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Error-mitigated quantum gates exceeding physical
fidelities in a trapped-ion system
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Various quantum applications can be reduced to estimating expectation values, which are

inevitably deviated by operational and environmental errors. Although errors can be tackled

by quantum error correction, the overheads are far from being affordable for near-term

technologies. To alleviate the detrimental effects of errors on the estimation of expectation

values, quantum error mitigation techniques have been proposed, which require no additional

qubit resources. Here we benchmark the performance of a quantum error mitigation tech-

nique based on probabilistic error cancellation in a trapped-ion system. Our results clearly

show that effective gate fidelities exceed physical fidelities, i.e., we surpass the break-even

point of eliminating gate errors, by programming quantum circuits. The error rates are

effectively reduced from (1.10 ± 0.12) × 10−3 to (1.44 ± 5.28) × 10−5 and from (0.99 ±

0.06) × 10−2 to (0.96 ± 0.10) × 10−3 for single- and two-qubit gates, respectively. Our

demonstration opens up the possibility of implementing high-fidelity computations on a near-

term noisy quantum device.
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Quantum computers1 can extend classical computational
reach in diverse research fields, including quantum
chemistry, material science, and even machine learning.

Based on various technological advances so far, such nontrival
quantum applications have been pursued with currently available
devices mainly through quantum-classical hybrid schemes2,3. The
schemes combine the advantages of classical and quantum
computation, where quantum processors are used to estimate
expectation values of physical observables on certain states for
classical feedback. The hybrid schemes can be applied to estimate
the ground-state energies of molecules3–5, to simulate quantum
models in materials6 and high-energy physics7, and to find
approximate solutions of optimization problems8. Although it is
anticipated that around a hundred well-behaved qubits are
required for such schemes to outperform current classical coun-
terparts in quantum chemistry9–11, the advantages are only
possible with accurate quantum processors. However, expectation
values obtained with output results of the quantum devices are
inevitably deviated because of errors originated from both
environmental fluctuations and operational imperfections.
Therefore, techniques for accurately estimating expectation values
with improving the accuracy of noisy quantum processors are of
great importance.

Apart from physically improving the devices, the deviations in
estimating expectation values can be suppressed on the algo-
rithmic level. For example, quantum error correction12,13 pro-
vides a mean of fault-tolerant quantum computation, which
results in accurate expectation values. However, quantum error
correcting codes require complex coding schemes, a large number
of physical qubits, and low error rates, which are still far from
being affordable for near-term quantum technologies14,15. Con-
sequently, it has not yet been demonstrated that quantum fault
tolerance protocols can increase the fidelity of computation
operations in any physical implementation. Alternatively, for the
quantum algorithms estimating expectation values, the reliability
of computation result can be improved by recently proposed
error mitigation schemes16–20 without challenging requirements
for quantum error corrections. The probabilistic error-
cancellation method provides a comprehensive way to mitigate
errors in expectation estimation tasks17,18,21. It begins with
characterizing imperfect operations on the quantum device by
tomography technique and then cancels errors by sampling
random quantum circuits, according to a quasi-probability dis-
tribution derived from reconstructing ideal quantum operations
with characterized imperfect ones. Please note that this method
does not improve the physical quality of quantum states or gates
but reduces the error in the estimation of expectation values.

Here we construct a trapped-ion system with full controllability
and investigate the universal validity of the probabilistic error-
cancellation method in a general quantum computational
context. We apply the method to every imperfect elementary
quantum operation and benchmark the performance of error-
mitigated quantum computation22. We observe singnificant
improvements on effective gate fidelities of single- and two-qubit
gates by an order of magnitude to those of physical gates. Here,
the effective gate fidelities are obtained by fitting the corre-
sponding expectation values estimated with error mitigation,
which are not actual physical gate fidelities.

