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Abstract

We conduct a detailed investigation of the relationship among the obesity rate of urban
areas and expressions of happiness, diet and physical activity on social media. We do so
by analyzing a massive, geo-tagged data set comprising over 200 million words generated
over the course of 2012 and 2013 on the social network service Twitter. Among many
results, we show that areas with lower obesity rates: (1) have happier tweets and frequently
discuss (2) food, particularly fruits and vegetables, and (3) physical activities of any inten-
sity. Additionally, we provide evidence that each of these results offer different and unique
insight into the variation of the obesity rate in urban areas within the United States. Our work
shows how the contents of social media may potentially be used to estimate real-time, pop-
ulation-scale measures of factors related to obesity.

Introduction

Obesity is becoming increasingly problematic and common in the United States population [1,
2]. More than one-third of U.S. adults are obese resulting in an annual medical cost of over
$150 billion dollars [1, 3, 4]. These medical costs occur because obese people are significantly
more prone to the leading causes of preventable death including: heart disease, stroke and type
2 diabetes [5]. Obesity is defined by a Body-Mass Index (BMI) which reflects an individual’s
weight divided by square of their height. Obese individuals have a BMI of 30 kg m” or greater.
Obesity rate is defined as the percentage of the people in a Metropolitan Statistical Area (MSA)
who have a BMI of 30 kg m” or greater [2, 6].

Despite the prevalence of obesity in the U.S. it is not problematic to the same degree across
the country. According to the 2012-2013 Gallup-Healthways Wellness Survey (GHWS) the
obesity rate of U.S. MSAs ranges from 12.4% (Boulder, CO) to 39.5% (Huntington, WV). The
lack of uniformity in the obesity rate has motivated researchers to identify the factors that can
affect obesity and offer insight into the variation in the data [7].

While the GHWS and other approaches to quantifying the well being of a city rely almost
exclusively on survey data, there are now a range of complementary, remote-sensing methods
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available to researchers. The explosion in the amount and availability of data relating to social
media in the past 10 years has driven a rapid increase in the application of data-driven tech-
niques to the social sciences and other analyses of large-scale populations.

Our overall aim in this paper is to investigate how the obesity rate of an urban geographic
area correlates with the contents of geo-tagged tweets in that area. Here, tweets refer to 140
character microblogs expressed on the social media platform www.twitter.com and urban areas
reflect the 189 MSAs defined by the U.S. Office of Management and Budget [8]. In particular
we ask four research questions using geo-tagged tweets from 2012-2013:

1. How is the average happiness of the tweets in an urban area related to the population’s obe-
sity rate?

2. How is the overall discussion of food consumption on Twitter, and the nutritional density
of the food discussed, in related an urban area related to the population’s obesity rate?

3. How is the overall discussion of physical activity on Twitter, and the intensity of the activity
discussed, in an urban area related to the population’s obesity rate?

4. To what extent do the measures used to answer these questions offer unique insight and
how well does each correlate with a MSA-level survey measure of a similar variable?

Our methodology for answering the first question uses word frequency distributions col-
lected from a large corpus of geo-tagged tweets posted on Twitter, with individual words scored
for their happiness independently by users of Amazon’s Mechanical Turk service [9]. This
measure was introduced by Dodds and Danforth [10], tested for robustness and sensitivity
[11], and employed by Mitchell et. al in a similar pursuit [12].

In answering questions 2 and 3 we explore the extent to which the level of granularity
needed to answer the first question is required for the second and third question. To answer
the final question we compute the correlations among the measures used to answer the first
three questions to gauge how much unique insight they provide. We also evaluate how well
each of our derived Twitter measures correlates with a MSA-level survey measure of a similar
variable. This analysis helps determine if the measures actually capture the intended variables
(happiness, diet and physical activity) as opposed to other unrelated variables.

The answers to these questions are not always intuitive and provide significant insight into
the health-related habits of Twitter users in different urban areas. Ultimately, they show how
social media may potentially be used to estimate population-scale measures of factors related
to obesity.

