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Abstract

Autism Spectrum Disorder (ASD) is an early onset developmental disorder characterized by 

deficits in communication and social interaction and restrictive or repetitive behaviors1,2. Family 

studies demonstrate that ASD has a significant genetic basis with contributions both from inherited 

and de novo variants3,4. It has been estimated that de novo mutations may contribute to 30% of all 
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simplex cases, in which only a single child is affected per family5. Tandem repeats (TRs), defined 

here as 1-20bp sequences repeated consecutively, comprise one of the largest sources of de novo 
mutations in humans6. TR expansions are implicated in dozens of neurological and psychiatric 

disorders7. Yet, de novo TR mutations have not been characterized on a genome-wide scale, and 

their contribution to ASD remains unexplored. We develop novel bioinformatics methods for 

identifying and prioritizing de novo TR mutations from sequencing data and then perform a 

genome-wide characterization of de novo TR mutations in ASD-affected probands and unaffected 

siblings. Compared to recent work on TRs in ASD8, we explicitly infer mutation events and their 

precise changes in repeat number, and primarily focus on more prevalent stepwise copy number 

changes rather than large expansions. Our results demonstrate a significant genome-wide excess of 

TR mutations in ASD probands. Mutations in probands tend to be larger, enriched in fetal brain 

regulatory regions, and predicted to be more evolutionarily deleterious. Overall, our results 

highlight the importance of considering repeat variants in future studies of de novo mutations.

Identifying de novo TR mutations

We developed a novel method, MonSTR, for identifying de novo TR mutations in parent-

offspring trios from whole-genome sequencing (WGS) data (Methods; Supplementary 

Methods). MonSTR takes genotype likelihoods reported by a TR variant caller as input and 

estimates the posterior probability of a mutation resulting in a repeat copy number change at 

each TR in each child.

We performed a genome-wide analysis of de novo TR mutations (Fig. 1a) using WGS 

available for 1,637 quad simplex families sequenced to 35× coverage as part of the Simons 

Simplex Collection9 (SSC) (Supplementary Table 1), which have been ascertained to enrich 

for probands likely to harbor previously uncharacterized pathogenic de novo mutations10. 

We used GangSTR11 to estimate diploid repeat lengths in each sample at 1,189,198 TRs 

with repeat unit lengths 1-20bp and median total TR lengths 12bp in hg38. TR genotype 

results were used as input to MonSTR to identify mutations in each child. After filtering 

(Methods), our pipeline identified a total of 175,291 high-confidence TR mutations across 

94,616 distinct loci in 1,593 families (average 53.9 autosomal mutations per child; Fig. 1b) 

corresponding to an average mutation rate of 5.6×10−5 mutations per locus per generation.

We tested our framework on simulated WGS data, which demonstrated high sensitivity to 

detect de novo TR mutations resulting in changes of up to 10 repeat copies and low false 

positive rate (<1%) compared to a naïve method in most settings (Methods, Extended Data 

Fig. 1). To directly assess the quality of genotype and mutation calls within families, we 

performed fragment analysis using capillary electrophoresis on 49 TR mutations across 5 

SSC quad families (Supplementary Tables 2-3). Tested mutations show a validation rate of 

90% (44/49), an improvement over validation rates previously reported for de novo indels12.

We next compared our results to known TR mutation trends (Extended Data Fig. 2). Similar 

to previous studies13-15, estimated mutation rates are highest for TRs with shorter repeat 

units (Extended Data Fig. 2a) and are positively related to total length (bp) of the reference 

TR (Extended Data Fig. 2b). Following de novo single nucleotide variant (SNV) 

studies10,16, autosomal TR mutation rates are correlated with paternal age (Pearson r=0.19; 
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two-sided P=2.1×10−26; n=3,186; Fig. 1c). At TR mutations (excluding homopolymers) for 

which the parent of origin could be inferred (Methods), 74% were phased to the father, 

which is similar to previous reports for de novo SNVs17,18. Mutation counts in SSC are 

concordant with published mutation rates for forensics TRs (Extended Data Fig. 2c), and are 

significantly correlated with genome-wide rates estimated by our MUTEA13 method on an 

orthogonal set of unrelated individuals (Pearson r=0.26; two-sided P<10−200; n=548,724; 

Extended Data Fig. 2d). Finally, we investigated determinants of TR mutation rates and 

found that local genomic features are only modestly predictive of TR mutation rates, similar 

to previous reports (Extended Data Fig. 2e; Supplementary Note). Taken together, these 

results suggest our pipeline can robustly identify genome-wide de novo TR mutations.

