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CD8+ regulatory T cells are critical in prevention of
autoimmune-mediated diabetes
Chikako Shimokawa1,2,3✉, Tamotsu Kato3,4, Tadashi Takeuchi3,5, Noriyasu Ohshima 6, Takao Furuki7,

Yoshiaki Ohtsu8, Kazutomo Suzue2, Takashi Imai2, Seiji Obi2, Alex Olia1,2, Takashi Izumi 6, Minoru Sakurai7,

Hirokazu Arakawa8, Hiroshi Ohno 3,4,9✉ & Hajime Hisaeda1,2✉

Type 1 diabetes (T1D) is an autoimmune disease in which insulin-producing pancreatic β-cells
are destroyed. Intestinal helminths can cause asymptomatic chronic and immunosuppressive

infections and suppress disease in rodent models of T1D. However, the underlying regulatory

mechanisms for this protection are unclear. Here, we report that CD8+ regulatory T (Treg)

cells prevent the onset of streptozotocin -induced diabetes by a rodent intestinal nematode.

Trehalose derived from nematodes affects the intestinal microbiota and increases the

abundance of Ruminococcus spp., resulting in the induction of CD8+ Treg cells. Furthermore,

trehalose has therapeutic effects on both streptozotocin-induced diabetes and in the NOD

mouse model of T1D. In addition, compared with healthy volunteers, patients with T1D have

fewer CD8+ Treg cells, and the abundance of intestinal Ruminococcus positively correlates

with the number of CD8+ Treg cells in humans.
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In type 1 diabetes (T1D), an autoimmune disease, insulin-
producing pancreatic β-cells are destroyed, resulting in
hyperglycaemia due to insulin insufficiency. Considering the

recent increase of T1D in developed countries overwhelming rate
of genetic changes, environmental factors appear to affect auto-
immunity. One possible explanation for the involvement of
environmental factors is the ‘hygiene hypothesis’, which suggests
that reduced exposure to pathogens because of improved hygiene
increases the risk of inflammatory disorders such as
autoimmunity1,2. Among these pathogens, parasitic helminths
can cause asymptomatic chronic infections and their absence is
thought to be a contributor to the hygiene hypothesis3. Epide-
miological and geographical evidence demonstrates the inverse
correlation between helminthic manifestation and T1D
prevalence4,5.

Intestinal helminthic infections are immunologically unique to
induce type 2 responses as well as various regulatory immune
responses to suppress host immunity for their survival within the
hosts6–8. Animal models of T1D also support the ability of
intestinal helminthic infections to prevent diabetes. Infection with
Trichinella spiralis of non-obese diabetic (NOD) mice reduces
onset of spontaneous development of diabetes by inducing
dominant Th2 responses9. NOD mice infected with Heligmoso-
moides polygyrus (Hp) develop T1D to a lesser degree, and sup-
pressive effects are not dependent on IL-10 or CD4+ Treg cells10.
However, IL-10 is reported to have important functions in IL-4-
deficient NOD mice11. This nematode also suppresses strepto-
zotocin (STZ)-induced diabetes, and the protection is indepen-
dent of IL-10 or Th2 polarisation through IL-4 signalling12. Aside
from live helminth infection, several reports demonstrate that
products and/or antigens derived from blood flukes and lym-
phatic filariae have the ability to suppress disease a in model of
T1D13,14. However, such products have not been found in
intestinal helminthic infections. Thus, molecular and cellular
regulatory mechanisms underlying protection against T1D in
intestinal helminthic infections are not clear.

As another environmental factor for increased prevalence of
inflammatory disorders, recent studies indicate that the intestinal
microbiota is associated with onset of some diseases. Human
cohort studies demonstrate association between microbiota and
T1D15, and animal models support the notion that microbiota is
involved in T1D onset16,17. Given that intestinal helminthes affect
composition of microbiota in mice18, protective effects of
intestinal helminthes may be attributed to alteration of intestinal
microbiota.

Here we show that a rodent intestinal nematode can prevent
the onset of STZ-induced diabetes in a CD8+ regulatory T (Treg)
cell-dependent manner. Infection with the nematode and its
derivative, trehalose, affects the intestinal microbiota, resulting in
the induction of CD8+ Treg cells. Ruminococcus spp. are more
abundant in infected mice and seem to be responsible for
induction of CD8+ Treg cells. Trehalose has a therapeutic effect
not only in STZ-treated mice, but also in NOD mice. Further-
more, compared with healthy volunteers, patients with T1D have
fewer CD8+ Treg cells and intestinal Ruminococcus.

