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Introduction
The Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-
CoV-2) continues to spread since the COVID-19 disease was 
first reported on December 2019 in Wuhan, China.1 As of 
February 15, 2023, more than 670 million cases and 6.8 million 
deaths have been reported worldwide.2 Its unrelenting spread 
has been accompanied by the appearance of numerous viral vari-
ants with increasingly complex constellations of mutations, some 
of which are jeopardizing vaccination and testing performance.3 
As with SARS-CoV, MERS-CoV and Influenza A viruses, 
SARS-CoV-2 spreads primarily via respiratory droplet and aer-
osol transmission, which occurs in close-contact situations where 
a person is talking, coughing, or sneezing.4,5 Prolonged exposure 
to an infected person or brief exposure to a symptomatic indi-
vidual is associated with a higher risk of transmission.4,5 Coming 
into contact with a contaminated surface is another proven 
transmission mechanism, as SARS-CoV-2 has been shown to 
survive up to 28 days on certain surfaces.6 Symptom onset occurs 
an average of 5 days after contracting the virus, but in some cases 
it can be as long as 14 days.5 While the most common symptoms 
include fever, headaches, cough, anosmia and ageusia,5 a wide 
range of clinical manifestations of the disease have been recently 
dissected with machine learning approaches.7 Note that asymp-
tomatic and pre-symptomatic individuals are still contagious and 
able to transmit the virus to others.8

The incidence of COVID-19 infections is influenced by the 
environment, expectedly though seasonal cycles and global 
change effects. Seasonal cycles of viral respiratory infections are 

common.9 For instance, Influenza cases in the United States 
spike in the fall and winter, increasing in October, peaking in 
February, and declining in May. Chicken pox incidence similarly 
increases between winter and spring months and dies down by 
summer. These trends have been mapped for over a century.10,11 
In contrast, COVID-19 is a novel infectious disease. 
Consequently, a disease-associated seasonal cycle has not been 
thoroughly explored. A combination of factors are responsible 
for seasonal epidemics, including direct environmental effects on 
viral transmissibility, initial susceptibility of the human popula-
tion, and effects on immune response.9 During early stages, sta-
ble oscillations typical of seasonal patterns of disease cannot be 
accurately modeled, especially because environmental drivers 
cannot stop transmission during the rampant phase of a pan-
demic at a time when immune response is weak.12 Despite lim-
ited knowledge, there is significant evidence supporting the 
seasonal behavior or SARS-CoV-2 infection.13 First, human 
coronaviruses are part of a group of RNA viruses colloquially 
known as “winter” viruses, 4 of which (NL63, 229E, OC43, and 
HKU1) have previously been identified as seasonal.14 Second, 
the half-life of the SARS-CoV-2 virus is affected by tempera-
ture and humidity, including on surfaces or under dry condi-
tions.6,15,16 Moreover, smaller-scale studies of COVID-19 
incidence also revealed a negative association between tempera-
ture and COVID-19 case occurrence. One study reported that in 
subtropical cities of Brazil a 1°C rise was associated with about 
5% decrease in the number of daily cumulative cases when aver-
age ambient temperature was less than 25.8°C.17 Similarly, daily 
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new cases of COVID-19 reported in 166 countries decreased by 
0.85% for every 1°C increase in temperature.18 Interestingly, 
multiple early pandemic case studies on COVID-19 showed 
conflicting results in correlation analysis. For instance, a study in 
Oslo, Norway reported positive correlations between higher 
temperatures and Covid-19 daily new cases,19 while another 
studying 122 cities in China found a 4.9% rise in daily confirmed 
cases for every 1°C increase in temperature when the mean tem-
perature was less than 3°C.20 Conflicting data can most likely be 
explained by early pandemic variability, which can be rectified by 
studying COVID-19 incidence for longer periods.21 Third, lati-
tude, which is a strong predictor of temperature, was found to be 
correlated with COVID-19 epidemiological variables.13,22 It is 
well known that latitude affects the amount of solar radiation a 
location receives; on the equator the rays are most direct, yet the 
strength lessens as one moves toward either pole. This in turn 
affects the temperature of an area, as locations further from the 
equator receive less warming energy and are thereby colder on 
average. When studying a virus expected to thrive in colder tem-
peratures, latitude can play a critical role in mapping case inci-
dence.13,22 Finally, weak seasonal oscillation signatures of 
COVID-19 cases and deaths during the first year of the pan-
demic were extracted in sets of 5 countries in the Northern and 
Southern Hemispheres using ensemble mode decomposition 
(EEMD) methods.23

Other drivers besides temperature and latitude may be of 
significance. We recently proposed that multiple seasonal driv-
ers behind disease spread (and the spread of COVID-19 spe-
cifically) are in “trade-off ” relationships and can be better 
described within a framework of a “triangle of viral persistence” 
modulated by the environment, physiology, and behavior.13 
Trade-offs exist when one trait cannot increase without a 
decrease in another, especially when the environment affects 
physiologies and behavior through time and space-constrained 
limitations in matter-energy and information. In fact, a num-
ber of factors impinge on the multidimensional performance 
space of the triangle of viral persistence and could be relevant 
to COVID-19, including the effect of the following environ-
mental health indicators:

(i) Air Quality has been shown to be a factor to consider 
in viral respiratory diseases.5,24,25 Correlation between Air 
Quality and community health outcomes has been dis-
cussed multiple times26,27 and is associated with a variety of 
quality-of-life indicators that may put less developed com-
munities at a higher risk of contracting and dying from the 
disease. Air pollution in its various forms increases epithe-
lial permeability to viral receptors, impairs phagocytosis and 
antigen presentation, and amplifies the virulence of respira-
tory infections, increasing host susceptibility to a range of 
respiratory viral diseases overall.28

