIntron3-GFP by high levels of

Sens in the dorsal proximal wing (indicated by yellow arrow), while ventral wing is barely affected (white arrow). Some

enlarged cells with GFP-positive staining are seen around the Dpp domain. (D) Wing disc of nub>Sens staining for

ExIntron3-GFP expression. (E) Wing disc of nub>Da+Sens staining for ExIntron3-GFP expression. Note the GFP

expression is slightly disrupted as seen in nub>Sens disc. (F-F”) A late third instar wing disc containing sens mutant

cells (GFP negative) is visualized for ex-LacZ expression (red, F’). (G-G”) Third instar wing imaginal disc of sens
mutant cells (arm-lacZ negative) visualized for ExIntron3-GFP expression (green, G”). Note no elevation of ex-LacZ and

ExIntron3-GFP is detected in sens mutant clones. Scale bars, 50 μm.

https://doi.org/10.1371/journal.pone.0201317.g005
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some SOP cells of notum, such as anterior post-alar SOP. However, ExIntron3 reporter was

expressed in many other proneural regions as defined by sca-LacZ expression [29]. For

instance, ExIntron3 reporter was expressed more highly in the posterior post-alar SOP than in

surrounding cells (Fig 7B). Intriguingly, hypomorphic ex mutants have extra post-alar bristles

in the adult thorax [4], suggesting that ex is required for some aspects of proneural cluster

development. The variety of expression levels at distinct proneural regions implies spatially-

regulated positive and negative inputs acting on ExIntron3.

Discussion

The development, differentiation and growth of cells and tissues require precisely regulated

patterns of gene expression, depending on the time and spatial location of its activation, and

its crosstalk with other signaling pathways. Here we used the Drosophila wing disc as a model

system to investigate how ex transcription is regulated. Ex is important as a negative growth

regulator that acts through the SWH pathway [1,5–7,60–62]. It restricts wing size in normal

development, so that mutants have larger, ‘expanded’ wings [63], and can also be induced to

block growth of cells with developmental perturbations, including those with emc mutations

that over-express Da [4]. In normal development, ex-LacZ is expressed most highly in the

Fig 6. ex expression is independent of hairy. (A) Schematic representation of the ABCDEF enhancer. Yellow bars

denote putative Hairy binding sites. (B-B’) Clones of homozygous hairy mutant cells are labeled by the lack of LacZ

expression (red). Note ExIntron3-GFP (green) is not changed in h clones. (C, D) Expression of ExIntron3-GFP in wing

discs of dpp-GAL4 (C) and dpp>h (D) flies. Note ExIntron3-GFP is not affected in Dpp domain when h expression is

manipulated. Scale bars, 50 μm.

https://doi.org/10.1371/journal.pone.0201317.g006
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hinge region that surrounds the wing pouch, and expression decreases in a gradient until none

is detected at the wing margin (Fig 1C). Unlike expression patterns of ex-LacZ, a relatively

ubiquitous distribution of Ex protein is seen in the wing imaginal discs [15, 64–65]. The dis-

crepancy between ex reporter and Ex protein might be due to the post-translational control of

Ex protein stability [66]. Alternatively, Ex protein might be strongly influenced by expression

patterns in earlier developmental stages (S1A Fig). Regardless, because ex is itself a transcrip-

tional target of the SWH pathway, acting through Sd and Yki, ex-LacZ is extensively used as a

transcriptional readout of SWH signaling activity, if not of Ex protein distribution. This tran-

scription pattern of ex could be interpreted to indicate a proximal-to-distal gradient of Sd/Yki

activity, which would be consistent with certain models of wing growth regulation that pro-

pose that SWH activity represses growth in central regions of the disc whereas Yki activity is

higher in proximal regions [67]. Another mechanism predicted to repress growth in central

Fig 7. ex expression in the proneural regions. Expression patterns of ExIntron3-GFP (green) and sca-LacZ (red) in

notum (A-A”) and wing pouch (D-D”). (B-C) Higher magnification of the yellow box (B-B”) and white box (C-C”) in

A. Note the anterior scutellar SOP showed higher GFP activity than nearby cells (yellow arrow), the posterior post-alar

SOP expressed the GFP at levels similar to other proneural cells (white arrow), whereas the posterior dorsocentral SOP

and anterior post-alar SOPs showed reduced levels of GFP activity (blue and red arrows, respectively).

https://doi.org/10.1371/journal.pone.0201317.g007
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regions of the wing disc is activation of Notch signaling there. Notch signaling induces expres-

sion of Vg, a protein that binds Sd in competition with Yki and is therefore predicted to reduce

Yki activity (and ex transcription) in central regions of the wing pouch [3]. Since we have iden-

tified an ex enhancer whose activity reflects the ex-LacZ reporter in the endogenous gene, we

can explore this enhancer to understand how these and other signals are integrated at the ex
locus.

A deletion analysis outlines several major features of ex regulation (Figs 1 and 8). First, the

core of the enhancer, centered around the ‘C’ element and probably including contributions

from the flanking ‘B’ and ‘D’ elements, is active throughout the wing disc. All this activity

depends on both Sd and Yki, suggesting that Yki is active throughout the wing disc. This is

consistent with the previous finding that yki is required for growth throughout the wing disc

[17,18]. ChIP-seq analysis revealed that Yki binding peaks over ExIntron3 [27]. Although Sd

binding has not been mapped yet in Drosophila, it is likely that Sd binding strongly correlates

with Yki, as seen for the mammalian YAP1 and TEAD1 proteins [68]. Expression of the Sd/

Yki-dependent BC and CD elements provided no evidence of a proximal-distal gradient of Sd/

Yki activity. Instead, the overall reduction of ex expression in the central, wing pouch region of

the wing disc requires both the B and D regions together, suggesting that two other inputs are

both required to achieve this silencing. It does not seem that either of these silencing inputs

corresponds to Notch signaling, because although we confirm that Notch is required to silence

ex enhancer activity in the wing pouch, it is not required to silence the BCD element.