The remainder of the paper is structured as follows. In the Methods section, we describe the
data sets in our study and our measures of happiness, diet and physical activity derived from
tweets. In the Results section we demonstrate that obesity rate and happiness have a similar
relationship in 2012 and 2013 as the two variables did in 2011. Next, we explore the relation-
ship between the discussion of food consumption on Twitter and the obesity rate in urban
areas. Then, we shift our focus to discussions of physical activity. Finally, we explore the extent
to which these measures: (1) contain unique insight and (2) match MSA-level survey measures
of similar variables. We conclude with a discussion of the validity and limitations of our study
along with directions for future work.

Methods
Datasets

We examine the relationship between the content of a corpus of geo-tagged tweets (not
retweets) and the obesity rate of 189 urban areas in the contiguous United States during the
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calendar years 2012 and 2013. Our data collection procedure adheres to Twitter’s terms of use/
service. It uses Twitter’s streaming API which provides low latency access to Twitter’s global
stream of Tweet data. The data we collected reflects a ~ 10% random sample of all tweets in
2012-2013. From that random sample, 1.5% of the tweets were geo-tagged resulting in a corpus
of over 25 million geo-tagged tweets. The geographic boundaries of the urban areas we explore
reflect the MSAs defined by U.S. Office of Management and Budget. It is important to note
that these urban area boundaries often agglomerate small towns together, particularly when
there are small towns geographically close to larger towns or cities.

The obesity rates of the MSAs are provided by the 2012-2013 Gallup Healthways Wellbeing
Survey. While other sources of geographic obesity rates exist (i.e. BRFSS and NHANES)[13, 14]
we use the GHWS because its data was collected during the same time frame (2012-2013) as
our Twitter corpus and (2) it measures other MSA-level variables related to happiness, diet and
physical activity which allow us to evaluate additional aspects of our work (i.e. Question 4).

The relationship between these datasets is examined using six measures derived from our
Twitter corpus: (a) one related to happiness, (b) three related to diet and (c) two related to
physical activity. We define each of these measures next.

Measure of Happiness

To quantify the happiness of a tweet we employ Mitchell et al.’s measure h,,,, which reflects the
happiness of a tweet. In previous work Mitchell et al. showed that the happiness of tweets are
correlated with several population-scale measures including household income, education lev-
els and the 2011 obesity rate in MSAs [12].

The happiness of a tweet is measured using the Language Assessment by Mechanical Turk
(LabMT) word list, assembled by combining the 5,000 most frequent words occurring in each
of four text sources: Google Books (English), music lyrics, the New York Times and Twitter.
Ten thousand of these individual words have been scored by users of Amazon’s Mechanical
Turk service on a scale of 1 (sad) to 9 (happy), resulting in a measure of happiness, A, for each
given word [9]. For example, ‘rainbow’ is one of the happiest words in the list with a score of
8.10, while ‘earthquake’ is one of the saddest, with a score of 1.90. Neutral words like ‘the’ or
‘thereof” tend to score in the middle of the scale, with h(the) = 4.98 and h(thereof) = 5.00
respectively.

For a given tweet T containing N unique words the average happiness, h,,,. is calculated by:

SThon)i
huvg(T) = 1:1N— = Zh(wi)pi (1)
;ﬁ i=1

In Eq 1, f; is the frequency of the ith word w; in T for which we have a happiness value h(w;)

N
andp, = f,/ Z £, is the normalized frequency of the word w;.

i=1

Measures of Diet

To quantify the dietary content of the foods one tweets about we explore three different mea-
sures at varying degrees of granularity. Each of these three measures require that we partition
our corpus of tweets using the following binary criteria: if a tweet contains a word(s) describing
at least one food in the USDA National Nutrient Database (USDANDB) [15] it is placed in the
Food Tweets set FT; otherwise it is placed in the Non-Food Tweets set NFT.
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Given this partitioning, the Food Tweet % (FT%) of a MSA, is the ratio of Food Tweets in the
MSA compared to the total number of tweets within the MSA. This reflects our first measure
of diet and is shown in Eq 2.

|FT|

FT% = —r~———
* ™ (IFT| + |NFT])

(2)

While, the FT% of a MSA quantifies how frequently people tweet about food, it does not
offer any insight into the actual food about which people tweet. To measure how nutritious
each food included in each tweet is we measure the average nutrient density, nd,,,, of the tweet
by using the Nutrient-Rich Foods Index (NRF) formula [16].