Genome-wide patterns of TR mutations

We first characterized genome-wide properties of autosomal TR mutations. The majority of 

mutations observed result from expansions or contractions by a single repeat unit, with a 

smaller proportion of larger mutations (Fig. 2a), although this trend varies by repeat unit 

length15,19-21 (Supplementary Table 4, Extended Data Fig. 3a). Overall, mutations show a 

bias toward expansions (71%) vs. contractions (29%). When excluding error-prone 

homopolymer TRs, only 56% of mutations are expansions, still significantly more than the 

50% expected by chance (binomial two-sided P=4.8×10−249; n=71,822).

We further examined mutation sizes separately for the subset of mutations phased to either 

the maternal vs. paternal germline. The bias toward expansions vs. contractions (excluding 

homopolymers) is significant for maternal phased mutations (57% expansions; binomial 

two-sided P=3.7×10−39; n=9,190) but not for paternal phased mutations (50% expansions; 

P=0.71; n=26,550) (Extended Data Fig. 3b-c), suggesting the overall expansion bias 

observed is primarily driven by maternally derived mutations. Further, maternal phased 

mutations result in significantly larger changes in repeat unit copy number (Mann-Whitney 

one-sided P<10−200). This trend is recapitulated across all repeat unit lengths (Fig. 2b), with 

the strongest effect at dinucleotide TRs.

Previous studies assessing TR mutational patterns reported a directionality bias in mutations, 

with longer alleles more likely to experience contractions and shorter alleles more likely to 

experience expansions13,15,22. We observe a similar bias (Fig. 2c). We find that the 

directionality bias is notably stronger for mutations originating from parents heterozygous 

for two different allele lengths (Extended Data Fig. 3d-e), whereas little bias is observed for 

mutations from homozygous parents. This suggests the observed trend could be driven in 

part by interaction between parent alleles, which has been previously hypothesized22.

TR mutation burden in ASD

The total number of de novo autosomal TR mutations observed genome-wide is significantly 

higher in probands (mean=54.65 mutations) vs. non-ASD siblings (mean=53.05 mutations) 

(Fig. 3a, paired t-test two-sided P=9.4×10−7; n=1,593; relative risk [RR] = 1.03). This trend 

remains after adjusting mutation counts for paternal age (P=1.08×10−5; Methods), excluding 

homopolymers (P=0.0071 after paternal age adjustment), and is consistently observed across 
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each SSC phase (Supplementary Table 5). Autosomal mutations in probands result in 

significantly larger repeat copy number changes (Mann-Whitney one-sided P=0.017; Fig. 

3b). We analyzed chromosome X mutations separately and observed a moderate excess in 

male probands vs. male non-ASD siblings (Mann-Whitney two-sided P=0.01) but no 

difference in females (P=0.73).

Our study is underpowered to detect specific TR loci enriched for mutations in probands vs. 

siblings at genome-wide significance (Extended Data Fig. 4). Instead, we evaluated whether 

TRs within particular genomic annotations show an excess of mutations in probands vs. non-

ASD siblings (Fig. 3a). Mutations in coding regions have the highest magnitude of excess in 

probands vs. non-ASD siblings, but the excess is not statistically significant (RR=1.67; 

paired t-test two-sided P=0.16) likely due to the small number of autosomal coding 

mutations (n=32, Supplementary Table 6). We observe significant enrichment for de novo 
TR mutations falling within annotated fetal brain promoters (Fig. 3a; RR=1.20; paired t-test 

two-sided P=0.0013; significant after Bonferroni correction for 7 tests), which was observed 

previously for non-coding point mutations10. We observe no significant mutation excess for 

TRs within 50kb of ASD genome-wide association study (GWAS) signals, but observe 

nominally significant increased mutation burden in ASD probands for TRs near GWAS 

signals for schizophrenia and educational attainment (Extended Data Fig. 5; Supplementary 

Note). We found that genes with coding or promoter mutations only observed in ASD 

probands show significantly higher prenatal brain expression compared to genes with 

mutations found in non-ASD siblings (Mann-Whitney one-sided P=6.3×10−15 at 13 post-

conceptional weeks [pcw]; Methods; Fig. 3c; Extended Data Fig. 6a). Further, proband 

mutations are predicted to more significantly alter expression of nearby genes in the brain 

compared to control mutations (Supplementary Note; Extended Data Fig. 6b).