(ii) Household Use of Solid Fuels such as coal, kerosene, and 
biomasses (wood, charcoal, crop waste) is attributed to 3.8 

million premature deaths each year,29 and is a leading health 
risk factor in Asia, Africa, and Central/South America.30 
Household Air Pollution (HAP) is the encompassing term for 
byproducts of fuel burning that result in ambient pollutants. 
These ambient pollutants include CO, NOx, and Particu-
late Matter (PM), which is comprised mainly of SO2, NO3, 
NH4, organic and elemental Carbon, Silicon, and Sodium, 
at >1%.31 Concentrations of air pollutants can be expo-
nentially higher in homes that use solid fuels compared to 
homes that use clean fuels and electricity, causing massive 
aggregations of health-impacting pollutants in small spaces 
over prolonged periods of time. Household use of solid fuels 
is linked to major respiratory diseases such as Acute Lower 
Respiratory Infections (Pneumonia), Chronic Obstructive 
Pulmonary Disease (COPD), and Chronic Lower Respira-
tory Disease.32,33 Exposure to HAP is responsible for 45% 
of all pneumonia deaths in children under 5 years of age and 
is a contributing factor to 28% of all adult deaths to pneu-
monia. A fourth of all adult deaths from COPD in low to 
middle-income countries are caused by prolonged exposure 
to pollution from usage of household solid fuels.29 PM is 
another important metric for evaluating HAP and ambi-
ent outdoor pollution risk, measured as concentration of 
particulate matter under 2.5 μm (PM2.5). Statistically sig-
nificant links have been proved between the occurrence of 
acute respiratory distress syndrome (ARDS) and exposure 
to PM2.5 and other air pollutants.27 Long-term exposure 
and inhalation of PM2.5 has been shown to be extremely 
detrimental to human health and was a contributing fac-
tor in 4.1 million deaths from heart disease, lung cancer, 
chronic lung disease, and respiratory infections worldwide 
in 2016.34 In the European Union, the average life expec-
tancy is estimated to be reduced by 8.6 months due to expo-
sure and inhalation of PM2.5.26,35 This is because PM2.5 and 
the chemicals it contains can induce free radical production 
and generate reactive oxygen species, as its surface is rich 
in iron, copper, zinc, manganese, and lipopolysaccharides, 
which decrease the antioxidant capacity of cells and cause 
oxidative stress on cells and DNA.27 Concurrent peroxida-
tion of lipids increases the amount of intracellular Calcium 
ion concentrations, which activate a series of inflammatory 
responses leading to cell damage, apoptosis, and necrosis. 
Inflammation and cell death can worsen certain comorbidi-
ties, such as asthma and pulmonary diseases.27,28

(iii) Ozone (O3) concentration is an important measure of 
air quality. O3 is a major constituent of photochemical fog 
caused by reactions between NO2, hydrocarbons, and UV 
light.25 An increase in O3 levels can cause oxidative stress 
in the respiratory tract similar to that of PM2.5, trigger-
ing bronchial inflammation and hyper-responsiveness.25 
This in turn obstructs airway flow and pulmonary function. 
Short-term O3 exposure is associated with an increased 
risk of COPD hospitalization and can exacerbate asthma 
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conditions.25 In longitudinal studies, O3 was significantly 
associated with emphysema and decreased lung function, 
while PM2.5 was not. This can be important. While there 
is regulation to prevent short-term rises in O3 levels, long-
term averages are not decreasing36 and are not expected to 
decrease as climate change worsens.37

In a previous study, epidemiological data collected world-
wide during the first wave of the pandemic revealed weak but 
significant correlations between COVID-19 spread and both 
temperature and latitude, suggesting COVID-19 was sea-
sonal.22 Our goal in this paper was to confirm these correla-
tions with 18 more months of pandemic data, while mapping 
them month-by-month since the start of the pandemic. This 
effort is intended to provide a comprehensive view into how 
the strength of the overall correlation has changed over time. 
We also correlate epidemiological variables with the Yale’s 
Environmental Performance Index (EPI),38 which ranks coun-
tries against each other based on their performance toward cer-
tain environmental targets, thereby creating a global summary 
of the effect of “environmental health indicators” on COVID-
19 incidence and mortality. Results are compared with data 
from the State of Global Air (SoGA) report.34 Our analysis 
provides significant evidence supporting strong seasonal 
behavior and a likely role of global change parameters on the 
incidence of COVID-19.

Materials and Methods
Measurements of relationship

To assist in describing interactions between epidemiological 
variables and possible factors most accurately, Pearson product-
moment correlation coefficients (r) were used to calculate vari-
able relationships. This correlation is a measure of the strength 
and direction of a linear association between 2 variables, a 
covariance of both variables divided by the product of their 
standard deviations.39 Spearman’s rank-order correlation (rs) 
was also used as a secondary measurement of relationship to 
account for the possibility of other monotonic relationships 
that Pearson correlation cannot capture as efficiently. This cor-
relation is a measure of strength and direction of an association 
between 2 ranked variables. Both correlations result in values 
between −1 and 1 in which 1 is an exact positive correlation, −1 
is an exact negative correlation. A value of zero implies no cor-
relation between 2 variables. As such, if values approach zero 
the correlation is “weak,” and if values approach |1| the correla-
tion is deemed “strong.”39 The Breusch-Pagan (BP) heterosce-
dasticity test was used to determine if variance did not depend 
on auxiliary regressors in all correlations performed in this 
study. In other words, the BP test examines if residuals of linear 
regressions had changing variances. As expected in cross-sec-
tional studies such as those of global change factors, we con-
firmed heteroscedasticity was common in correlations between 
the 32 EPI performance indicators and epidemiological 

variables. This is because indicators embody a wide diversity of 
data with a large range of values for the different countries, 
including a large disparity between the largest and smaller val-
ues. To offset the problem we resorted to transformation of the 
dependent variable, acknowledging data manipulation compli-
cates interpretation and selecting the transformation that min-
imized heteroscedasticity violations across EPI indicators 
following experimentation with log functions, square roots, and 
exponents. Correlation coefficients, associated p-values, and 
BP X2 test statistic and corresponding p-values are provided in 
Supplemental Table S1.