While other formulae to determine the nutrient density of foods exist, we use the NRF
because its’ scores have been shown to be highly correlated with the recommendations of the
USDA'’s Healthy Eating Index [17] and diets featuring high nutrient dense foods on the NRF
have been been shown to reduce obesity, while diets consisting of low nutrient dense foods
increase the prevalence of obesity [18, 19]. Furthermore the NRF is not restricted to any subset
of foods. It is generalizable to any food in the USDANDB [20].

Nutrient density in the NRF is determined by computing the daily recommended intake
value of protein, dietary fiber, vitamin A, vitamin C, vitamin E, calcium, magnesium, iron and
potassium provided per 100 kCals of a given food and then subtracting the daily recommended
intake values for saturated fat, sodium and added sugars in 100 kCals of the food. Using this
formula, fruits and vegetables are some of the most nutrient dense foods (nrf(spinach) = 694.8;
nrf(strawberries) = 375.9) while soda is one of the least (nrf(soda) = —55.8). For a given tweet T
containing N unique foods we calculate the average nutrient density nd,,,, using Eq 3.

> mf(food ),
1, (T) = 1= > rf food)p, o)

i
i=1

The calculation of nd,,, in Eq 3 is similar to the calculation of h,,,. In Eq 3 f; is the frequency

N
of the ith food food; in T with NRF value nrf(food,) and p, = flz f; is the normalized frequency
i=1
of the food food;. The result is a measure of the average nutrient density of the foods mentioned
in a single tweet.

There is a significant difference between the level of granularity in our first measure (FT%)
and our second (nd,,,). To bridge this gap we formulate one more measure of the diet of an
MSA: Produce % (Prod%). Prod% marries together the nutritional aspects of nd,,, with the
coarse granularity of FT%.

Recall, fruits and vegetables are among the most nutritionally dense items on the NRF
Index. Any tweet that mentions at least one food listed in either Fruits and Fruit Juices or Vege-
table and Vegetable Products sections of the USDANDB is in set Prod. Given this partitioning,
Prod% is the ratio of tweets in set Prod the compared to the total number of tweets in the MSA.
This measure is shown in Eq 4.

|Prod|

Prod% = WET + INET)

(4)
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Measures of Physical Activity

Along with happiness and diet, research has shown that the physical activity level of individuals
affects obesity [21-23]. With this foundation we explore two different measures to quantify dis-
cussions of physical activity within our Twitter data set. Each of these measures require that we
partition our corpus of tweets into those that discuss physical activities and those that do not.
To do this partition we use a binary criteria similar to our food tweet criteria. If a tweet contains
aword(s) discussing at least one physical activity in the guidelines for exercise testing published
by the American College of Sports Medicine (ACSM) and the Center for Disease Control and
Prevention (CDC) [24] it is placed in the Physical Activity Tweets set PA; otherwise it is placed
in the Non-Physical Activity Tweets set NPA. While the guidelines for exercise published by the
ACSM and CDC are not exhaustive and do not contain every possible physical activity descrip-
tor we employ them in our work because they list over 400 activities and are well established.
They been used by the American Heart Association [25], national cross-sectional studies [26]
and public health recommendations [27].

Our first physical activity metric, Physical Activity % (PA%) is shown in Eq 5. It measures
the ratio of Physical Activity Tweets compared to the total number of tweets.

|PA|

PAYY = —
"~ (|PA] + NPA))

(5)
The guidelines of physical activities from the ACSM and CDC divides activities into two cate-

gories which serve as the basis for our second measure. The two categories of activities are: (1)
moderately intense activities that burn 3.5 kCals a minute and (2) strenuously intense activities
that burn 7.0 kCals a minute. Moderately intense physical activities include yoga, walking and
stretching while strenuously intense physical activities include jogging, mountain climbing and
aerobics. For a given tweet T discussing M moderately intense physical activities and S strenuously
intense physical activities we calculate, pa,,eighteq in Eq 6. payeigntea is the weighted number of calo-
ries burned by participating in all the physical activities discussed in the tweet for one minute.