The observed genome-wide excess of TR mutations in probands is modest (RR=1.03), 

suggesting that only a subset of mutations are pathogenic. Indeed, the majority (84%) of TR 

mutations result in alleles that are already common (allele frequency [AF] ≥1%) in 

unaffected SSC parents, and thus, are likely benign. When we stratify our mutation burden 

analysis by the frequency of the mutant allele (Fig. 3d), we find that the mutation excess in 

probands increases for mutations resulting in rarer alleles, with the strongest effect at alleles 

unobserved (AF=0) in SSC parents (RR=1.10; paired t-test two-sided P=0.021; Extended 

Data Fig. 7; Supplementary Note). This pattern remains after excluding error-prone 

homopolymer TRs (Extended Data Fig. 8).

Prioritizing pathogenic TR mutations

We sought to further prioritize TR mutations based on their predicted deleterious effects. 

Metrics commonly used to annotate SNV mutations23-25 are not applicable to TRs, which 

tend to be multi-allelic and result in either non-coding mutations or in-frame indels. To 

overcome this challenge, we developed a novel population genetics framework, Selection 

Inference at Short TRs (SISTR) to measure negative selection against individual TR alleles. 

SISTR fits an evolutionary model of TR variation that includes mutation, genetic drift, and 

negative natural selection to empirical allele frequency data (per-locus frequencies of each 

allele length) to infer the posterior distribution of selection coefficients (s) at individual TRs 
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(Extended Data Fig. 9). SISTR is agnostic to gene annotations and analyzes both coding and 

non-coding TRs. Parameter s can be interpreted as the decrease in reproductive fitness 

impact for each repeat unit copy number away from the population modal allele at a given 

TR. Testing our method on simulated datasets capturing a range of mutation and selection 

models, SISTR accurately recovers simulated values down to s=10−4, corresponding to 

strong or moderate selection, for most settings (Fig. 4a; Extended Data Fig. 10a-b). A full 

description of SISTR method is given in the Supplementary Methods.

We applied SISTR to estimate selection coefficients at genome-wide TRs based on allele 

frequencies observed in unaffected SSC parents (Supplementary Data 1). Notably, SISTR 

currently only handles TRs with repeat unit lengths 2-4bp. Of those, SISTR could not fit 

models at 4.4% of TRs, potentially indicating inaccurate model assumptions for those loci 

(Supplementary Discussion). After filtering TRs where s could not be reliably inferred 

(Methods), 62,941 TRs remained for analysis. We found that the overall distribution of 

selection coefficients is robust to input choices including demographic model and prior 

distribution on s (Extended Data Fig. 10c). As expected, TRs with significant predicted 

selection coefficients have significantly stronger MUTEA13 constraint scores (Mann-

Whitney one-sided p<10−200; Fig. 4b). Further, protein-coding TRs under strongest negative 

selection tend to be in genes less tolerant of missense mutations26 (Mann-Whitney one-sided 

P=0.00028; Extended Data Fig. 10d), or loss of function SNV mutations24 (Mann-Whitney 

one-sided P=0.00067; Extended Data Fig. 10e), compared to coding STRs not inferred to be 

under negative selection (s=0).

We next tested for an enrichment of evolutionarily deleterious TRs in probands compared to 

non-ASD siblings. When restricting to TR loci predicted to be under selection (s>0 with 

false discovery rate [FDR]<1%), we find an increased mutational burden in probands (Fig. 

4c), which is most notable for mutations resulting in rare mutant alleles. Stratifying 

mutations based on allele-specific selection coefficients results in a further increased 

mutational burden (Fig. 4d). De novo TR mutations with rare or unobserved allele 

frequencies and estimated to be the most deleterious (top 1% of s scores) show the strongest 

relative risk (RR=1.34 [95% CI 1.05-1.73; one-sided P=0.010] for rare [AF<0.01] alleles 

and RR=2.50 [95% CI 1.30-6.35; one-sided P=0.0056] for unobserved low fitness alleles, 

compared to RR=1.03 [95% CI 1.02-1.04; one-sided P=4.7×10−7] genome-wide). We 

identified 35 mutations, of which 25 are in probands, resulting in previously unobserved 

alleles predicted to be strongly deleterious (top 1% of s scores). Of these, multiple proband 

mutations are in genes with point mutations previously implicated in ASD (e.g. PDCD1, 

KCNB1, AGO1, CACNA2D3, FOXP1, RFX3, MED13L) or related phenotypes, whereas 

only two rare mutations are found in siblings to be related to ASD genes (Supplementary 

Table 7). Overall, these results suggest that the subset of TR mutations resulting in rare 

alleles under strongest selection are most pathogenic for ASD risk.