Results
Paradigm of error-mitigated quantum computation. The
paradigm of error-mitigated quantum computation is shown in
Fig. 1. The noisy quantum device is treated as a multi-qubit black
box in Fig. 1a, capable of preparing each qubit into an initial state
ρ0, performing a set of single-qubit and two-qubit gates, and two-

outcome measurement on each qubit, which is described by a
positive operator-valued measure M � fE0; I � E0g with I being
the 2 × 2 identity operator. These quantum operations are gen-
erally not accurate because of errors from operational imperfec-
tions and environmental fluctuations. As proposed in ref. 18, we
perform the gate set tomography23–25 and characterize state
preparation and measurement (SPAM) and gates of noisy
quantum devices by Gram matrices and Pauli transfer matrices
(PTMs), respectively25, as shown in Fig. 1b. When we repeatedly
execute a quantum circuit with such a noisy device aiming at
obtaining the expectation values of observables of interest, the
estimation will be deviated from the ideal case due to the
imperfection of the quantum device, as shown in Fig. 1c. The
correction of each noisy quantum operation can be decomposed
to the combination of experimental basis operations (which we
give later) with quasi-probabilities as shown in Fig. 1d. As some
of the quasi-probabilities can be negative, we cannot physically
implement the decomposition. However, the expectation of the
decomposition can be estimated by sampling circuits with ran-
dom basis operations according to the quasi-probabilities17,18.
After running the random circuits with the corrections,
the probability distribution of the output expectation value is
shifted towards the ideal value at a cost of enlarged variance due
to the presence of negative values in the quasi-probabilities18, as
shown in Fig. 1c. The variance can be reduced by increasing the
repetition number, which is the number of random-circuit
instances.

Experimental realization. In our experimental realization, the
quantum hardware encapsulated in the black box is a trapped-ion
system, where 171Yb+ ions are trapped into a linear crystal and
individually manipulated by global and individual laser beams, as
shown in Fig. 1a. To encode quantum information, a pair of clock
states in the ground-state manifold 2S1∕2, i.e., F ¼ 0;mF ¼ 0j i and
F ¼ 1;mF ¼ 0j i, are denoted as the computational basis
0j i; 1j if g of a qubit. At the beginning of executing a quantum

circuit, each ion qubit is initialized to 0j i by optical pumping. We
implement single-qubit operations by Raman laser beams with
beatnote frequency about the hyperfine splitting ω0= 2π ×
12.642821 GHz. In addition, the two-qubit operation, i.e., the
Mølmer-Sørensen YY-gate (MSYY) is realized by driving trans-
verse motional modes26,27, with frequencies in the x-direction
{ν1, ν2}= {1.954, 2.048} MHz. We apply amplitude-shaped28

bichromatic Raman beams with beatnote frequencies ω0 ± μ,
where μ is set to be the middle frequency of the two motional
modes, and achieve the MSYY gate for 25 μs. We also realize the
MS ZZ-gate (MSZZ) by adding single-qubit rotations before and
after the MSYY gate29 (see Supplementary Fig. 4b). At the end of
the execution, internal states of qubits are measured by state-
dependent fluorescence detection30. It is noteworthy that to col-
lect fluorescence photons, we use a photomultiplier tube in the
single-qubit case and an electron-multiplying charge-coupled
device (EMCCD) in the two-qubit case.

Characterization of quantum device. We introduce the PTM
representation for the mathematical description of an n-qubit
noisy quantum device, where density operators ρ and physical
observable E are represented by 2n-entry column vectors ρij i and
row vectors Ehh j, and quantum gates G are represented by 22n ×
22n PTMs RG. Here, the expectation value of the observable Ê
after operating Gs on the initial state ρ̂ is represented by
〈〈E∣RG∣ρ〉〉. PTMs can be determined by gate set tomography,
which requires informationally complete data obtained from
experiments with initial states from a basis set Sn �
f 0j i; 1j i; 1j iX ; 1j iYg�n and measurement of the observables from
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the n-qubit Pauli basis Pn ¼ fI;X;Y ;Zg�n, where 1j iX and 1j iY
are the eigenstates of Puali operators X and Y, respectively.
Compared with quantum process tomography, gate set tomo-
graphy is featured by appropriately taking consideration of SPAM
errors, which is of great importance in quantum computations
with high accuracy. In gate set tomography, the states in Sn and
the measurement of observables in Pn are realized by using a set
of fiducial gates F n � fI;Xπ;Y�π

2
;Xπ

2
g�n consisting of the iden-

tity operation and the X or Y axis rotations on each qubit, which
are to be characterized together with the rest of the quantum
operations. The single-qubit SPAM errors are reflected in the
Gram matrix25, as shown in Fig. 2a, which is obtained by pre-
paring the qubit in one of the states S1, ρi

��� � ¼ RFi
ρ0
��� �
, and

measuring the expectation values of the operators in the single-
qubit Pauli basis P1, Eihh j ¼ E0hh jRFi

, where ρ0 and E0 are ideally
associated with 0j i 0h j and Z, respectively.