Results
Hp infection induces CD8+ Treg cells to prevent STZ-induced
diabetes. Injection of C57BL/6 mice with multiple low doses of
STZ resulted in hyperglycaemia and lower plasma insulin levels at
14 days after the first STZ administration (Fig. 1a, b). Immuno-
histochemical analyses revealed that these mice lost insulin-
producing β-cells (Fig. 1c). Thus, as widely accepted19,20, the
manipulation served as a model for autoimmune-mediated T1D.
Mice infected with an intestinal nematode, Heligmosomoides

polygyrus (Hp), at 2 weeks before T1D induction showed mild
elevation of blood sugar and maintained insulin concentrations
consistent with conservation of β-cells (Fig. 1a–c). These results
demonstrate that infection with Hp protects mice from devel-
oping STZ-induced diabetes. Hp infection induces several
immune suppressive cell types such as Foxp3+CD4+ regulatory
T cells (CD4+ Treg cells) that suppress T1D in various
settings21,22. Indeed, CD4+ Treg cells were increased in the
spleen of mice infected with Hp (Supplementary Fig. 1a). How-
ever, these cells were not involved in the suppression of T1D
observed in Hp-infected mice, because protective effects were not
abolished in Hp-infected mice depleted of CD4+ Treg cells using
an anti-CD25 antibody (Supplementary Fig. 1b).

We next examined CD8+ Treg cells identified as CD8+ T cells
expressing CD122 (IL-2Rβ chain)23,24. As a result, Hp infection
increased CD8+ Treg cells significantly in the pancreatic LN and
spleen (Fig. 1d–f). Depletion of CD8+ Treg cells in Hp-infected
mice by treatment with an anti-CD122 antibody completely
reversed the protective effects of Hp infection against T1D
(Fig. 1g–i). Although the depletion was not complete (with ~20%
of these cells remaining), this depletion of CD8+ Treg cells was
enough to prevent the onset of diabetes. However, the CD122
+CD8− population that was also depleted by the anti-CD122
antibody might play a suppressive role in T1D development
(Fig. 1f). To exclude this possibility, we performed a CD8+ Treg
cells transfer experiment. Mice that received CD8+ Treg cells, but
not CD122−CD8+ T cells, from Hp-infected mice did not exhibit
blood glucose elevation (Fig. 1j). These results indicate that CD8+

Treg cells are responsible for the suppression of T1D. In addition,
aged mice with more CD8+ Treg cells confirmed the involvement
of CD8+ Treg cells in T1D suppression. As reported previously25,
60-week-old mice had substantially more CD8+ Treg cells in
their spleen than young mice (Supplementary Fig. 2a). These aged
mice were resistant to diabetes induction (Supplementary Fig. 2b,
c), which depended on CD8+ Treg cells because aged mice
depleted of CD8+ Treg cells developed diabetes comparable with
young mice (Supplementary Fig. 2d).

Functionally, an in vitro T cell-suppression assay revealed that
CD8+ Treg cells from Hp-infected mice remarkably suppressed
the proliferation of CD4+ and CD8+ potential effector T cells in
the presence of antigen-presenting cells in contrast to those from
uninfected mice showing marginal suppression (Fig. 1k). In
addition, CD8+ Treg cells showed a stronger ability to suppress
interferon (IFN)-γ production crucial for the development of
STZ-induced diabetes26 after Hp infection (Fig. 1l), indicating
that Hp augments the suppressive functions of CD8+ Treg cells.
This suppression may decrease IFN-γ-producing T cells in the
pancreas of Hp-infected mice after T1D induction (Supplemen-
tary Fig. 3). Because CD8+ Treg cell addition regardless of the
mouse origin increased the amount of IL-10 in culture super-
natants, CD8+ Treg cells appear to secrete this anti-inflammatory
cytokine (Fig. 1l). Nevertheless, the contribution of IL-10 to T1D
suppression was limited (Supplementary Fig. 4).