Ppeigiea(T) = (3.5 X M) + (7.0 x S) (6)

Obijectivity and Limitations

All of the measures in Eqs 2-6 make no attempt to take the context of words or the meaning of
a tweet into account. While this may limit the ability of our measures to appropriately score
tweets containing only a few words, previous researchers have employed this approach and
obtained reliable results. Furthermore, by ignoring the context of words we gain a degree of
impartiality. We are not the one’s deciding a priori whether a given word, food or activity is
associated with obesity. This strategy reduces experimental bias and maintains objectivity.

Results
Happiness and Obesity Rate

The first measure we explore is the happiness conveyed in individual words from tweets. Mitch-
ell et al. showed that the happiness of tweets are correlated with the 2011 obesity rate in MSAs
[12]. To validate this result we explore the correlation between the happiness of a tweet and the
obesity rate of MSAs in our random sample of Twitter data. Recall, our Twitter data con-

tains ~ 25 million tweets collected during 2012 and 2013 while Mitchell et al.’s data con-

tains ~ 10 million tweets collected during 2011. Also Mitchell et al. used GHWS obesity rates
collected during 2011 while we use obesity rates collected during 2012 and 2013.
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Fig 1. Correlation of h,,4 and obesity rate over all MSAs in: (a) 2011 and (b) 2012-2013.
doi:10.1371/journal.pone.0133505.g001

Fig 1 shows the correlation of ,,, and the obesity rate in all the MSAs for: (a) 2011 (Mitch-
ell et al.) and (b) 2012-2013 (our work). The data shows that the happiness people express in
tweets generally decreases as the obesity rate increases. This result holds true in 2011 as well as
in 2012-2013. Furthermore, the strength of the relationship and the subtleties of the data
points are similar. For example, Boulder, CO is the city with the lowest obesity rate and is
among the three most happy cities each year. Furthermore Beaumont, TX is in the top 10
MSAs in terms of obesity rate in both data sets and bottom five happiest cities. The Spearman
correlation coefficients are similar (r = -0.339 in 2011, r = -0.318 in 2012-2013) and each have
p-values far below.001 indicating that the negative correlations are statistically significant.
Next, we explore the relationship of five measures of other factors affecting obesity (diet and
physical activity) that can be gleamed from Twitter data in a manner similar to the happiness
metric, Ay

Dietary Health and Obesity Rate

Research has shown that diet influences obesity [28, 29]. However, the happiness metric, h,,q,
does not account for diet. Many foods that are widely considered unhealthy have high happi-
ness values (h). For example, the term cake has a h value = 7.58 Also, healthy foods can have
relatively low happiness values. The term vegan has a h value of 4.82 despite reflecting a diet
featuring fruits and vegetables. Furthermore, many healthy and unhealthy foods are not
included in the list of terms scored for happiness. As a result, they are completely ignored in
the previous analysis.

To gather insight into the relationship between the foods one tweets about and obesity we
explore the correlation between three different measures of the dietary content of a tweet and
the obesity rate of MSAs. The first measure we explore is nd,,,, shown in Eq 3. Recall, nd,,,
reflects the average nutrient density of a tweet. The twitter data we use for this analysis includes
more than two million tweets from 2012-2013 mentioning more than six hundred of the 8,000
different foods listed in the USDANDB. The Spearman correlation between nd,,, and obesity
rate in all MSAs over 2012-2013 is shown in Fig 2.
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Fig 2. Correlation of nd,,, and BMI over all MSAs for 2012-2013.
doi:10.1371/journal.pone.0133505.g002

Fig 2 shows that there is not a statistically significant relationship between the nutrient den-
sity of the foods people discuss in their tweets and obesity rate. This result is unexpected. Given
our previous result related to the happiness of tweets and the established relationship between
diet and obesity, we anticipated a statistically significant negative correlation. We pursue an
explanation by identifying the ten foods that are most strongly negatively and positively corre-
lated with obesity. These results are shown in Table 1.

Table 1 elucidates several insights into the set of tweets that discuss food. The first is that
areas with lower obesity rates do not exclusively discuss foods that are nutritionally dense. Sim-
ilarly areas with high obesity rates discuss a mix of nutritionally dense and non-nutritionally
dense foods. Specifically, both lists contain multiple foods with positive and negative NRF

Table 1. Top Ten Foods Most Negatively & Positively Correlated With Obesity Rate.