For single-qubit randomized benchmarking22, we design pulse
sequences for implementing major-axis π pulses {X±π, Y±π, Z±π}
and π

2 pulses fX ±π
2
;Y ±π2

g. Thus, the gate set for the single-qubit
case is G1 ¼ fI;X±π;Y±π;Z±π;X±π

2
;Y±π

2
g, where I is the identity

operation. The gate set for implementing two-qubit random
circuits are G2 ¼ G�2

1 ∪ fMSYY ;MSZZg. We experimentally obtain
the PTMs of all the gates in the gate set by maximizing a
likelihood function with the assumption that Pauli errors are
dominant in our devices (see Methods).

The reconstructed PTMs of X±π
2
and Y±π2

for the single-qubit
case and those of MSYY and MSZZ gates for the two-qubit case
are shown in Fig. 2b, c, respectively (more data for the single-
qubit case are in Supplementary Fig. 1a). We note that, for the
gate set tomography of two qubits, we apply a two-step parameter
estimation, as the infidelities for the single-qubit gates are about
an order lower than those of the two-qubit gates. We first
determine the Pauli error rates for all the single-qubit gates in G�2

1
as described above and then characterize the two-qubit gate MSYY
based on the knowledge of the characterized single-qubit gates
(see Methods). The MSZZ gate is derived from those results. Using
these reconstructed PTMs, we numerically simulate the single-
qubit randomized benchmarking and two-qubit random circuits
on a classical computer. The comparisons between the numeri-
cally reconstructed and experimental data clearly validate the
Pauli error assumption within both error bars (see Supplementary
Fig. 2).

The initial state, quantum gates, and measurement are deviated
from the ideal ones, as experimentally characterized by Gram
matrix and PTMs. Mathematically, we can reconstruct the ideal
ones by a weighted combination of experimental operations17,18.
As we cannot distinguish errors in state preparation from those in
measurement, we ascribe all of the SPAM errors to state
preparation and decompose the initial state ρid0

��� � ¼ P
iq0;i ρi

��� �
.

The quasi-probabilities q0,i for the decomposition of the ideal
single-qubit initial state is shown in Fig. 3a. It is noteworthy that
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Fig. 1 Paradigm of error-mitigated quantum computation. a Quantum black box based on a trapped 171Yb+-ion system. Each button on the surface
corresponds to an operation exerted on the quantum system encapsulated, where the buttons with ρ and M are for initial state preparation and
computational basis measurement, whose results are indicated by the lights. The other buttons are for single-qubit and two-qubit quantum operations on
certain qubits. The operations are implemented by global (blue) and individual (purple) laser beams illuminating the ion qubits. b Characterization of the
quantum black box. The error-affected state preparation and measurement is characterized by the Gram matrix g and the effect of each operation G, such
as Yπ

2
and MSYY, is described by a Pauli transfer matrix RG in the superoperator formalism, which is obtained by gate set tomography. c Construction of