COVID-19 epidemiological variables and 
definitions

All COVID-19 related data was retrieved from the Our World 
in Data COVID-19 Dataset,40 which keeps daily records of 
cases, deaths, and vaccinations reported by each participating 
country. Data from 171 countries was retrieved, with 4 varia-
bles extrapolated from the dataset. To minimize frequency of 
repeating values (non-updated data), countries that did not 
update on a daily basis and/or had gaps in reporting were not 
included. To track epidemiological variables throughout the 
course of the pandemic, each variable was split on a month-by 
month basis. Variables were as follows: (1) Total cases per million 
at the end of each month (Total Cases), signifying the total pop-
ulation-weighted sum of cases reported in each country since 
the beginning of the pandemic to the last day of the specified 
month, (2) Total deaths per million at the end of each month 
(Total Deaths), signifying the total population-weighted sum 
of deaths reported in each country since the beginning of the 
pandemic to the last day of the specified month, (3) New cases 
per million at the end of each month (New Cases), signifying the 
population-weighted sum of reported cases between the first 
and last day of the specified month, and (4) New deaths per mil-
lion at the end of each month (New Deaths), signifying the pop-
ulation-weighted sum of reported deaths between the first and 
last day of the specified month. Values for 24 months ( January 
2020-December 2021) were retrieved for each variable, allow-
ing construction of a time-series correlation plot for each vari-
able represented above. This allowed to track the strength of 
each variable’s relationship across a 2-year timespan.

Factor data variables and definitions

Factor data reside under 3 major categories: Temperature, 
Latitude, and Yale’s 2020 EPI scores. Not all COVID-19 epi-
demiological variables were tested with each factor retrieved, as 
these base variables are used to test only for certain factors such 
that testing each base variable for all factors would not make 
statistical sense. The 4 categories are explained on a variable-
to-variable basis:

Total Cases and Total Deaths variables described change in 
time of the total association between COVID-19 and a variety 
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of factors, including: (1) The Average Yearly Temperature of 
each country (°C), (2) The Latitude of each country repre-
sented specifically by the geographic coordinates of its capital 
(°N or °S in absolute values), and (3) The EPI score of each 
country, which has values ranging 0 to 100. As the EPI does 
not cover the same range of countries as Our World in Data, we 
restricted our analysis to only to 151 countries for EPI-related 
data instead of the full 171. We also tested all EPI subcatego-
ries, which included Air Quality, Pollution Emissions, Climate 
Change, Environmental Health, and Sanitation scores for 
1 month (March 2021) of the pandemic. This same month was 
also used to explore correlations with SoGA Report’s raw 
Ozone, PM2.5, and Household Solid Fuel Usage data. To sum-
marize, Total Cases and Total Deaths were tested with average 
yearly temperature, latitude, and EPI scores. Additionally, Total 
Cases and Total Deaths data for the month of March 2021 was 
also tested with all EPI subcategories and SoGA data.

New Cases and New Deaths variables were only used to 
determine correlations with both temperature and latitude for 
each individual month of the pandemic. For temperature, we 
measured the relationship between the temperature of a spe-
cific month correlated only with the cases or deaths that were 
reported in that month. This allowed to determine peak peri-
ods when correlation is strongest while accounting for the dif-
ference in seasonal cycles between the northern and southern 
hemispheres. Unfortunately, average monthly temperatures of 
countries are difficult to compute, as most countries tend to 
have many geographic regions with varying average tempera-
tures. As a solution, a city with retrievable temperature data 
was selected to represent our metric of Average Monthly 
Temperature (°C). To summarize; New Cases and New 
Deaths variables were tested with average monthly tempera-
ture and latitude. For example, “New Cases at the end of 
December 2020” takes the cumulative sum of all COVID-19 
cases for each country between December 1st, 2020, and 
December 31st, 2020. Each resulting value is then divided by 
the population of its appropriate country and run through a 
correlation test alongside its selected city’s average December 
temperature and latitude. The same is then done for every 
other month there is data for, with the resulting r value plotted 
on a graph. By doing this across 24 months, we uncovered 
global COVID-19 seasonal patterns showing the waxing and 
waning of the disease.

Results
A worldwide correlation analysis in the context of a time series 
of sequential observations offered a temporal view of correla-
tions unfolding along the pandemic. We used both Pearson’s r 
and Spearman’s rs coefficients. Pearson’s r can be calculated 
without any assumptions, but inference on the strength of the 
association does require some assumptions be met: (1) that the 
data is derived randomly from, or is representative of, a popula-
tion, (2) that both variables be continuous, jointly normally 

distributed, and random, and that if there is a correlation, it is 
always linear, (3) that there are no relevant outliers, and (4) that 
every pair is measured separately from all other pairs.39 There 
are various ways to deal with certain violations of these assump-
tions. Specifically, in the case of there being relevant outliers or 
a non-linear pattern, we can use Spearman’s rs, since it is more 
robust against outliers and does not require normally distrib-
uted data to make inferences on the strength of its association. 
Data can also be transformed to linearize a relationship, thereby 
allowing the data to meet Pearson’s correlation’s assumptions.