Discussion

We present a novel framework for the identification and prioritization of de novo TR 

mutations. We find on average 54 autosomal TR mutations per individual. The true number 

of mutations is likely underestimated due to the stringent filtering applied to candidate 
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mutations. Overall, our results identify novel patterns of TR mutation (Supplementary 

Discussion) and suggest that the burden of de novo TR mutations is similar in magnitude to 

the total number of de novo point mutations per child10,27.

We find a significant genome-wide excess of de novo TR mutations in probands compared 

to non-ASD siblings. Based on this excess, we estimate that these mutations contribute to 

approximately 1.6% of simplex idiopathic ASD probands. A recent study analyzing an 

orthogonal set of variants estimated that larger complex TR expansions contribute to 2.6% of 

simplex cases. Taken together, these results suggest TRs may account for around 4% of 

simplex ASD cases, comparable in magnitude to non-coding point mutations28.

Importantly, only a subset of de novo TR mutations is likely to contribute to ASD risk or 

have deleterious effects. We find that mutations resulting in mutant alleles that are very rare 

(AF<0.001) or estimated to be under strong negative selection show the greatest signal of 

excess mutations in probands. The relative risk observed for these most severe mutations 

(RR=2.50), which are all non-coding, is similar in magnitude to previously reported relative 

risks for protein-truncating variants6. On the other hand, we estimate the overall contribution 

to simplex ASD to be highest for mutations resulting in common alleles (of the 1.6% 

estimated above, 1.1% is attributed to mutations with AF>0.05). The impact of these 

mutations is not obvious and is the subject of future study.

Our study faced several limitations: (i) Identification of TR mutations remains challenging 

and requires stringent filtering to achieve high validation rates. (ii) Our results exclude 

important TR mutation classes, such as sequence interruptions29, somatic variation30, and 

complex repeat expansions which have been recently studied elsewhere8. (iii) We do not 

currently have power to implicate specific TRs at genome-wide significance (Extended Data 

Fig. 4). Future methods improvements and increasing sample sizes are likely to pinpoint 

specific TR mutations most relevant to ASD (Supplementary Discussion). The framework 

developed in our study will serve as a valuable resource for further characterizing TR 

mutations and their role in ASD and other diseases.

Methods

Dataset and preprocessing

The Simons Simplex Collection (SSC) dataset used in this study consists of 1,637 quad 

families (Supplementary Table 1). Informed consents were obtained for each participant by 

the respective studies in accordance with their local IRBs. Our study used only de-identified 

data, and thus was exempt from institutional review board (IRB) review by the University of 

California San Diego IRB (Project # 170840). Access to SSC data was approved for this 

project under SFARI Base project ID 2405.2. CRAM files containing WGS reads aligned to 

the hg38 reference genome and phenotype information for phases 1-3 were obtained from 

SFARI base (https://base.sfari.org/).

Genome-wide TR genotyping

CRAM files were processed on Amazon Web Services (AWS) using the AWS Batch service. 

Genotyping of autosomal TRs was performed with GangSTR11 v2.4.2 using the reference 
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TR file hg38_ver16.bed.gz available on the GangSTR website (https://github.com/

gymreklab/GangSTR) and with the option --include-ggl to enable outputting detailed 

genotype likelihood information. Chromosome X TRs were genotyped using GangSTR 

v2.4.4 with additional options --bam-samps and --samp-sex to interpret sample sex for 

chromosome X. A separate GangSTR job was run for each family on each chromosome 

resulting in separate VCF files for each.

Genotypes were then subject to call-level filtering using dumpSTR, which is included in the 

TRTools31 toolkit v1.0.0. DumpSTR was applied separately to each VCF with parameters --

min-call-DP 20 --max-call-DP 1000 --filter-spanbound-only --filter-badCI --require-support 

2 --readlen 150. Male chromosome X genotypes were filtered separately using the same 

parameters except with --min-call-DP 10. These options remove genotypes with too low or 

too high coverage, with only spanning or flanking reads identified indicating poor 

alignment, and with maximum likelihood genotypes falling outside 95% confidence 

intervals reported by GangSTR. After call-level filtering, each sample was examined for 

call-level missingness. All samples had >90% call rate and no outliers were identified.