unbiased estimator of an expectation value specified by a quantum circuit, with building blocks including initial state preparation, different single-qubit and
two-qubit gates, and the final measurement. With error mitigation, the distribution of the output expectation value is shifted towards the ideal value at a
cost of enlarged variance. d Quasi-probability decomposition for the ideal initial state and exemplary single-qubit and two-qubit gates. As the errors in
state preparation and those in measurement are indistinguishable, we ascribe both of the errors to state preparation and decompose the ideal initial state
with a set of experimental basis states, prepared by state initialization followed by a random fiducial gate. The PTM of an ideal quantum gate can be
expanded as a quasi-probability distribution over random gate sequences consisting of the experimental gate and one of the experimental basis operations,
Pauli operations in the experiment. The error-mitigated estimation of the expectation value is then obtained by the Monte-Carlo method (see Methods).
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2
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computational gates in randomized benchmarking, as examples (PTMs of other experimental gates are shown in Supplementary Fig. 1). c Pauli transfer
matrices of the experimental gates MSYY and MSZZ in the two-qubit case. It is worth noting that we calibrate the SPAM errors as proposed in ref. 31 and the
PTMs of single-qubit gates on both qubits (not shown) are not noticeably different to those for the single-qubit case. In each subfigure, the left column
shows the experimentally obtained matrices and the right column shows the difference between the experimental and the ideal matrices, i.e., RG � RidG with
G being one of the quantum operations being characterized.
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2
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for the two-qubit case, the SPAM errors are much more serious
because of the EMCCD and we calibrate the results to remove the
SPAM errors as proposed in ref. 31. We prepare the system in the
states 00j i and 11j i, and measure the state fidelities of 0j i and 1j i
for both qubits. The infidelities of these states give the SPAM error
probability associated with each measurement outcome, which can
then be used to remove the SPAM errors by data processing.

An ideal quantum gate Gid
s can be written as the experimental

one followed by the inverse of noise operation, i.e.,
RGid

s
¼ N�1

s RGs
, where the noise operation Ns introduces errors

in the experimental gate RGs
¼ NsR

id
Gs
. The inverse of the noise

operation N�1
s is then decomposed by the experimental

operations associated with the n-qubit Pauli group, N�1
s ¼P

jqs;jRPj
with Pauli error assumption, where the quasi-

probabilities qs,j are determined by a set of linear equations. We
show decompositions of the inverse error operations for single-
qubit gates fX±π

2
;Y±π

2
g in Fig. 3b (more data in Supplementary

Fig. 1b) and for two-qubit gates {MSYY and MSZZ} in Fig. 3c.

Benchmarking of the quantum error mitigation protocol. We
benchmark the performance of the quantum error mitigation
using a set of random computations, in the spirit of randomized
benchmarking. Each specific computation starts with fully
polarized initial states, 0j i in the single-qubit case and 00j i in the
two-qubit case, and ends with measuring Z on each qubit.
Between the SPAM, there is a sequence of randomly selected
quantum gates. We note that the randomness in selecting the gate
sequence is for the purpose of benchmarking the performance
rather than correcting errors. For each specific computation, i.e.,
gate sequence, we apply the error mitigation and modify the gate
sequence with random basis operations to correct errors. We
remark that, for each specific computation, we observe the
improvement on the computation accuracy by using the error
mitigation.

For the single-qubit case, benchmarking computations are
selected according to the standard randomized benchmarking,
i.e., a gate sequence of length L contains L computational gates
and L+ 1 interleaving identity or Pauli operations, uniformly
drawn from the set fX±π

2
;Y±π

2
g and {I, X±π, Y±π, Z±π}, respectively.

For each sequence length L, we choose four sequences whose ideal
final states are the eigenstates of the Pauli Z operator. We then

repeatedly implement each of the sequences with a trapped-ion
system consisting of a single trapped ion and measure the state
fidelity between the ideal and experimentally prepared final states.
In Fig. 4a, we show the dependence of the average fidelity without
error mitigation, obtained by averaging the state fidelities over
sequeces of the same length, on the sequence length. We
numerically fit the average fidelity with an exponential function
and obtain the error rate per single-qubit gate as (1.10 ± 0.12) ×
10−3.