Negative

Food r
wine -.407
coffee -.372
banana -.325
espresso -.314
croissant -.285
apple -.282
salmon -.274
quinoa -.268
brie -.265
macaroon -.261

doi:10.1371/journal.pone.0133505.t001

Positive
p-value NRF Food r p-value NRF
p <.001 10.0 chicken nuggets .207 p <.01 5.9
p <.001 45 ham 174 p <.01 -6.4
p <.001 51.8 french fries .165 p <.05 -15.2
p <.001 3.8 chicken wings 145 p <.05 6.8
p <.001 -9.1 sausage 129 p >.05 -19.3
p <.001 46.7 biscuit 113 p >.05 0.2
p <.001 36.0 collards .097 p >.05 392.5
p <.001 31.8 bbq sauce .092 p >.05 -2.5
p <.001 -8.5 fried chicken .088 p >.05 8.9
p <.001 -8.4 gravy .084 p >.05 -4.2
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Index values and the food with the highest NRF Index value (collards) is correlated with high
obesity rates.

It is important to note that our nutrient density metric ignores the quantity and preparation
of the food consumed in the tweet. These limitations could explain the lack of a significant rela-
tionship between the nutrient density of foods people discuss in tweets and their obesity rate.
However, the correlation coefficients and p-values in Table 1 reveal that tweets that discuss
food, regardless of their nutritional density, are more likely to be negatively correlated with
obesity rate than positively correlated. The absolute value of the correlation coefficient of the
food tenth most negatively correlated with obesity is ~ 25% larger than the absolute value of
the correlation coefficient for the food most positively correlated with obesity rate. The p-val-
ues in Table 1 also reflect this trend. The relationship between all the foods negatively corre-
lated with obesity rate are statistically significant (p <.05) while only the top four foods
positively correlated with obesity rate are statistically significant.

Given these two observations we explore the data to see if the frequency with which individ-
uals tweet about food, regardless of its nutritional density, is correlated with obesity. We use
the same twitter data as our previous analysis. However, in this version we measure the ratio of
Food Tweets compared to the total number of tweets. This metric, FT% is shown in Eq 2. The
Spearman correlation between FT% and obesity over all MSAs for each is shown in Fig 3.

Fig 3 shows that the frequency with which people discuss foods in tweets generally decreases
as obesity rate increases. For example, San Francisco, CA is the MSA with one of the highest
FT% and is among the ten MSAs with the lowest obesity rate. Similarly, several of the MSAs
with top twenty obesity levels (Flint, MI; Mobile, AL; Rockford, IL) are amongst the bottom
twenty MSAs in terms of FT%. However, the negative correlation between FT% and obesity
rate is not as strong as the negative correlation between h,,, and obesity rate. Furthermore, the
negative correlation between FT% and obesity is not immediately obvious. There is not a
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quorum of established evidence that shows that the more people discuss food the less obese
they are.

In order to examine our data further we explore our final measure of the diet of a MSA: Pro-
duce % (Prod%). Recall, Prod% marries together the nutritional aspects of nd,;,, with the coarse
granularity of FT%. It reflects the percentage of total tweets that discuss at least one of the foods
listed in either the Fruits and Fruit Juices or Vegetable and Vegetable Products sections of the
USDANDB. The twitter data we use for this analysis includes more than one million tweets from
2012-2013 mentioning more than 150 different fruits, vegetables or fruit/vegetable related prod-
ucts. The Spearman correlation between Prod% and obesity rate over all MSAs is shown in Fig 4.

Fig 4 shows that the Prod% metric reconciles the trends we saw in our previous explorations
with the measures nd,,, and FT%. The frequency with which people tweet about fruits, vegeta-
bles or related products increases as obesity decreases.

Intuitively this makes sense. Fruits and vegetables are some of the highest scoring items on
the NRF Index, so eating them regularly should decrease the obesity rate. The previous mea-
sure, nd,,,, attempted to account for this but over penalized tweeters for mentioning average
and below average foods on the NRF Index. The FT% metric offered a much coarser level of
granularity but did not consider the nutritional density of the foods being discussed in a tweet
at all. By including nutritional density at a coarse level of granularity we are able to reveal a cor-
relation with obesity rate (r = -0.344) that is similar in magnitude to the correlation between
ha,e and obesity rate. Next, we investigate the discussion of physical activity levels on Twitter
and their relationship to the obesity rate in MSAs.