Trehalose produced in Hp is crucial for diabetes suppression.
In terms of the molecular mechanisms of CD8+ Treg cell
induction, Hp-derived molecule(s) are hypothesised to modulate
intestinal environments. To test this hypothesis, we comprehen-
sively analysed intestinal contents by gas chromatography/mass
spectrometry (GC/MS). Univariate analyses of 48 identified
metabolites were performed, and a volcano plot demonstrated
that trehalose, a disaccharide consisting of two glucose molecules,
was the most remarkably increased after Hp infection (Fig. 2a).
This disaccharide was the only metabolite increased significantly
as assessed by Bonferroni’s method (Supplementary Table 1).
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Fig. 1 CD8+ Treg cells mediate suppression of STZ-induced diabetes by H. polygyrus. a–cMice were administered STZ at 14 days after infection with Hp.
a Blood glucose concentrations were monitored, b plasma insulin was measured, and c pancreatic sections were stained with an anti-insulin antibody at
14 days after T1D induction. Representative histological images are shown (left panels), and a bar graph depicts the percentage of the stained area observed
under a microscope (right panel). d CD8+ Treg cells defined as CD8+CD122+ cells in the pancreatic LN from mice before and at 14 days after infection with
Hp were quantified by flow cytometry. The numbers indicate the percentages of CD8+ Treg cells in the FSC/SSC-gated lymphoid cells. e Kinetics of the
absolute number of CD8+ Treg cells in the pancreatic LN. f–h Hp-infected mice were administered an anti-CD122 antibody immediately before and after
T1D induction. f Spleen cells of these mice were assessed for the depletive effects of the antibody on CD122-expressing cells by flow cytometry. The effects
of this manipulation on blood glucose (g), plasma insulin levels (h), and pancreatic β-cells (i) were evaluated as described in a–c. j Blood glucose of mice
that received CD8+ Tregs or non-Treg CD8+CD122- cells was monitored after injection of STZ. k TCR-driven proliferation of CD4+ (left panels) and CD8+

T (right panels) cells in the presence or absence of antigen-presenting cells cultured with CD8+CD122+ cells from the indicated mice at the indicated ratio
was evaluated by flow cytometry. l Cytokine concentrations were quantified in supernatants of the cultured cells in k. Values represent the mean ± SD of 15
mice (sum of three repeated experiments, five mice each). Experiments in l and k were repeated three times, and values represent the mean ± SD of 10
mice (sum of three repeated experiments, three or four mice each). Asterisks denote statistical significance at p < 0.05 calculated by the two-way ANOVA
(a, e, g, j) and Tukey post-hoc analysis (b, c, h, i, k, l). Scale bars indicate 40 μm (c, i). All experiments were repeated at least three times with similar
results.
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Absolute quantification of trehalose in the intestinal contents was
also performed using GC/MS. Identification of trehalose in bio-
logical samples by GC/MS is difficult because of its similarity to
both the mass spectrum and retention time of methoximated
maltose, a disaccharide consisting of two glucose molecules. Thus,
trehalose and maltose with methoximation were analysed in
detail and differentiated clearly (Supplementary Figs. 5, 6).
Finally, a substantial amount of trehalose was observed in the
intestinal contents of Hp-infected mice (Fig. 2b). The trehalose
concentration in the serum of mice infected with Hp was sig-
nificantly higher than that in uninfected mice (Fig. 2c), suggesting
that trehalose is absorbed from the intestines. Furthermore,

analysis of Hp excretory/secretory (HES) antigens collected from
culture supernatants of adult worms revealed that the trehalose
level was highly elevated among HES antigens (Fig. 2d, e). Three
metabolites including trehalose were significantly increased
among HES antigens (Supplementary Table 2), indicating that Hp
produced and secreted trehalose in the intestines. In addition to
adult worms, infective L3 larvae secrete trehalose. Fourier trans-
form infra-red (FTIR) microscopic analyses revealed the location
of concentrated trehalose as vesicle-like red signals along the
worm body surface. Thus, a large amount of trehalose was
detected in the preservative water containing L3 larvae (Supple-
mentary Fig. 7a, b).
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Fig. 2 Trehalose derived from Hp induces CD8+ Treg cells. a Forty-eight metabolites identified in the contents of the small intestines of five uninfected
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were measured by GC/MS. c Trehalose concentrations in serum from the indicated mice were measured using ELISA. f Splenic CD8+ Treg cells in mice
orally administered HES antigens or HES antigens exposed to trehalase and mice infected with Hp were analysed as described in Fig. 1d, and the frequency
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Treg cells in NOD mice used in l were quantified at 2 weeks after feeding trehalose as described in Fig. 1d, and the percentages of these cells are shown.
Values represent the mean ± S.D. of 10 mice except for five mice in b. Asterisks denote statistical significance at p < 0.05 calculated by the two-tailed
Mann–Whitney test (b, e), two-sided unpaired Student’s t-test (c), two-way ANOVA (g, i, k) and Tukey post-hoc analysis (f, h, i, m). NS indicates not
significant. All experiments except for GC/MS run (a) and NOD mice (m, l) each once, were repeated at least three times with similar results.
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We next analysed whether Hp-derived molecules including
trehalose contribute to diabetes suppression. Oral administration
of HES antigens to mice increased CD8+ Treg cells and
suppressed T1D onset (Fig. 2f, g). HES antigens treated with
trehalase, which degrades trehalose, did not induce CD8+ Treg
cells or suppress diabetes (Fig. 2f, g). Moreover, comparable with
Hp infection, trehalose feeding induced CD8+ Treg cells,
prevented blood sugar elevation, and preserved the insulin
concentration. In contrast, mice fed with control sugar maltose
remained susceptible to diabetes induction (Fig. 2h–j). These
results indicate that trehalose derived from Hp is an important
molecule in the induction of CD8+ Treg cells responsible for
suppressing T1D.