To obtain unbiased estimator of the expectation value, both the
initial state and 2L+ 1 gates in the selected sequence need to be
decomposed and resampled, where the initial state is replaced
probabilistically by one of the states in S1, and each experimental
gate is followed by a random Pauli or identity operation drawn
from P1. Thus, for a specific computation with (2L+ 1) gates,
there are 42L+2 possible experimental settings. As the number of
settings grows exponentially with the length of the random
sequence, we use the Monte-Carlo method to compute the result
by sampling random experimental settings, which are specified by
an index i for the initial state ρi

��� �
and two (2L+ 1)-entry index

vectors a � a1; ¼ ; a2Lþ1

� �
and b � b1; ¼ ; b2Lþ1

� �
specifying

the computation and the choices of the error-compensating
operations. We note that for a specific computation, a is
determined but b is random. The probability of an experimental
setting hhE0j

Q2Lþ1
l¼1 RPbl

RGal
jρiii, where Gal

2 G1 and Pbl
2 P1, is

C�1 q0;i
Q2Lþ1

l¼1 qal ;bl

� ����
���. Here, the rescaling factor C ¼

P
i;¼ ; al ;blð Þ;¼ q0;i

Q2Lþ1
l¼1 qal ;bl

� ����
��� � 1 characterizes the cost to

mitigate the errors. It is noteworthy that the signs of the

coefficients, i.e., sgn q0;i
Q2Lþ1

l¼1 qal ;bl

� �h i
, are integrated into the

measurement results of the random experiments (see Methods).
In Fig. 4a, we represent the error-mitigated single-qubit
randomized benchmarking with length L up to 64 and show
that the single-qubit gate error rate is effectively suppressed to
(1.44 ± 5.28) × 10−5.

For the two-qubit case, we select four gate sequences as
benchmarking computations for each length L. Each sequence
contains L two-qubit gates uniformly drawn from the set
{MSYY, MSZZ} with interleaving single-qubit gates32. The
sequence is selected under the restriction that the ideal final
state is an eigenstate of Z⊗2. Similar to the single-qubit case
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Fig. 4 Experimental data for error-mitigated quantum computation. a The single-qubit randomized benchmarking. The data points with (purple square)
and without (yellow diamond) error mitigation are obtained from averaging the final-state fidelitiy over different random sequences of the same length
(black dots). The error bars are the SD of the average fidelities computed using the formula of uncertainty propagation. The solid lines, obtained by fitting,
show the exponential decrease of the average fidelities, indicating the physical and effective average errors per gate being (1.10 ± 0.12) × 10−3 and (1.44 ±
5.28) × 10−5, respectively. Please note that some of the fidelities with error mitigation are larger than 1 because of the rescaling factor C > 1 (see main text
and Methods) and the limited sampling for data points. Although the current protocol does not guarantee a physical outcome, the error mitigation
procedure shifts the distribution of the computation result towards the true value with a large enough sampling. b The two-qubit random-circuit
computation. Decay rates indicated by the average fidelity curves without and with error mitigation are (0.99 ± 0.06) × 10−2 and (0.96 ± 0.10) × 10−3,
respectively.
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described above, we apply error mitigation to each of the two-
qubit gate sequences with length L up to 6 and represent the
error-mitigated results in Fig. 4b, where the two-qubit gate error
rate is effectively suppressed from (0.99 ± 0.06) × 10−2 to (0.96 ±
0.10) × 10−3.

Discussion
Our work shows that for the estimation of expection values, the
error mitigation technique, i.e., probabilistic error
cancellation17,18,21, surely have the capacity of surpassing the
break-even point, where the effective gates are superior to their
physical building blocks, at an affordable cost with respect to
near-future quantum techniques. We note that error mitigation
techniques are developed for the intermediate-scale quantum
computation. The cost of the error mitigation increases with the
circuit depth; therefore, techniques such as quantum error cor-
rection are still needed for large-scale fault-tolerant quantum
computation. The effective infidelity after error mitigation comes
from the Pauli error assumption, time-dependent systematic
drifting33 for both single-qubit and two-qubit cases, and crosstalk
error of single-qubit addressing operations for the two-qubit case
(see Methods). Thus, further improvement requires both cali-
brating and stabilizing the quantum device. With technologies to
tackle the crosstalk error, the probabilistic error-cancellation
method of quantum error mitigation can be straightforwardly
applied to systems with more qubits for realizing high-fidelity
quantum computation.