Physical Activity Level and Obesity Rate

Along with happiness and diet, research has shown that the physical activity level of individuals

affects obesity [21-23]. However, none of our previously explored measures (g 11da,e FT%
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@’PLOS ‘ ONE

You Are What You Tweet: Connecting Twitter and America’s Obesity Rate

12
0\010
_Zs
N
5
<
< 6
O
"
=
o 4

2

(@)

2012 & 2013/ 2012 & 2013

n
&)

N
o

—
on

Weighted Physical Activity Level
o

: | 05| —
[ =-0330 ] . ] 0~ _0190 3 . 1
p-value =3.47x 10 ‘ . ‘ p-value =8.74 x 10 ‘ ‘

15 2 35 15 2 35

0 25 30
Obesity rate (%)

—

b 0 25 30
) Obesity rate (%)

Fig 5. Correlation of obesity rate and (a) PA% and (b) pa,eighteq OVer all MSAs in 2012 & 2013.
doi:10.1371/journal.pone.0133505.9005

and Prod%) account for discussions of physical activities within tweets. As a result, we explore
two different measures of discussions of physical activity within our Twitter data set.

Our first physical activity measure, Physical Activity % (PA%) measures the ratio of Physical
Activity related tweets compared to the total number of tweets. Our second measure weights
physical activities according to the intensity levels published by guidelines of the ACSM and
CDC. These two measures are shown in Eqs 5 and 6. The Spearman correlation between PA%
and obesity rate and pa,yeignieq and obesity rate in all MSAs over 2012 and 2013 is shown in Fig
5(a) and 5(b).

The twitter data we use for this analysis includes more than three million tweets from 2012
and 2013 mentioning more than eighty of the physical activities listed by the ACSM and CDC.
Almost two million tweets discuss forty-eight different activities of moderate intensity and
more than one million tweets discuss thirty-six different activities of strenuous intensity.

The payyeightea values of the tweets in our data set vary. The minimum is zero, which reflects
a tweet that does not discuss any physical activities from the list published by the ACSM and
CDC. The maximum pa,,cignseq Observed in our data set is 24.5. However, over 99% of the
tweets in our data set have pa,,c;gnseq values of either: 0, 3.5 or 7.

Fig 5 shows that there is a statistically significant negative correlation between both PA%
and pa,,eighteq and the obesity rate in MSAs. However, the relationship between PA% and obe-
sity rate is stronger (r = -0.330) than the relationship between pa,,eighsea (r = -0.190) and obesity
rate. This result may seem unexpected. The pa,,cignseq metric offers the capability to combine
the calories burned from multiple activities based on their intensity level. Given these addi-
tional capabilities one might expect it to correlate better with obesity rate than the basic PA%
metric. To gather additional insight we calculate the activities most positively and negatively
correlated with obesity rate in Table 2. Table 2 only includes five activities in each column
because there are so few physical activities that have a positive statistically significant correla-
tion with obesity rate.

Table 2 shows that areas with low obesity and areas with high obesity engage in twitter dis-
cussions of a mixture of moderately and strenuously intense activities. Both lists include three
moderately intense activities and two strenuously intense activities. However, Table 2 also

PLOS ONE | DOI:10.1371/journal.pone.0133505 September 2, 2015
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Table 2. Top Five Physical Activities Most Negatively & Positively Correlated With Obesity Rate.

Negative Positive

Activity r p-value Intensity Activity r p-value Intensity
golf -.327 p <.001 moderate basketball 218 p <.01 strenuous
yoga -.318 p <.001 moderate hunting .182 p <.01 moderate
hiking -.273 p <.001 moderate football 176 p <.05 strenuous
racquetball -.246 p <.001 strenuous dancing 151 p >.05 moderate
lacrosse -.222 p <.01 strenuous coaching 128 p >.05 moderate

doi:10.1371/journal.pone.0133505.t002

shows that areas with lower obesity rates simply tweet more about physical activities than areas
with high obesity rates. The absolute value of the correlation coefficient for the fifth most nega-
tively correlated activity is higher than the absolute value of the correlation coefficient for the
activity most positively correlated with obesity.