Our study showed increasingly stronger trends across all 
Total Cases and Total Deaths time-series correlation graphs 
for temperature and latitude. Total Cases approached correla-
tion values of r = –.450 and rs = –.470 for temperature and values 
of r = .615 and rs = .607 for latitude. Total Deaths approached 
values of r = –.350 and rs = –.420 for temperature and r = .459 
and rs = .571 for latitude. Selected bivariate Kernel density scat-
ter plots illustrate the correlations and show countries located 
at latitudes spanning 30 to 60°N or °S and average tempera-
tures of 10°C to 20°C have been most impacted by the disease 
(Figure 1). The bimodal patterns in density plots suggest effects 
of planetary environmental factors. Remarkable cyclical pat-
terns were uncovered in time-series correlation graphs, espe-
cially those of New Cases and New Deaths, that demand 
explanation. Most EPI performance indicators and categories 
showed weak to moderate negative correlation values under 
both cases and deaths, but these results could be confounded by 
an association between EPI indicators and latitude.

Main correlations

We found 3 types of seasonal and environmental correlations 
of significance impacting the incidence and severity of the 
COVID-19 pandemic:

(i) Correlations of Total Cases or Total Deaths with Temperature 
and Latitude. Figure 2 shows the time series total correlation 
between Total Cases and Total Deaths at the end of each 
month and both average yearly temperature and latitude. In 
average yearly temperature correlations, there was a negative 
trend since the early months of the pandemic. The same was 
reflected in correlations with latitude, though at increasingly 
positive values. In other words, COVID-19 case incidence 
and deaths were globally correlated with lower temperatures 
and higher latitudes.

The correlation between Total Cases and average yearly 
temperature depicts a minor spike of statistically significant 
negative strength between February 2020 (r = –.106, rs = –.319) 
and September 2020 (r = –.053, rs = –.266), peaking in March 
2020 at r = –.278, rs = –.441 (Figure 2A). Only few countries 
exhibiting lower average temperatures had a higher number of 
population-weighted cases during the first few months of the 
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pandemic. By June 2020 almost all countries were affected by 
COVID-19, and the correlation was lost. Correlations between 
Total Cases and average temperature mostly even out at 
r = –.400, rs = .450 after December 2020 (r = –.401, rs = –.452), 
with a dip to r = –.450, rs = –.470 between September 2021 
(r = –.386, rs = –.424) and December 2021 (r = –.453, rs = –.472). 
This model is slightly variated for correlations between Total 
Deaths and average yearly temperature, as while there is a 

negative strength spike during the early pandemic (April 2020, 
r = –.249, rs = –.420), the correlation does not become insignifi-
cant—resembling a sinusoidal function with negative slope. 
Correlation between Total Deaths and temperature for 
December 2021 found r values of r = –.358, rs = –.420.

Time-series correlation graphs for latitude show stronger 
(positive) r values across the entire 24-month period when 
values were statistically significant (Figure 2B). As with  

Figure 1. Example bivariate kernel density plots describe the relationship between the number of confirmed COVID-19 cases per million people and 

either temperature (°C) or latitude (°N or °S). Cases are given as Total Cases reported on December 2021 (left panels) and New Cases reported on 

December 2020 over each country’s average yearly or monthly temperature, respectively, and over geographic coordinates of each country’s latitude.

Figure 2. Time series correlation plot between Total Cases (top) and Total Deaths (bottom) and either average yearly temperatures (A) or latitude (B). 

Each point represents the r coefficient between the Total Cases or Total Deaths through each month and both yearly temperature averages or latitude. 

Closed symbols describe significant correlations with p-values less than .05. Important timestamps are indicated in the graphic including the work on 

seasonal behavior of Burra et al.22
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correlations between Total Cases or Total Deaths with tem-
perature, there was a spike in the strength of the association 
during the early months of the pandemic that evens out by 
December 2021, which reaches correlation values of r = .609, 
rs = .607 (Total Cases) and r = .407, rs = .488 (Total Deaths) by 
the end of the second year.

(ii) Correlations of New Cases or New Deaths with Temperature 
and Latitude. Figure 3 shows the time series total correla-
tion plots between New Cases and New Deaths at the end 
of each month and average monthly temperature and lati-
tude. In all cases, there was an apparent cyclical trend that 
begins during the early months of the pandemic. Along the 
24-month timeline, there were 3 noticeable negative corre-
lation strength spikes between New Cases or New Deaths 
and average temperatures—a first near the beginning of the 
pandemic (February-April 2020), at the time we performed 
our first correlation analysis (Burra et al22 timestamp), a sec-
ond between October 2020 and June 2021, with the rise of 
Variants of Concern (VOCs) just before the global introduc-
tion of vaccines, and a final between October and December 
2021, which coincided with the rise of VOC Omicron and 
the last month included in our time series charts. The second 
and third spikes reached values of r = –.571, rs = –.638 (New 
Cases) and r = –.534, rs = –.634 (New Deaths). Latitude val-
ues exhibited similar spikes. In months not included in these 
strength spikes, values went below r = |.1| and became sta-
tistically insignificant, indicating that temperature in those 
months was not correlated with case incidence and deaths. 