Filtered VCFs from each phase were then merged using mergeSTR (TRTools v1.0.0) with 

default parameters. The merged VCF was then used as input to dumpSTR to compute locus-

level filters using the parameters --min-locus-hwep 10−5 --min-locus-callrate 0.8 --filter-

regions GRCh38GenomicSuperDup.sorted.gz --filter-regions-names SEGDUP to remove 

genotypes overlapping segmental duplications. The file 

GRCh38GenomicSuperDup.sorted.gz was obtained using the UCSC Table Browser32 

(hg38.genomicSuperDups table). For chromosome X, the Hardy-Weinberg Equilibrium filter 

was applied only to females. Filters obtained from analyzing each phase were combined and 

any TRs failing locus-level filters in any phase were removed from further analysis.

Identifying de novo TR mutations

We developed a method, MonSTR (https://github.com/gymreklab/STRDenovoTools/), to 

identify de novo TR mutations from genome-wide TR genotypes obtained from GangSTR or 

HipSTR33. Our method extends code originally included in the HipSTR software (https://

github.com/tfwillems/HipSTR). MonSTR is a model-based method that evaluates the joint 

likelihood of all genotypes of each parent-offspring trio and outputs a posterior estimate of a 

mutation occurring at each TR in each child. A full description of the MonSTR method is 

given in the Supplementary Methods.

MonSTR v1.0.0 was called separately on each family after applying call-level and locus-

level genotype filters described above. MonSTR was called with non-default parameters --

max-num-alleles 100 --include-invariant --gangstr --require-all-children --output-all-loci --

min-num-encl-child 3 --max-perc-encl-parent 0.05 --min-encl-match 0.9 --min-total-encl 10 

--posterior-threshold 0.5. Autosomes were run with the --default-prior −3 and chromosome 

X was run with the --naive option. These options remove TRs with too many alleles which 

are more likely to be error-prone, process all TRs even if no variation was observed, indicate 

to use GangSTR-output likelihoods (rather than HipSTR), only output loci if both children 

in the quad were analyzed, output all loci even if no mutation was observed, apply a constant 

prior of per-locus mutation rate of 10−3, require de novo mutation alleles to be supported by 
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at least 3 enclosing reads, require de novo mutation alleles to be supported by fewer than 5% 

of parent enclosing reads, require 90% of enclosing reads in each sample to match the 

genotype call, require a minimum of 10 enclosing reads per sample in the family, and label 

calls with posterior probability ≥0.5 as mutations.

Resulting mutation lists output by MonSTR were subject to further quality control. We 

filtered families with likely sample contamination evidenced by extreme mutation counts (7 

families, number of mutations > 1000), outlier mutation rates (16 families with number of 

mutations <20 and >241), mutations for which both children in the family were identified as 

having mutations at the same TR (n=43,239), and TRs with more than 25 mutations 

identified (n=15) as these are likely error-prone loci. We further filtered: calls for which the 

child was homozygous for the new allele (n=214,639), loci with a strong bias toward only 

observing contractions or expansions (n=179, two-sided binomial p<0.0001). We initially 

observed that mutations for which the parent of origin was homozygous often appeared to be 

erroneous due to drop out of one allele at heterozygous parents. This was most apparent for 

large mutations (± ≥ 5 repeat units) involving longer alleles difficult to span with short reads. 

We thus further required the new alleles to be supported by at least 6 enclosing reads in the 

child when the parent was called as homozygous.

Our stringent filtering of input genotypes and resulting mutations is unlikely to capture large 

repeat expansions, which are often not supported by enclosing reads because the resulting 

alleles are longer than Illumina read lengths. Thus, genotype likelihoods are more spread out 

and posterior estimates at these loci are lower and they will fail many of the QC options 

specified above. To additionally identify candidate expansions, we called MonSTR again on 

each family using the non-default parameter --naive-expansions-frr 3,8 which looks for TRs 

for which either: (1) the child has at least three fully repetitive reads and both parents have 

none or (2) the child has at least 8 flanking reads supporting an allele longer than any allele 

supported in either parent. We filtered candidate expansions identified in more than 3 

samples, as we expect expansions to be rare. A total of 78 candidate expansions were 

identified across all families (Supplementary Table 8). These were merged with the total list 

of mutations for downstream analysis.