It is important to note that our physical activity measures ignore if an individual’s discus-
sion of an activity reflects them physically engaging in it or merely witnessing it in some man-
ner. The inability to make this distinction could explain the lack of a more significant
relationship between the intensity levels of physical activities and obesity rate.

However, these insights do reveal similarities between the measures: (1) nd,,, and Prod%
and (2) pa,eightea and PA%. In both cases adding too much detail to the measure derived from
tweets diluted the relationship between the quantities of interest. This is a valuable lesson
learned. Given the complexity of Mitchell et. al.’s happiness metric, h,,,, we assumed we would
need measures of discussions of food and physical activities with a similar structure. However,
this is not the case. The more coarse measures Prod% and PA% had a stronger relationship to
obesity rate than the nuanced measures nd,,, and pa,,eighreq- Next, we explore the extent to
which these measures provide different insight about the obesity rate of a MSA and evaluate
the extent to which each correlates with a a MSA-level survey measure of a similar variable.

Evaluation of Measures

The results we have presented thus far demonstrate that three measures (hgy,, Prod% and PA
%) which can be obtained from geo-tagged tweets have a statistically significant negative corre-
lation with the obesity rate of a MSA and that correlation is on the order of -0.30. However, we
have not presented any results which show that: (1) the three measures (k. Prod% and PA%)
have unique relationships with the obesity rate of a MSA and (2) the measures actually quantify
the happiness, diet and physical activity level of a MSA.

We address both of these questions by computing the correlation among seven variables.
Three of the seven variables are the measures of happiness, diet, and physical activity that can
be gleamed from Twitter discussions within a MSA and are most correlated with obesity rate:
haye Prod% and PA%. The other four variables reflect MSA-level data collected by the GHWS
survey data. These variables are the: (1) obesity rate of a MSA, (2) percentage of individuals in
a MSA who report that they eat a healthy diet, (3) percentage of individuals in a MSA who
report that they exercise frequently and (4) Well-Being Index of a MSA. The Well-Being Index
is computed by aggregating the responses from participants to five statements. Each participant
rates their agreement with each statement on a 0 (very strong disagreement) -10 (very strong
agreement) scale. The statements are [7]:

1. Tam satisfied with my present life situation and anticipated life situation.

2. My daily feelings and mental state are healthy.
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3. Thave the physical ability to live a full life.
4. The behaviors I engage in positively affect my physical health.
5. Within my community I feel safe, satisfied and optimistic.

Fig 6 visualizes the lower triangle of a matrix of the Spearman correlations among the seven
variables. The blue boxes in Fig 6 reflect a positive correlation, red boxes reflect a negative cor-
relation. This data shows that each of the measures we computed from Twitter discussions
within a MSA (K, Prod% and PA%) are more correlated with the obesity rate of a MSA than
they are correlated with any of the other measures computed from Twitter data. This provides
evidence that each of the three measures reflect different factors which are correlated with the
obesity rate of a MSA. In other words, these three measures are not simply different methods
of quantifying the same variable.

Furthermore, each of the three measures gleamed from our Twitter corpus is more corre-
lated with the MSA-level measure of a similar variable from GHWS than any other variable.
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Fig 6. Correlation among four MSA-level measures and three Twitter measures of MSAs. Blue boxes reflect a positive correlation, red boxes reflect a
negative correlation.

doi:10.1371/journal.pone.0133505.9g006
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To help elucidate this trend we have underlined the correlation coefficient of the variables with
the strongest correlation to happiness, Prod% and PA%. While, this trend does not completely
rule out the existence of confounders within our Twitter-level measures, it provides evidence
that ke, Prod% and PA% are actually reflecting the level of happiness/well-being, diet/
healthy-eating and physical activity/exercise within a MSA as opposed to three completely
unrelated variables. Next, we review related work, discuss the validity and limitations of our
results and provide directions for future work.