We considered the effect of summing sine waves of season-
ality for the Northern and Southern Hemispheres, which 
are offset by 180° (as modeled in ref.15), would result in a 
“destructive interference” phenomenon that could cancel cor-
relations of the more instantaneous measures of New Cases 
with temperature and latitude factors. However, splitting 
data into the 2 hemisphere-related groups, that is, 140 coun-
tries located in the Northern Hemisphere and 32 countries 
located on the Southern Hemisphere, revealed that global 
patterns were driven by the more populated and COVID-
19 impacted Northern Hemisphere, which showed almost 
identical time-series correlation graphs (Supplemental  
Figure S1). The sinusoidal patterns of Figure 3 are thus 
driven by a more varied month-by-month response of New 
Cases that weakens correlations rather than destructive 
interference phenomena.

(iii) Correlations of Total Cases or Total Deaths with EPI 
Score. Across the study period, the correlation between Total 
Cases or Total Deaths variables and Yale’s EPI evened out 
to Pearson’s r values of r = –.522 (Total Cases) and r = –.434 
(Total Deaths). Figure 4 depicts the corresponding time-
series graphs. A significant spike in strength of correlation 
was observed during the early months of the pandemic 
(March 2020; Total Cases: r = –.551, rs = –.775, Total Deaths: 
r = –.324 rs=–.094), but steadily evened out by the end of 
the second year. Overall, EPI’s measurement of the effort 
to meet UN Sustainable Development Goals was found 
to be correlated with case prevalence and deaths per cap-
ita of COVID-19. This is consistent with the notion that  

Figure 3. Time series correlation plot between New Cases (top), and New Deaths (bottom) and either average monthly temperature (A) or latitude (B). 

Each point represents the r coefficient of a specific month’s cases or deaths and its corresponding monthly temperature. Closed symbols describe 

significant correlations with p-values less than .05. Average monthly temperatures of countries are difficult to compute, so a city with retrievable 

temperature data was selected for each country to represent this metric. Important timestamps are included in this graphic.



Hernandez and Caetano-Anollés 7

sustainable development, which encompasses environ-
mental, social, and economic dimensions, can affect overall 
health and well-being.

A March 2021 snapshot of categories of 
environmental health indicators

We found Total Cases and Total Deaths values for March 2021 
were correlated with each category and performance indicator 
categorized by Yale’s EPI score. To ensure levels of heterosce-
dasticity were not prevalent across categories and indicators, 
Total Cases and Total Deaths values were transformed by  
1/sqrt(x). Following this transformation, epidemiological val-
ues for March 2021 correlated with the total EPI Score at 
r = –.536, rs = –.718 (Total Cases), and r = –.464, rs = –.652 (Total 
Deaths). However, not all performance indicators were equally 
represented in the overall EPI score. Figure 5A and B depicts 
overall pie charts of all indicators for Total Cases and Total 
Deaths correlations, respectively. We highlight the most impor-
tant categories and associated indicators within the “Ecosystem 
Vitality” and “Environmental Health” global policy objectives, 
which carry the largest weight as percentage of the total score 
and represent the largest pie slices of Figure 5:

(i) EPI Climate Change and Pollution Metrics. The  
“Climate Change” category under the EPI score had r values 
of r = –.536, rs = –.610 (Total Cases) and r = –.496, rs = –.610 
(Total Deaths), while the “Pollution Emissions” category 
exhibited r values of r = –.433, rs = –.569 (Total Cases) and 
r = .375, rs = –.507 (Total Deaths), respectively. These cat-
egories are broken up into multiple indicators including 
CO2 Growth Rates, CH4 Growth Rates, Black Carbon 
Growth Rates, SO2 Growth Rates, and NOx Growth Rates. 
For each of these metrics the EPI grades according to how 
well a country has curbed these growth rates. For instance, 
a country that has significantly curbed its NOx Growth rate 
receives a higher score than one who has not. We found that 
pollution emissions metrics correlated with COVID-19 
incidence or mortality. Growth rates r values ranged from 
–.509 (CO2) to –.255 (N2O) for Total Cases and –.481 
(CO2) and –.219 (N2O) for Total Deaths. Growth rates rs 
values showed similar ranges. Surprisingly, while the GHG 
(Greenhouse Gas) Intensity Trend was not correlated with 
deaths or cases, GHG Emissions per Capita showed strong 
positive correlations for Total Cases (r = .530, rs = .583) 
and Total Deaths (r = .366, rs = .452). Indicators listed 
under Pollution Emissions showed significant negative  

Figure 4. Time series correlation plot between Total Cases (top), Deaths (bottom) and Yale’s 2020 Environmental Performance Index (EPI) scores. Each 

point represents the r coefficient between the Total Cases or Deaths of a specific country through each month and its EPI score. Closed symbols describe 

significant correlations with p-values less than .05.
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correlations for SO2 and NOx Growth Rates for Total  
Cases and Total Deaths ranging r = –.404 to .392, rs = –.525 
to .523 (Total Cases) and r = –.347 to .342, rs = –.459 to .475 
(Total Deaths).