To assess the therapeutic effect of trehalose, it was fed to STZ-
treated mice and NOD mice after development of high blood
glucose. Long-term feeding of trehalose suppressed the blood
glucose elevation in STZ-treated mice significantly, but at lesser
degree compared with Hp infection (Fig. 2k). Trehalose feeding to
NOD mice with mild hyperglycaemia (<350 mg/dl) at the
beginning of feeding completely reversed the glucose level
increase (Fig. 2l). It is noteworthy that treatment with trehalose
increased CD8+ Treg cells even in mice refractory to treatment
(Fig. 2m). These results suggest that trehalose might be used to
treat T1D treatment when regeneration of pancreatic β-cells is
possible.

Intestinal microbiota contributes to diabetes suppression.
Next, to determine whether the intestinal microbiota was
involved in the CD8+ Treg cell induction, Hp-infected mice were
orally administered an antibiotic mixture or ampicillin to perturb
the microbiota prior to diabetes induction. Although these
treatments did not affect Hp infection (Supplementary Fig. 8),
CD8+ Treg cells were not increased in mice treated with anti-
biotics even in the presence of Hp infection (Fig. 3a), resulting in
failure to suppress STZ-induced diabetes development in these
mice (Fig. 3b). Thus, the microbiota is required for the CD8+

Treg cell induction crucial for diabetes suppression.
To find distinct characteristics in the microbiota inducing CD8

+ Treg cells, we analysed the microbiota in the small intestines
and faeces of mice infected with Hp and those fed with trehalose.
Mice containing more CD8+ Treg cells had more genus
Ruminococcus than control mice (Fig. 3d, e). We further
examined the relationship between the amount of CD8+ Treg
cells and faecal microbiota, and found that 12 and 7 genera were
positively and negatively correlated, respectively. Among these 12
genera, the most highly correlated genus was Ruminococcus, an
anaerobic and Gram-positive coccus (Fig. 3e). Real-time PCR
confirmed that Hp-infected and trehalose-treated mice had more
Ruminococcus species than untreated mice (Fig. 3f). In addition,
increased intestinal Ruminococcus was observed in aged mice and
NOD mice treated with trehalose containing more CD8+ Treg
cells (Supplementary Fig. 9). These results strongly suggest that
CD8+ Treg cells induction is correlated with the abundance of
Ruminococcus.

To further establish the involvement of Ruminococcus in
diabetes suppression and induction of CD8+ Treg cell, we
attempted to isolate a single Ruminococcus species, OTU718,
which was increased in mice fed with trehalose. However, it was
impossible, presumably because of its requirements for strict
nutrition and/or highly anaerobic conditions. Thus, we used the
closest relative Ruminococcus gnavus among cultivable strains. As
a control, we used Faecalibacterium prausnitzii identical to
OTU58, belonging to the same family of Ruminococcaceae as
OTU718 and unaffected by trehalose feeding (Fig. 3g, h). Feeding
R. gnavus, but not F. prausnitzii, to STZ-treated mice significantly

suppressed the blood glucose elevation (Fig. 3i). Furthermore,
coculture of splenocytes from uninfected mice with supernatants
from R. gnavus cultures increased CD8+CD122+ cells (Fig. 3j).
These results indicate that these particular Ruminococcus species
are, at least partially, responsible for the CD8+ Treg cell induction
resulting in prevention of diabetes onset.

CD8+ Treg cells and gut microbiota in patients with T1D. We
extrapolated our findings on the diabetes suppressive effect of
CD8+ Treg cells in mice to humans. First, we analysed CD8+

Treg cells in peripheral blood obtained from children with T1D.
Flow cytometric analyses demonstrated that T1D patients had
fewer CD8+ Treg cells, defined as CD8+CD122+CXCR3+ cells27,
than healthy volunteers (Fig. 4a, b). By contrast, there was no
difference in the CD4+ Treg cell frequency (Supplementary
Fig. 10). We also analysed the faecal microbiota of T1D patients
and found lower ratios of the family Ruminococcaceae and genus
Ruminococcus than in healthy volunteers (Fig. 4c, d). Moreover,
the serum trehalose concentration in T1D patients was very low
compared with that in healthy volunteers (Fig. 4e), and a highly
positive correlation was found between the abundance of treha-
lose, CD8+ Treg cells, and Ruminococcus (Fig. 4f). These results
suggest that CD8+ Treg cells suppress T1D development and that
the gut microbiota, specifically Ruminococcus, augments CD8+

Treg cells in both humans and mice.