Discussion

We are not the first researchers to explore modeling human behavior with content from Twit-
ter. Emotions have been accurately captured at different levels of granularity from tweets by
using hashtags [30] and sentiment analysis [31, 32]. Given these classification capabilities other
researchers have used Twitter data to explore the emotional states individuals go through in a
24 hour period [33] and while watching sporting events [34].

Tweets have also been used to model consumer confidence [35] and identify major news
events that cause breaking points in public opinion [36]. They have served as a platform to
explore the unique characteristics of astrophysicists [37] and been analyzed to characterize
varieties of the Spanish dialect on a global scale [38]. However, the two studies most related to
our research are Broniatowski et al.’s work on modeling the spread of influenza through tweets
[39] and Mitchell et al.’s exploration of the relationship between the happiness of a tweet and
its geographic origin [12].

Since we have already reviewed and validated Mitchell et al.’s work, we only focus on Bro-
niatowski et al. here. Broniatowski et al identified measures that distinguish tweets relevant to
influenza from other tweets. In this paper we adopt this strategy to identify measures related to
the variation in obesity rate of MSAs from 2012-2013.

We have identified three measures which can be gleamed from Twitter content related to
happiness, diet and physical activities. Each of these measures has a statistically significant nega-
tive correlation with obesity on the order of -0.30. Furthermore, we have provided evidence that
these measures reflect different variables associated with obesity and that these variables actually
reflect the happiness, diet and physical activity levels of MSAs. Ultimately, this work has fur-
thered the research effort in understanding obesity by providing a new path through social
media data for the development of population-scale measures of factors related to obesity.

Despite these results, internal and external validity threats affect our study. Threats to inter-
nal validity arise when factors affect the dependent variables without the evaluators’ knowl-
edge. It is possible that some flaws in the implementation of our metrics could have affected
the results of the evaluation. However, the algorithms we used to compute the metrics passed
several internal code reviews and the strength of the relationship between our implementation
of the happiness metric, h,,,, and the obesity rate in MSAs is similar to previously published
results [12]. Threats to external validity occur when the results of the evaluation cannot be gen-
eralized. Although the evaluation was performed for two years of data over 189 MSAs the
results cannot be generalized to: (1) other urban areas, (2) during different years or (3) different
Twitter data sets.

Furthermore, there are issues that must be addressed with how well a geo-tagged Twitter
data set can represent the obesity rate of a population. Only 15% of online adults regularly use
Twitter, and 18-29 year-olds and minorities tend to be more highly represented on Twitter
than in the general population [40]. Furthermore, on Twitter, 95% of users never geo-tag a sin-
gle tweet and only ~ 1% of users geo-tag the majority of the tweets they post. Also, the extent
to which the individual ‘tweeter’ is represented in our Twitter corpus is biased. Very passive
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users (< 50 tweets per year) and very active users (> 1000 tweets per year) geo-tag a smaller
percentage of tweets than moderate users (50-1000 tweets per year) [40]. Finally, we collected
only a random sample of all tweets during 2012-2013. Ultimately, these limitations mean that
the data set which informed our study is a non-uniform subsample of statements made by a
non-representative portion of MSA populations.

Even with these limitations and validity threats we have only scratched the surface of what
is possible using social media datasets. In particular, Tables 1 and 2 could be very illuminating.
One can observe that the top foods and physical activities positively (espresso, yoga) and nega-
tively (french fries, hunting) correlated with obesity rate may have social and cultural under-
pinnings (i.e. income and education levels).

This would not be unexpected. Recall, previous work showed that the happiness of a MSA,
which correlates with our diet and physical activities measures, has statistically significant posi-
tive correlations with: (a) the percentage of households with median income levels and (b) the
percentage of the individuals living in an area who have obtained a bachelor’s degree. Also,
happiness has a statistically significant negative correlation with families living below the pov-
erty line. In future work, we plan to use the census data for 2012 to investigate how different
demographics across urban areas are correlated with our measures of diet (Prod%) and physi-
cal activity level (PA%).

Additionally, we have not examined whether or not these methods have any predictive
power. Future work will look at how observed changes in the measures which can be gleamed
from Twitter data, predict changes in the obesity rate of MSAs. We plan to pursue this in future
work using content from Twitter and the GHWS data collected in 2014 and 2015.

Supporting Information
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