(ii) EPI and SoGA Air Quality Metrics. While the EPI 
ranks countries on country proactiveness to curve pol-
lution, the SoGA reports population-weighted annual 
averages of Ozone and PM2.5 and percentage of popula-
tion using Household Solid Fuels. The EPI breaks down 
its “Air Quality” category into 3 indicators: PM2.5 Expo-
sure, Household Solid Fuels [Exposure], and Ozone (O3) 
Exposure. The category showed overall correlation values 
of r = –.382, rs = –.574 (Total Cases) and r = –.338, rs = –.504 
(Total Deaths). When EPI results were compared with The 
State of Global Air (2019) metrics for the same variables 

we noted some variation. The EPI’s PM2.5 indicator showed 
values of r = –.099, rs = –.251 (Total Cases) and r = –.142, 
rs = –.263 (Total Deaths), indicating insignificant to weak 
correlations. In contrast, SoGA’s PM2.5 value correlations 
reached r = .440, rs = .509 (Total Cases) and r = .374, rs = .499 
(Total Deaths), indicating that higher average PM2.5 levels 
are more strongly correlated with an increase in COVID-
19 cases and deaths than country idleness. Furthermore, 
The EPI’s Household Solid Fuels exposure category (repre-
senting HAP) had correlation values of r = –.548, rs = –.653 
(Total Cases) and r = –.435, rs = –.527 (Total Deaths). The 
SoGA’s indicator of Household Use of Solid Fuels (repre-
senting HAP) reached higher correlation values of r = .724, 
rs = .608 (Total Cases) and r = .587, rs = .485 (Total Deaths). 
While the confounding factor of poverty may skew data, 

Figure 5. Tracing correlations onto a multiple pie chart describing the EPI framework. The framework organizes 32 performance indicators into 11 issue 

categories belonging to 2 main policy objectives, Ecosystem Vitality and Environmental Health, which are placed at the Innermost layer of the diagram. 

Correlations between Total Cases, Total Deaths, or latitude with EPI categories and indicators for March 2021 were traced onto the multiple pie charts. 

Sets with darker colors indicate stronger correlations: (A) total cases, (B) Total deaths, and (C) latitude.



Hernandez and Caetano-Anollés 9

EPI values showed that the use of household solid fuels 
were associated with case incidence and deaths. Lastly, 
the EPI’s Ozone Exposure indicator showed negative  
correlation values of r = –.241, rs = –.329 (Total Cases) and 
r = –.185, rs = –.346 (Total Deaths). Conversely, SoGA’s 
Ozone exposure by population-weighted ppb had correla-
tion values of r = .041, rs = .035 (Total Cases) and r = .047, 
rs = .124 (Total Deaths). These results are generally consid-
ered not statistically significant, implying that Ozone Expo-
sure was not associated with an increased or decreased risk 
of COVID-19 case incidence or deaths.

(iii) Sanitation and Drinking Water Metrics. As expected the 
“Sanitation and Drinking Water” category showed the most 
significant negative correlations, r = –.632, rs = –.748 (Total 
Cases) and r = –.496, rs = –.639 (Total Deaths). Clearly, 
providing necessary infrastructure for clean drinking water 
and sanitation affects response to any public health crisis, 
including that posed by the COVID-19 pandemic.

Correlation of EPI categories and performance 
indicators with latitude

We found the EPI score and its categories and performance 
indicators correlated with latitude (Figure 5C). In general, the 
strengths of correlations were higher than those with Total 
Cases and Total Deaths, as visualized by color shades propor-
tional to Pearson’s r in the multiple pie charts of the figure.  
For example, the correlation of the overall EPI with latitude 
(r = .651) was stronger than correlations with Total Cases 
(r = –.536) and Total Deaths (r = –.464). Similar patterns can be 
observed with the main categories of Ecosystem Vitality and 
Environmental Health, where the correlation with latitude 
(r = .600 and r = .607, respectively) was stronger than correla-
tions with Total cases (r = –.454 and r = –.528) and Total Deaths 
(r = –.424 and r = –.434). Similar patterns were found with  
most performance indicators, with notable exceptions (eg, 
Biodiversity & Habitat, Fisheries). This indicates an entangled 
relationship exist between factors in global change analyses. 
We note that Spearman’s rs, which measures monotonic rela-
tionships that may not be linear, did not show differences in 
correlation strengths of EPI with latitude and epidemiological 
variables. This suggests the linear regression model may be 
inadequate or exhibits “omitted-variable bias,” prompting a 
more in-depth analysis of EPI performance indicators and the 
disease we will report elsewhere.

Discussion
Previous studies have hinted to the seasonal nature of COVID-
19 cases and mortality (reviewed in ref. 13). However, most of 
these studies were performed in one or a few countries, and 
over short periods of time. Our study now consolidates many 
geographical (temperature, latitude) and epidemiological (cases 
and deaths) data points obtained from 171 countries situated 

at different latitudes over a period of 24 months. Results show 
moderate to strong correlations between incidence of COVID-
19 cases and deaths and air temperature and latitude. Countries 
with colder climates (higher latitudes) had an increased case 
incidence. Our study also reveals cyclical patterns in tempe-
rature and latitude variables across both COVID-19 case 
incidence and mortality data. An apparent bimodal trend is 
observed in incidence over temperature correlations—strength-
ening in correlation during colder months. Note that early pan-
demic fluctuations of COVID-19 can be explained through 
viral models. Caetano-Anollés et al.13 used SARS-CoV-2 vari-
ant genetic makeup to propose 3 phases of the disease: Phase 1, 
in which the disease focuses on viral survival by balancing pro-
tein flexibility and rigidity; Phase 2, which involves responding 
to environmental changes such as seasonal variations in tem-
perature (for instance, incoming winter in the Northern 
Hemisphere); and Phase 3, which involves immune escape due 
to widespread vaccination. These phases of viral population 
structuring may help explain early correlative scores, and grad-
ual strengthening after the first 12 months of COVID-19 
prevalence.