Discussion
In this study, we clarified a novel mechanism underlying T1D
suppression during Hp infection. Trehalose derived from Hp
affects the microbiota, increasing Ruminococcus specifically,
resulting in the induction of suppressive CD8+ Treg cells.
Because trehalose is secreted from L3 larvae, its concentration is
elevated immediately after infection and maintained at high levels
during infection. Trehalose has cytoprotective effects and con-
tributes to adaptations to harmful conditions in insects such as
anhydrobiosis and cryptobiosis28,29. L3 larvae may produce tre-
halose to adapt to environmental fluctuations outside of the host
body where they develop. Trehalose derived from Hp, in turn,
exerts anti-diabetic effects through β-cell protection, which might
be explained by its ability to induce CD8+ Treg cells.

Trehalose does not appear to directly induce CD8+ Treg cells,
but indirectly induces them through an alteration of the intestinal
microbiota. Because recent reports have demonstrated that spe-
cific bacteria induce specific T-cell subsets30–32, some bacteria
may activate CD8+ Treg cells. Based on our results together with
utilisation of trehalose as one of the assimilable sugars by
Ruminococcus33, Ruminococcus is the most likely candidate.

Notably, our findings might be applicable to clinical situations.
Compared with healthy individuals, patients with T1D have fewer
CD8+ Treg cells in association with a smaller number of Rumi-
nococcus and amount of trehalose. Our insights into the sup-
pressive mechanisms of T1D may lead to prophylactic and
therapeutic applications such as using trehalose and Rumino-
coccus strains as a prebiotic and probiotic, respectively, as well as
cell transfer of autologous CD8+ Treg cells differentiated from
induced pluripotent stem cells.

Methods
Mice. Male C57BL/6J mice purchased from Japan SLC Inc. and female NOD mice
from CLEA Japan Inc. were maintained under specific pathogen-free conditions at
23 ± 2 °C, 55 ± 5% humidity with automated controlled 12 h dark/light cycle. Mice
used for experiments at 8–10 or 60 weeks of age. All animal experiments were
reviewed and approved by the Committee for Ethics on Animal Experiments at the
Graduate School of Gunma University (approval number 16–041). Animal
experiments were conducted in accordance with the Guidelines for Animal
Experiments of the Graduate School of Gunma University, and the Low (No. 105)
and Notification (No. 6) of the Japanese Government.
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Heligmosomoides polygyrus infection. Hp were maintained in mice and serially
passaged. For experimental infections, we used infectious L3 larvae obtained from
eggs in the faeces of infected mice after culture on filter paper soaked in distilled
water34. Mice were orally infected with 200 L3 larvae in 500 μl DW by gastric
intubation. Establishment of infection was confirmed by detecting eggs in faeces.

Induction and evaluation of diabetes. C57BL/6J mice were intraperitoneally
administered STZ (50 mg/kg body weight) for five consecutive days to induce
diabetes, as described previously12. Blood samples were periodically collected from
mice via puncture of the tail vein to monitor blood glucose concentrations using
lab glucose cartridge and sensor devices (ForaCare Inc.). The determination of
insulin levels in serum samples was performed by an LBIS mouse Insulin ELISA kit
(AKRIN-011RU, Shibayagi Co. Ltd.), according to the manufacturer’s instructions.

Immunohistochemical examinations. Pancreatic tissues excised from mice after
STZ administration were fixed in 4% paraformaldehyde and embedded in paraffin.
Tissue sections (5-μm thick) were subjected to immunohistochemistry with a
polyclonal guinea pig anti-insulin antibody (A0564, Dako) at 1:200 dilution.
Stained areas were quantified using a BZ-8100 microscope (Keyence), NIS-
Elements (Nikon), and ImageJ (NIH)35. At least 10 sections from individual mice
were examined.