An unexpected aspect of ex transcription regulation is independent regulation of ex
enhancer activity in the proneural cells of the anterior wing margin. Activity here was encoded

by the BC and CD elements, and depended on an E-box within C (E-box #2). Surprisingly,

given the normal role of Notch signaling in lateral inhibition to prevent neural differentiation,

the wing margin activity depended positively on N signaling. Anterior wing margin activity

was dependent on Da, the obligate heterodimer partner of all proneural genes, indicating that

it is possibly encoded by proneural genes of the AS-C. This regulation was unexpected because

there was no evidence for ex-LacZ or Exintron3-GFP reporter activity at the anterior wing mar-

gin. This is because such expression was silenced by either one of two flanking elements, A

and F, acting redundantly. We tested the hypothesis that Sens, which is expressed in the ante-

rior wing margin proneural region and can act as a transcriptional repressor, was responsible

for blocking the activity. Although Sens was sufficient to inhibit Exintron3-GFP activity at some

ectopic locations, it was not required for Exintron3-GFP repression at any location, including at

the anterior wing margin.

We originally identified the ex enhancer through its role in mediating ex transcription in

response to elevated Da activity [4]. The Da response was mapped to E-boxes #1 and #3 within

elements B and D, respectively. Since Da can bind to DNA as a homodimer, and as no other

Class I or Class II bHLH gene is known to be widely expressed in the wing pouch, it is possible

that Da homodimers activate this site. The E1 site within element B matches the consensus

CACCTG sequence that is preferred by Da-Da homodimers and by homologous E-protein

homodimers in mammals [69]. Endogenous Da protein levels are normally elevated at the

anterior wing margin, because Emc levels are reduced there, so it is interesting that Exintron3 is

activated at the anterior wing margin through distinct E-boxes that differ in sequence from E2

site. One possibility is that it is heterodimers of Da with proneural proteins encoded by AS-C

that activates these E-boxes at the anterior wing margin, since we previously showed that

ectopically-expressed AS-C proteins can activate the intact enhancer [4]. The consensus E-

box site for Sc/Da has been described as GCAGC/GTG and the 5’ flanking base G is essential

for the binding specificity of Sc [70]. The E2 site matches both the core sequence and the 5’

flanking base (S2 Fig). In part this could explain why emc loss is detrimental for proliferating
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progenitor cells in the rest of the wing disc and leads to their ex-dependent loss during growth,

in contrast to the proneural cells that normally tolerate elevated Da levels, if Da proteins con-

tribute to distinct dimers in these two situations.

Our analysis shows that multiple regulatory inputs are integrated by the Exintron3 enhancer

(Fig 8). Although we confirm previous conclusions that Sd/Yki and Notch signaling regulate

ex transcription, our studies indicate that the full enhancer, and hence the widely-used ex-
LacZ line, are not straightforward reporters of Yki activity. Instead the smallest sequence that

responds to Sd and Yki is active almost uniformly throughout the wing disc, suggesting that

this may be the pattern of Yki activity. This may be a useful reporter for SWH activity in future

studies. The final ex-LacZ pattern is strongly influenced by additional sequences that silence

transcriptional activity in the wing pouch and at the anterior wing margin, in the latter case

apparently preventing ex transcription in response to proneural gene activity while preserving

sensitivity to ectopic Da expression.

Supporting information

S1 Fig. Related to Fig 1. Third instar eye, leg and haltere imaginal discs of ex-LacZ and the

indicated genomic sub-fragments. L2: second instar larval stage; eL3: early third instar larval

stage.

(TIF)

Fig 8. Model of differential regulation on ex. In the wing margin proneural region (high SWH activity; low Yki

activity), ex is negatively regulated by inputs acting through elements A and F. The E-box site #2 (E2) is required for

expression in the wing margin proneural cells while Da acts through E1 and E3 to regulate ex transcription. Sd/Yki

regulates ex transcription through element BCD in wing pouch and hinge. Notch acting through element E and other

inputs acting through elements B and C repress ex transcription in wing pouch. Note the image of wing disc is adopted

from Fig 7D”.

https://doi.org/10.1371/journal.pone.0201317.g008
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S2 Fig. Related to Fig 2. (A) Schematic representation of three E-box sites (underlined) in

BCD region and Sd site (underlined) in D region. The mutated sequences are shown in red.

(B-C) BCD-GFP and BCDmE1,3-GFP expression in nub>Da wing discs, respectively. Note

that the BCDmE1,3does not respond to Da overexpression. (D) The same disc shown in 2G.

The DAPI staining is used to mark the wing area since there is no GFP activity of

BCDmE123Sd-GFP. (E) CDmSd-GFP expression in late third instar wing disc.

(TIF)

S3 Fig. Related to Fig 3. (A) Peripordial membrane of en>RFP+yki RNAi (red) staining for

ExIntron3-GFP (green) at 25˚C. Note that ExIntron3-GFP was decreased in peripordial membrane

of wing. (B-C) Leg discs of en>RFP+sd RNAi (red) staining for ExIntron3-GFP and CD-GFP at

30˚C, respectively. (D) Wing discs of en>RFP+yki RNAi (red) staining for CD-GFP (green) at

30˚C. Note that CD-GFP was decreased in the posterior compartment while some yki knock-

down cells close to the proneural region retain a residual GFP expression. (E-F) Wing discs of

nub-Gal4 and nub>yki RNAi staining for CD-GFP (green) at 30˚C, respectively. Compared to

nub-Gal4 control, CD-GFP is decreased in nub>yki RNAi.
(TIF)
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