COVID-19 seasonal effects we observe are evident regard-
less of the immunity of the population, behavioral changes, and 
the periodic appearance of new variants with higher rates of 
infectivity and transmissibility.3 This is particularly noteworthy 
because the dynamic of the pandemic has been differentially 
impacted by the wide range of elimination and mitigation poli-
cies and efforts applied throughout the world.41,42 Elimination 
approaches of the “zero-COVID-19” type involved rapid con-
tainment and maximum prevention through for example 
cancelation of gatherings, quarantines, and closing of borders 
between countries or states (eg, Australia). The goal was to 
reduce the impact of the disease to negligible levels. In contrast, 
mitigation approaches used relaxed measures to curb viral 
transmission through for example the use of masks, social dis-
tancing, and vaccination. Similarly, late vaccine introduction, 
vaccines with different effectiveness and responses to variants, 
and different vaccinations rates had differential impacts on epi-
demiological variables in different countries.3,43 While contin-
uous monitoring of these factors is critical to understand how 
SARS-CoV-2 may evolve and affect the world population as 
the disease transitions into endemicity, global seasonal behav-
ior patterns uncovered by correlations in our study thus appears 
unresponsive to local epidemiological effects of immunity, 
behavior and viral diversity.

Sustained correlation in Total Cases and Total Deaths data 
along with noticeable patterns in New Cases and New Deaths 
data suggest countries with colder average climates (higher 
latitudes) fared worse as COVID-19 situated, and outlines 
how COVID-19 cases and deaths could become more predict-
able in future seasonal change. Several factors could explain 
why lower temperatures increase COVID-19 incidence, 
including those modulated by the environment, physiology, 



10 Evolutionary Bioinformatics 

and behavior delimiting the ‘triangle of viral persistence’.13 It is 
therefore important to understand drivers of correlation 
between temperature and higher incidence. The seasonal trans-
missibility and infectivity of SARS-CoV-2 has been shown to 
be correlated to the prevalence of mutations in molecular sen-
sor regions of the spike protein, which could help the virus 
evade physiological responses of the host.13 These results sug-
gest a physiological driver exists in the molecular structure of a 
crucial viral protein. However, other physiological drivers may 
be also factors of importance, including those involved in pop-
ulation immunity. In that respect, once a larger portion of the 
population has immunity to the prevailing variants, we expect 
seasonal behavior to become more predictable. This could 
result in better mitigation efforts, for example in focusing vac-
cination efforts before winter, such as in the case of influenza. 
While this paper provides evidence in support of seasonality 
through time series correlations, more research that clearly 
shows the driver of lower temperature and higher incidences of 
COVID-19 is needed.

Our study also uncovers correlations between environmen-
tal health indicators and case incidence and mortality of 
COVID-19. Indicators included air quality and pollution 
emission metrics. These correlations are particularly important, 
as these are environmental variables that can be modified by 
policy. In sharp contrast, temperature or latitude cannot be 
acted upon. The Yale’s 2020 EPI is a summary of the state of 
sustainability around the world.38 The EPI ranks countries on 
a scale of 0 to 100 by how close they are to meeting the targets 
of the UN Sustainable Development Goals and how well they 
are addressing global environmental problems. The EPI fur-
ther breaks down its overall ranking into 32 performance indi-
cators cataloged into 11 categories. Countries that are on-track 
to meet these goals are awarded a higher score, and those that 
are not on-track or have regressed receive a lower score. As 
such, the EPI Index is not a measure of actual prevalence of 
certain indicators in each country, but instead an indicator of 
country proactivity to improve public and environmental 
health. While not all categories are related to viral or bacterial 
spread, the Air Quality (PM2.5 Exposure, Household Solid 
Fuels, O3 Exposure), Pollution Emissions (SO2, NOx Growth 
Rates), and Climate Change (CO2, N2O, CH4, Black Carbon 
Growth Rates) categories are known to be correlated with dis-
ease prevalence and outcome26,27 and therefore represent 
potential targets of correlation with COVID-19 incidence and 
mortality. EPI scores are based off of manipulation of datasets 
that satisfy the inclusion criteria of the Yale’s EPI report. This 
criterion includes evaluation of a dataset relevance, methodol-
ogy, verification (peer reviewed or third-party auditing and 
confirmation), temporal completeness, and recency. Inclusion 
of a variety of datasets allows the EPI to evaluate as much as it 
can about an included country. The State of Global Air (SoGA) 
Report34 is produced yearly by the Health Effects Institute and 
Institute for Health Metrics and Evaluations. The SoGA 

reports average and median national levels of Ozone Exposure, 
PM2.5 Exposure, and national percentages of people using 
Household Solid Fuels. In contrast to the EPI, SoGA does not 
transform or index its values based on other targets. Instead, 
SoGA reports raw data in units it is commonly measured in. 
Using both the EPI and SoGA to quantify not only the preva-
lence of air pollutants in each country, but also the proactivity 
of countries to improve their air quality allows for the bilateral 
analysis of Air Quality effects on COVID-19.

Remarkably, we show a high correlation exists between all 
environmental variables studied, particularly HAP, Climate 
Change, and Pollution Emission metrics. These metrics could 
be used as a foundation of environmental policy changes 
needed at a country level for improving public health. Poor air 
quality and higher incidence of deaths from COVID-19 was 
previously demonstrated in the US.44 This effect was inde-
pendent of other risk factors such as socioeconomic status, 
access to health care, and pre-existing medical conditions.  
Our study shows that environmental stressors contribute to 
COVID-19 severity observed on a global scale. HAP for 
example was strongly associated with severity of COVID-19, 
exhibiting highly significant correlations of both EPI and 
SoGA scores. In contrast, while EPI correlations between 
cases/deaths and PM2.5 were weak, SoGA correlations were 2 
to 4 times stronger. PM2.5 score variations suggest differences 
between country proactivity scores and real PM2.5 data.