Flow cytometry. Single-cell suspensions of mouse spleens, mesenteric lymph
nodes, pancreatic lymph nodes, and pancreatic tissues were incubated with an anti-
CD16/32 (93; eBioscience) to block Fc receptors to prevent non-specific antibody
binding and then stained with the following mAbs conjugated to fluorescein iso-
thiocyanate (FITC), phycoerythrin (PE), allophycocyanin (APC), phycoerythrin-
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indotricarbocyanine (PE-Cy7), allophycocyanin-indotricarbocyanine (APC-Cy7),
or PerCP-cy5/5 (eBioscience or BioLegend): anti-mouse CD4 (GK1.5), anti-mouse
CD25 (PC61), anti-mouse CD8 (53-6.7), anti-mouse CD122 (TMβ-1), and anti-
mouse IFN-γ (XMG1.2). Mononuclear cells separated from peripheral blood of
T1D patients by gradient centrifugation using Ficoll-Hypaque (GE healthcare,
Tokyo, Japan) were stained with fluorescent dye-conjugated anti-human CD4
(RPA-T4), anti-human CD25 (BC96), anti-human CD8 (SK1), anti-human CD122
(TU27), and anti-human CXCR3 (G025H7) antibodies. For intracellular staining,
cells stained as described above were fixed and permeabilized with BD Cytofix/
Perm (BD Bioscience) and then stained with anti-mouse Foxp3 (MF-14) or anti-
human Foxp3 (259D) antibodies. All fluorescent antibodies were used at dilution 1/
50. Stained cells were collected on FACSverse (BD Bioscience) and data acquired
using FACSDiva (BD Bioscience). Data analysis was performed using FlowJo
9.1 software (Treestar). Gating strategies are shown in Supplementary Fig. 11.

In vivo cell depletion and cytokine neutralisation. To deplete cells expressing
CD122 including CD8+ Treg cells in vivo, mice were injected with 500 μg anti-
CD122 mAb (TMβ-1) or control isotype rat IgG at 1 and 3 days before and at 7 and
14 days after the first STZ administration. CD4+ Treg cells were depleted using the
anti-CD25 (7D4) antibody as described above. For IL-10 neutralisation, mice were
injected intraperitoneally with 500 μg anti-IL-10 monoclonal antibody (JES5-2A5)
at −1, 0, 5, and 7 days after T1D induction.

Isolation and adoptive transfer of CD8+ Treg cells. Single-cell suspensions of
spleens from Hp-infected mice were stained with fluorescent dye-conjugated anti-
CD8 and anti-CD122 antibodies. CD8+CD122+ and CD8+CD122− cells were
sorted by a FACSAria II (BD Bioscience). The sorted cells were at least 98% pure.
Five hundred thousand purified cells were intravenously transferred into unin-
fected recipient mice at 1 day before STZ administration.

In vitro T cell-suppression assay. Briefly, purified splenic CD4+CD25− or CD8
+CD122− responder cells from uninfected mice were labelled using a CellTrace
Violet kit (Thermo Fisher). The cells were then cocultured with sorted CD8+ Treg
cells from uninfected or Hp-infected mice with or without antigen-presenting cells
(splenic CD3−CD8− cells) from uninfected mice in the presence of a plate-bound
anti-CD3 antibody (2C11) for 3 days. Cells were harvested and analysed by flow
cytometry. Labelled cells with diluted fluorescence were considered as proliferative
cells. Cytokines in supernatants of cell cultures were also analysed using ELISA kits
(R&D Systems), according to the manufacturer’s instructions.

GC–MS analysis. Contents in the small intestines of mice were collected in
Eppendorf tubes on ice and then weighed. Then, 250 μl of a solvent mixture
(MeOH:H2O:CHCl3= 2.5:1:1) and 5 μl of 1 mg/ml 2-isopropylmalic acid (2-IPM)

(Sigma-Aldrich) as an internal standard were added to the tube. The mixture was
vortexed for 30 min at room temperature before centrifugation at 21,000×g for 5
min at room temperature. The supernatant (225 μl) was transferred to a new tube,
and 200 μl of water was added to the tube. After vortexing, the tube was centrifuged
at 21,000×g for 5 min at room temperature, and 250 μl of the supernatant was
transferred to a new tube and stored in a freezer before use. The supernatant (50 μl)
was transferred to a new tube and lyophilised using a centrifugal concentrator. For
oximation, 40 μl pyridine with or without 20 mg/ml methoxyamine hydrochloride
(Sigma-Aldrich) was added to the lyophilised sample. The tube was sonicated to
disperse the lyophilised powder before shaking at 1400 rpm for 90 min at 30°C.
Then, 20 μl N-methyl-N-trimethylsilyl-trifluoroacetamide (MSTFA) (GL Science)
was added for derivatization. The mixture was then incubated at 37 °C for 30 min
with shaking at 1400 rpm. The tube was centrifuged at 21,000×g for 5 min at room
temperature, and 1 μl of the resultant supernatant was injected into a DB-5
capillary column (30 × 0.25 mm; film thickness: 1 μm) (Agilent Technologies). In
addition, GC/MS analysis was performed using a GCMS-TQ8030 (Shimadzu)
equipped with an AOC-20i autosampler (Shimadzu).