Methods
Maximum-likelihood gate set tomography. To obtain the PTMs of all the gates
in the gate set, we experimentlly measure informationally complete data consisting
of the average �mijk and variance Δijk of the expectation value hhEijRGj

jρkii, which
are obtained by repeating the corresponding experimental settings enough number
of times. We assume Pauli errors are dominant in our device, where each of the
noisy quantum gate Gj 2 Gn is modeled with the ideal gate Gid

j followed by a Pauli
error channel. We use a maximum-likelihood estimation for the reconstruction of
PTMs of all the gates in the gate set, parameterized as ansatz RGj

¼ NjR
id
Gj
, where

Nj ¼
P

lpj;lRPl
, with variational parameters being gate-specific Pauli error rates pj,l.

With the ansatz for each gate, we calculate the ansatz prediction for the expectation
value of each experimental setting, denoted as mijk. We then define the following
likelihood function25,

L ¼
Y
i;j;k

exp �ðmijk � �mijkÞ2=Δ2
ijk

h i
; ð1Þ

which takes its maximum value when the experimental average values �mijk and the
ansatz expectations mijk coincide with each other. Thus, the gate-specific Pauli
error rates can be determined by maximizing the likelihood function, with which
we construct the PTMs of the imperfect gates that are implementable in the
quantum device.

Characterization and decomposition of single-qubit gate set. We use gate set
tomography to characterize the single-qubit operations. In the superoperator
formalism, each experimental single-qubit operation RGs

can be describe as an ideal
4 × 4 PTM followed by a PTM of noise operation Ns. With Pauli error assumption,
each Ns can be written as Ns ¼ ps;0R

id
I þ ps;1R

id
X þ ps;2R

id
Y þ ps;3R

id
Z , where ps,j are

the Pauli error rates and ∑jps,j = 1 for trace-preserving condition. As there are 11
gate in G1, F 1 � G1 and the experimental initial state ρ0 can be characterized by 3
parameters, we need to obtain the values for 11 × 3+ 3= 36 parameters. We run
3 × 11 × 4 different experimental settings specified by hhE0jRFk

RGj
RFi

jρ0ii with
repetitions of 10,000 per setting to collect experimental data �mijk , where i= 1, …, 4
for state preparation, j= 1, …, 11, and k= 1, 2, 3 for different measurement
settings. The ansatz prediction mijk ¼ hhE0jNFk

Rid
Fk
NGj

Rid
Gj
NFi

Rid
Fi
jρ0ii contain Pauli

error rates as variational parameters, which we numerically optimize to maximize
the likelihood function in Eq. (1). The obtained PTMs are shown in Fig. 2b and
Supplementary Fig. 1a.

Once we get experimental PTMs for single-qubit operations, we can derive the
inverse of PTM of the noise operation as N�1

s ¼ Rid
Gs
R�1
Gs
, which can be decomposed

by the combination of PTMs of experimental Pauli operations with
N�1

s ¼ qs;0RI þ qs;1RX þ qs;2RY þ qs;3RZ . Then, the ideal operation can be

decomposed by experimental operations as
Rid
Gs

¼ qs;0RIRGs
þ qs;1RXRGs

þ qs;2RYRGs
þ qs;3RZRGs

:

Characterization of the two-qubit gate set. The two-qubit gate set, i.e., G2

includes single-qubit operations in G�2
1 and two-qubit operations {MSYY

and MSZZ}. As infidelities for the single-qubit gates are about an order lower than
those of the two-qubit gates, it is reasonable to divide the maximum-likelihood
estimation into two steps.

First, we treat each qubit in the two-qubit system as a single-qubit system and
characterize the single-qubit gate set G1 by gate set tomography, obtaining single-
qubit PTMs. The two-qubit PTMs of the single-qubit operations in G�2

1 is then
obtained by a direct product of the single-qubit PTMs on both qubits. As the
fiducial set F 2 2 G�2

1 , the PTMs of the fiducial operations are determined at
this step.