While CO2, SO2 and other compounds are present in PM2.5 
and contribute to HAP pollutants, they are measured sepa-
rately as part of the Climate Change and Pollution Emission 
categories under the EPI scheme. The Climate Change cate-
gory correlation was substantial, at r = −.536, rs = −.610 (Total 
Cases), and r = −.496, rs = −.610 (Total Deaths). Pollution 
Emission correlation was also significant, at r = −.433, rs = −.569 
(cases), and r = −.375, rs = −.506 (deaths). Multiple indicators 
(CO2, CH4 SO2, NOx) within these categories contribute to 
respiratory co-morbidities both in confined spaces and as 
ambient pollutants. When modeling disease prevention nation-
ally and globally, these indicators can help evaluate the long-
term effects of pollutants.

One remarkable but complicating finding was our observa-
tion that EPI performance indicators of global change were 
correlated with latitude. While to our knowledge EPI-latitude 
associations have not been previously reported, EPI indicators 
are known to exhibit a strong positive correlation with gross 
domestic product (GDP) per capita, which measures the mon-
etary value of final goods and services of a country and serves 
as an indicator of wealth.38 It is also well known that economic 
development and latitude are positively correlated and that 
such correlation evolved from a negative correlation that 
existed 500 years ago.45-47 An economic and physiological 
developmental model explained this latitude gradient by claim-
ing metabolic costs of fertility during human adaptation to 
cold temperatures allowed a “reversal of fortune” process of 



Hernandez and Caetano-Anollés 11

sustained growth that eventually led to increasing long-term 
economic development at higher latitudes.47 This model is 
aligned with links between available energy needed to produce 
goods and services (measured as “energy return on investment,” 
EROI) and social well-being.48 In those studies, energy indica-
tors were found to be highly correlated with indicators of qual-
ity of life such as the Human Development Index (HDI), 
health expenditures, and access to water. Remarkably, latitudi-
nal gradients of indicators of quality of life have been shown 
across the globe.49 Creativity, aggression, and happiness corre-
lated with latitude as well as climatic remote (thermal demands, 
steady rain) and proximate (pathogen prevalence, national 
wealth) predictors. Recently, other measures of quality of life 
have been shown to be also correlated with latitude, including 
the HDI and the world happiness score (WHS).50 Thus cul-
tural and psychological diversity in populations unfold latitudi-
nally on Earth impacting wealth and happiness. We contend 
that these factors also impact global change as well as COVID-
19 predictors, which may well be signaling another “reversal of 
fortune” in latitudinal patterns.

We end by noting that correlation does not imply causation. 
Neither Pearson’s product-moment correlation nor Spearman’s 
rank-order correlation indicate a relationship between 2 varia-
bles is causal (necessary, sufficient, and contributing to a cause), 
only that a relationship possibly exists. As such, we use these 
correlations alongside graphs and additional data to provide a 
clearer picture of our exploration. They should be considered 
first steps in the search for mechanistic links between both sea-
sonal and global change effects on the disease that could be 
operating at environmental, physiological, and behavioral lev-
els. In fact, 5 criteria should be fulfilled to establish causality.51 
First, there must be an empirical association between inde-
pendent and dependent variables established with correlation 
analyses, which we have shown exists in our study. Without 
such association there cannot be a causal relationship. Second, 
variations in the independent variable must precede variations 
in the dependent variable. This “temporal priority” criterion 
guarantees that the cause precedes its effects. Third, association 
must not be spurious. The association cannot be caused by 
some other confounding variable. One example of possible 
confounding variables for Total Cases is the number of 
COVID-19 tests used to report cases of the disease (testing 
rate), which in a previous study failed to correlate with tem-
perature and latitude.22 In turn, confounding variables for Total 
Deaths are demographic factors (eg, age, sex, income), which 
have not been explored in this study. In terms of global change 
parameters, we did find an important association between EPI 
performance indicators and latitude, suggesting a need to dis-
entangle the seasonal and global change effects on the disease. 
Fourth, there should be a mechanism that connects independ-
ent and dependent variables. For example, latitude is responsi-
ble for seasonal temperature variations because of Earth’s tilted 
axis relative to the plane of its orbit, which could in turn affect 
the infectivity and survival of a virus seeking to complete its life 

cycle. This causal chain has been used to explain periodicities 
of influenza52 and could similarly apply to COVID-19. Finally, 
there is a contextual framework surrounding causation that 
strengthens the cause-effect relationship. For example, eleva-
tion decreases temperature but is not correlated with Total 
Cases or Total Deaths of COVID-19 worldwide.13 Similarly, 
merging latitude and temperature effects from Southern and 
Northern Hemispheres fail to offset correlations but strength-
ens our study. To conclude, there is still many steps to complete 
and much to learn about the causal factors underlying epidemic 
calendars and global change dynamics.

Conclusions
Our time-series correlation study highlights the central role 
that seasonal and global change effects plays in the ongoing 
COVID-19 pandemic. Whereas the dynamic of the pandemic 
has changed often with the rise of new variants and diverse 
elimination and mitigation efforts, the high association of  
factors studied in this work with COVID-19 incidence and 
mortality has remained constant. Foundations of responsible 
environmental policies at a country level must therefore be 
established to reduce the effect of biotic and environmental 
stressors and improve public health. We stress: countries that go 
against the health of the planet affect public health in general.53
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