Analysis of small molecular weight metabolites was performed based on Smart
Metabolites Database Release 3.01 (Shimadzu) that contains the data acquisition
parameters for 571 compounds in full-scan mode and 467 compounds in multiple
reaction monitoring (MRM) mode. Data acquisition was performed in both full-
scan and MRM modes. GC–MS solution software Version 4.41 (Shimadzu) was
used for data processing. Retention time correction was performed based on the
retention time of a standard n-alkane mixture (Restek). The peaks were assigned
automatically and checked manually. For comparison between samples from
control and infected mice, each peak area was normalised based on the weight of
intestinal contents and the peak area of 2-IPM. Statistical analysis was performed
using the two-tailed unpaired Student’s t-test. p-values were adjusted by
Bonferroni’s method and the Benjamini–Hochberg method.

Measurement of trehalose. Trehalose measurement was performed in L3 larval
samples and human sera using a trehalose assay kit (#K-TREH, Magazyme),
according to the manufacturer’s instructions.

Preparation of HES antigens. Adult worms collected from the small intestines of
Hp-infected mice were washed extensively in sterile PBS containing penicillin and
streptomycin (Gibco), and 200 worms were cultured in 1 ml DMEM (Sigma-
Aldrich) containing penicillin and streptomycin for 3 days. The supernatant was
collected as HES antigens. In some experiments, trehalase (Sigma-Aldrich) was
added to HES antigens at 0.025 U/ml, followed by incubation overnight at 37 °C36.

Antibiotic treatments. For antibiotic treatments, mice were treated with the fol-
lowing combination of antibiotics (ABX): ampicillin (1 g/l), metronidazole (1 g/l),
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Fig. 4 Patients with T1D have fewer CD8+ Treg cells compared with healthy volunteers. Evaluation of CD8+ Treg cells and microbiota in T1D patients
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vancomycin (500 mg/l), and neomycin (1 g/l), or ampicillin (1 g/l) alone (Amp) in
drinking water for 14 days.

Trehalose feeding. Mice were fed 3% trehalose in drinking water for 7 days before
STZ treatment or 500 μl HES antigens with or without trehalose exposure by
gastric intubation for 7 days.

FTIR measurements. The FTIR measurements of infected L3 larvae of Hp were
performed according to a previous study on the larvae of an African chironomid37.
The whole body of larvae was sandwiched between two KBr plates. Lattice mapping
spectra in the 4000–750 cm−1 range were collected by an infra-red microscope
(IRT-7200 with FT/IR-6600 spectrometer; JASCO) equipped with a liquid nitro-
gen-cooled, mercury-cadmium-telluride, 16-element, linear array detector.
Sequential spectra were collected at 570 points (15 × 38 points) in the specimen.
For each spectrum, 32 interferograms were collected, signal averaged, and Fourier
transformed to generate spectra with a spectral resolution of 8 cm−1, pixel reso-
lution of 12.5, and pixel resolution of 12.5 signal averaged, and Fourier transformed
to generate spectra with a spectral resolution of 8 interferograms.

16S rRNA gene pyrosequencing. Faecal and small intestinal samples collected
from mice were immediately frozen in liquid nitrogen and stored at −80 °C. Faecal
DNA extraction was performed according to a previous study38 with minor
modifications. A grain of mouse faeces or human faecal pellets were suspended
with sterilised sticks in 475 μl TE10 buffer containing 10 mM Tris-HCl (pH 8.0)
and 10 mM EDTA. The faecal suspension was incubated with 15 mg/ml lysozyme
(Wako) at 37 °C for 1 h. A final concentration of 2000 U/ml purified achromo-
peptidase (Wako) was then added, followed by incubation at 37 °C for 30 min.
Then, 1% (wt/vol) sodium dodecyl sulfate and 1 mg/ml proteinase K (Merck Japan)
were added to the suspension, followed by incubation at 55 °C for 1 h. After
centrifugation, bacterial DNA was purified using a phenol/chloroform/isoamyl
alcohol (25:24:1) solution. The DNA was precipitated by adding ethanol and
sodium acetate. RNase A (Wako) was added to bacterial DNA in TE buffer to a
final concentration 1 mg/ml. To remove fragmented low molecular weight DNA,
polyethylene glycol (PEG 6000) precipitation was performed after RNase
treatment.