Second, we characterize the native two-qubit MSYY gate. Under the Pauli error
assumption, the PTM of the experimental MSYY gate is decomposed as
RMSYY

¼ NMSYY
Rid
MSYY

, where NMSYY
is the PTM of the Pauli error channel

containing 16 two-qubit Pauli components. After considering the trace-preserving
constraint, NMSYY

has 15 parameters, which are determined by linear equations

connecting the ansatz predition hhE�2
0 jRFk

NMSYY
Rid
MSYY

RFi
jρð1Þ0 � ρð2Þ0 ii and

corresponding experimental results. To minimize the projection error, we choose
15 linearly independent equations out of 16 × 9 different settings, with most of the
measured probabilities close to 0 or 1. Supplementary Fig. 3 shows the
corresponding circuits for the experimental settings.

As the MSZZ is implemented by a MSYY gate sandwiched by proper single-qubit
gates, the PTM of the experimental MSZZ gate is obtained by multiplying the PTMs
of the corresponding experimental operations, i.e., RMSZZ

¼ RX�π
2
�X�π

2
RMSYY

RXπ
2
�Xπ

2
.

Probabilistic error-cancellation scheme. The concrete procedure of applying the
probabilistic error cancellation to a given quantum computation task consists of
the so-called characterization and calculation phases. The characterization phase is
described above. In the calculation phase, we estimate expectation values of
quantum circuits with the characterized imperfect quantum device. We first write
down the unbiased estimator of the expectation value of a specific quantum circuit
as hhEid

0 jRid
GaL

¼Rid
Ga1

jρid0 ii, which can be expanded with the quasi-probability dis-

tributions obtained in the characterization phase as follows,

hhEid
0 jRid

GaL
¼Rid

Ga1
jρid0 ii ¼

X
i

X
b1 ;¼ ;bL

q0;iqa1 ;b1 ¼ qaL ;bL hhE
id
0 jRPbL

RGaL
¼RPb1

RGa1
jρiii;

ð2Þ
where the expection value of hhEid

0 jRPbl
RGaL

¼RPb1
RGa1

jρiii can be obtained by

repeating the specific experimental setting and averaging the measurement results.
The straightforward way to evaluate the unbiased estimator is summing over all
possible settings. However, this is impractical, because the number of settings
grows exponentially with the circuit depth. To alleviate the exponential growth, we
rewrite the above expansion as a probability distribution as follows,

hhEid
0 jRid

GaL
¼Rid

Ga1
jρid0 ii ¼ Ca

X
i;b

Pa i; bð Þg i; a; bð ÞhhEid
0 jRPbL

RGaL
¼RPb1

RGa1
jρiii;

ð3Þ
with the short-hand notations a � a1; ¼ ; aLð Þ and b � b1; ¼ ; bLð Þ, where Ca �P

i;bjq0;ij
Q

l jqal ;bl j is the rescaling factor, Pa i; bð Þ ¼ jq0;ij
Q

ljqal ;bl j=C is the prob-
ability distribution, and gði; a; bÞ ¼ sgnðq0;i

Q
lqal ;bl Þ is the sign of the setting. Then,

we use important sampling to generate M experimental settings, specified by
im; bmð Þ with m= 1, …, M, according to the probability distribution Pa i; bð Þ, and
calculate the expectation value as follows,

hhEid
0 jRid

GaL
¼Rid

Ga1
jρid0 ii ¼

Ca

M

XM
m¼1

g im; a; bmð ÞO im; a; bmð Þ; ð4Þ

where O im; a; bmð Þ is the result of the projective measurement of the m-th setting,
being either 0 or 1 in our experiment.

Simple example. In this section, we provide an illustrative example of applying the
probabilistic error-cancellation technique to a simple quantum circuit. Suppose an
experimenter plans to apply an ideal gate Gid � ½e�iYπ

4 � on an ideal initial state ρid �
0j i 0h j and get the ideal expectation value of observable Xh iid � Tr½XGidðρidÞ� ¼ 1.
However, as an example of a noisy quantum device, the actual initial state could be
ρ ¼ 90% 0j i 0h j þ 10% I

2 and the actual gate could be G= 80%Gid+ 20%D, where
DðρÞ ¼ I

2. Then, the actual result is Xh i ¼ Tr½XGðρÞ� ¼ 72%. With the error-
cancellation procedure, the ideal initial state is decomposed as ρid ¼
ðρ� 10% I

2Þ=90% and the ideal gate is decomposed as Gid= (G− 20%D) ∕ 80%.

Then, the ideal expectation value can be obtained by Xh iid ¼ Tr½XGðρÞ� ´ ð1=72%Þ �
Tr½XGðI2Þ� ´ ð10%=72%Þ� Tr½XDðρÞ� ´ ð20%=72%Þ � Tr½XDðI2Þ� ´ ð2%=72%Þ,
where the four terms can be obtained by running the noisy quantum device. By
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computing each term on the noisy quantum device and substituting results into the
formula, we can obtain the ideal expectation value.

For a computation with multiple gates, the state preparation, measurement, and
each gate can be treated in a similar way. Then, the formula of the ideal expectation
value, i.e., a weighted summation of noisy computations has exponential terms
with respect to the gate number. Therefore, instead of evaluating each term, we
compute the summation using the Monte-Carlo method.

In this example, we consider the depolarizing error model. The decomposition
can be applied to general error models without correlations. The decomposition
formula is obtained by inverting the noise. For the gate G, the noise is N= 80%[I]
+ 20%D, and G=NGid. The inverse of the noise is N−1= ([I]− 20%D) ∕ 80%.
Then, the ideal gate Gid=N−1G= (G− 20%D) ∕ 80%.

Analysis on residual errors. Theoretically, the error mitigation technique, com-
bining probabilistic error cancellation and gate set tomography, is capable of
completely rectifying the effect of errors in the estimation of expectation values.
However, in our experiment, the effective error rates after error mitigation are
(1.44 ± 5.28) × 10−5 and (0.96 ± 0.10) × 10−3 in the single-qubit and two-qubit
cases, respectively. Generally speaking, the reasons for the residual errors include
the Pauli error assumption, time-correlated systematic drift, and crosstalk errors
between qubits.

In the single-qubit case, the residual errors mainly come from the introduction
of the Pauli error model. To quantify the non-Pauli error rate, we simulate the
dynamics of the same random sequences as those used in the experiment with the
characterized experimental PTMs, which are obtained under the Pauli error
assumption. The experimental and simulated data of average fidelity are shown in
Supplementary Fig. 2a, which are then numerically fitted to extract the error rates.
The difference between the simulated and experimental error rates for single-qubit
gates is 1.41 × 10−5, which are of the same order of the residual error rate in the
single-qubit case. Meanwhile, the data show that the time-correlated systematic
drift has negligible effect and cannot be faithfully quantified within experimental
and fitting errors.

In our experiment, we implement two different two-qubit gates, i.e., MSYY
and MSZZ gates. To quantify the residual errors from the Pauli error
assumption, we compare the dynamics of the simulated and experimental
random two-qubit sequence, where the simulation is based on the characterized
PTMs with the Pauli error assumption. The difference between the simulated
and experimental error rates gives the estimation of the non-Pauli residual error
rate, which is about 0.20 × 10−3. As to the crosstalk errors, the situations for
MSYY and MSZZ gates are quite different because of different implementation
schemes. Specifically, a MSZZ gate is implemented by a MSYY gate sandwiched
by proper single-qubit gates, which introduce qubit-crosstalk errors. We model
the crosstalk effect by measuring an effective Rabi frequency Ωeff on the
neighboring ion induced by leakage laser intensities when a single-qubit gate
is being implemented by lasers focused on one of the ions. The ratio Ωeff ∕Ω,
with Ω being the Rabi frequency of the target ion, thus quantifies the severity of
crosstalk errors. As shown in Supplementary Fig. 4a, we numerically simulate
the state fidelities of the original and error-mitigated MSYY and MSZZ gates. As
expected, the numerical results show that MSYY gates, either original or error-
mitigated ones, are insensitive to the crosstalk errors, whereas the fidelities of
MSZZ gates degrade as the severity of crosstalk errors increases. According to
the numerical results, the crosstalk residual error rate is about 0.68 × 10−3 at
the experimental level of qubit crosstalk. Finally, the remaining part of the
residual error rate, 0.08 × 10−3, is attributed to the time-correlated
systematic drift.

Data availability
The data that support the findings of this study are available from the corresponding
author upon reasonable request.
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