The V4 variable region (515F–806R) was sequenced on an Illumina MiSeq,
following the method of Kozich et al.39 Each reaction mixture contained 15 pmol
of each primer, 0.2 mM deoxyribonucleoside triphosphates, 5 μl of 10× Ex Taq HS
buffer, 1.25 U Ex Taq HS polymerase (Takara), 50 ng extracted DNA, and sterilised
water to reach a final volume of 50 μl. PCR conditions were as follows: 95 °C for 2
min, 25 cycles of 95 °C for 20 s, 55 °C for 15 s, and 72 °C for 1 min, followed by 72 °
C for 3 min. The PCR product was purified by AMPure XP (Beckman Coulter) and
quantified using a Quant-iT PicoGreen ds DNA Assay Kit (Life Technologies
Japan). Mixed samples were prepared by pooling approximately equal amounts of
PCR amplicons from each sample. The pooled library was analysed with an Agilent
High Sensitivity DNA Kit on an Agilent 2100 Bioanalyzer (Agilent Technologies).
Real-time PCR for quantification was performed on the pooled library using a
KAPA Library Quantification Kit for Illumina, following the manufacturer’s
protocols. Based on the quantification, the sample library was denatured and
diluted. A sample library with 20% denatured PhiX spike-in was sequenced by
MiSeq using a 500-cycle kit. We obtained 2 × 250 bp paired-end reads. The
sequence data were processed using Quantitative Insights into Microbial Ecology
software (QIIME, v1.8.0) and Mothur v. 1.36.140.

Real-time quantitative PCR. Bacterial genomic DNA was isolated from faecal
pellets using a QIAamp Stool Mini Kit (Qiagen). DNA encoding 16S rRNA was
quantified by SYBR Green dye incorporation (Takara) analysed using an ABI
Prism 7700 thermal cycler and detector system (Thermo Fisher Scientific)41. qPCR
was carried out according to the manufacturers’ instructions. The PCR primer
sequences used to universally amplify 16S rRNA of all bacteria were 5′-
GTGCCAGCMGCCGCGGTAA-3′ and 5′-GACTACCAGGGTATCTAAT-3′. The
sequences used to specifically amplify 16S rRNA of Ruminococcus were 5′-
CTAGGTGAAGATACTGACGGTAACCTG-3′ and 5′-GTAT-
TACCGCGGCTGCTGGCAC-3′42. The relative amount of Ruminococcus to whole
bacteria was calculated based on the difference in the threshold cycle between
universal and specific PCR products.

Bacterial culture. Ruminococcus gnavus (JCM6515), the closest species to
OTU718, and Faecalibacterium prausnitzii (JCM 31915) identical to OTU58 were
obtained from the RIKEN BioResource Research Center. Both bacteria were cul-
tivated in YCFA medium43. The media were centrifuged and separated into pre-
cipitates and supernatants. To adjust the concentration, the precipitates were
diluted with PBS, resulting in an OD 600 of approximately 0.8 (4 × 108 CFU).
Supernatants were passed through membrane filters with a 0.2-μm pore size
(Sartorius) and diluted to adjust the concentration in accordance with the OD 600
of precipitates before use.

Colonisation of bacteria and bacterial stimuli of T cells. R. gnavus and control
bacteria F. prausnitzii were grown overnight, and then ~1 × 108 CFU in 200 µl
YCFA medium was orally administered to B6 mice at 14 days after diabetes
induction for 5 days. Blood glucose levels in the mice were analysed each week. For
in vitro experiments, splenocytes (1 × 105) from uninfected mice were incubated
with supernatants from the bacterial cultures at a medium:supernatant ratio of 4:1.
All cultures were performed in triplicate wells containing 200 µl complete RPMI
medium (RPMI 1640 containing 2 mM L-glutamine and 25 mM HEPES) supple-
mented with 10% FBS for 2 days.

Human samples. The Ethics Committee of the Graduate School of Medicine,
Gunma University approved all human experiments conducted in this study
(approval number 2016-071). Nineteen patients and 16 healthy volunteers were
enroled. Informed consent was obtained from the parents of participating children
and/or participants. The clinical characteristics of the patients are summarised in
Supplementary Table 3. Blood samples from newly diagnosed patients were col-
lected at the inpatient department, and samples from well-controlled patients were
collected at the outpatient department. All faecal samples were collected in tubes
containing RNAlater (Sigma-Aldrich) within 3 days before or after blood collection
and stored at 4 °C until analysis.

Statistical analysis. All statistical analyses were performed using Prism software
with the two-tailed unpaired Student’s t-test or one-way ANOVA, followed by
Tukey’s post-hoc test or two-tailed Mann–Whitney test. p-values of <0.05 were
considered as significant (*p < 0.05, **p < 0.01, and ***p < 0.001).

Data availability
Sequence data are available at DDBJ with the accession code PRJDB9558. The authors
declare that the other data underlying the figures and Supplementary Information in this
manuscript are available from the authors on reasonable request.
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