Evaluating MonSTR on simulated WGS data

We created 78 quad families with 100 TR loci randomly selected from TRs passing all filters 

described above in the SSC cohort. One simulated quad family consists of the father, mother, 

child with known mutation (proband), and child with no mutation (control). We tested the 

ability of our entire pipeline to genotype TRs with GangSTR and call de novo mutations 

with MonSTR. To test the effect of depth of coverage, we generated datasets with 1-50x 

mean coverage with a mutation size of +1 or −1 repeat unit changes in the proband. To test 

the effect of TR mutation size, we generated WGS data with 40x coverage and mutations in 

probands ranging from −10 to 30 repeat unit changes. Contraction mutations that would 

have resulted in negative repeat copy numbers were excluded. For both tests, we simulated 

data under three scenarios: (1) both parents with homozygous reference TR genotypes, (2) 

one parent heterozygous, (3) both parents heterozygous (Extended Data Fig. 1).
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WGS data were simulated using ART_illumina34 v2.5.8 with non-default parameters -ss 

HS25 (HiSeq 2500 simulation profile), -l 150 (150b reads), -p (paired-end reads), -f 

coverage (coverage was set as described above), -m 500 (mean fragment size) and -s 100 

(standard deviation of fragment size). ART_illumina was applied to fasta files generated 

from 10Kb windows surrounding each TR locus, applying any mutations as described 

above. The resulting fastq files were aligned to the hg38 reference genome using bwa mem35 

v0.7.12-r1039 with non-default parameter -R “@RG\tID:sample_id\tSM:sample_id”, which 

sets the read group tag ID and sample name to sample_id for each simulated sample. TRs 

were genotyped from aligned reads jointly across all members of the same family with 

GangSTR using identical settings to those applied to SSC data.

We tested three mutation calling settings: a naïve mutation calling method based on hard 

genotype calls, MonSTR using default parameters, and MonSTR using an identical set of 

filters as applied to SSC data. We found overall all methods perform similarly well above 

30x coverage. At lower coverage, MonSTR’s model-based method achieves reduced 

sensitivity but greater specificity compared to a naïve mutation calling pipeline (Extended 

Data Fig. 1).

Comparison to previously reported mutation rates

Mutation rates for CODIS markers were obtained from the National Institute of Standards 

and Technology (NIST) website (https://strbase.nist.gov/mutation.htm). 95% confidence 

intervals on the estimated number of mutations that should be observed in SSC were 

obtained by drawing mutation counts from a binomial distribution with n=the total number 

of children genotyped at each locus and p=the NIST estimated mutation rate. Intervals were 

obtained based on 1,000 simulations.

Genome-wide autosomal TR mutation rates and constraint scores estimated using 

MUTEA13 were obtained from https://s3-us-west-2.amazonaws.com/strconstraint/

Gymrek_etal_SupplementalData1_v2.bed.gz (columns est_logmu_ml and zscore_2). TRs 

were converted from hg19 to hg38 coordinates using the liftOver tool available from the 

UCSC Genome Browser Store free for academic use (https://genome-store.ucsc.edu/). We 

intersected the lifted over coordinates with the GangSTR reference using the intersectBed 

tool included in BEDTools v2.28.036. Only TRs overlapping GangSTR TRs by at least 50% 

(-f 0.5) and with the same repeat unit length in each set were used for analysis.

Evaluation of mutations with capillary electrophoresis (CE) fragment analysis

Whole blood-derived genomic DNA for 5 SSC quad families was obtained through SFARI 

Base to validate a subset of TR mutation calls. For each candidate TR, we designed primers 

to amplify the TR and surrounding region (Supplementary Table 3). A universal M13(−21) 

sequence (5’-TGTAAAACGACGGCCAGT-3’) was appended to each forward primer. We 

then amplified each TR using a three-primer reaction previously described37 consisting of 

the forward primer with the M13(−21) sequence, the reverse primer, and a third primer 

consisting of the M13(−21) sequence labeled with a fluorophore.

The forward (with M13(−21) sequence) and reverse primers for each TR were purchased 

through IDT. The labeled M13 primers were obtained through ThermoFisher (#450007) with 
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fluorescent labels added to the 5’ ends (either FAM, VIC, NED, or PET). TRs were 

amplified using the forward and reverse primers plus an M13 primer with one of the four 

fluorophores with GoTaq polymerase (Promega #PRM7123) using PCR program: 94°C for 

5 minutes, followed by 30 cycles of 94°C for 30 seconds, 58°C for 45 seconds, 72°C for 45 

seconds, followed by 8 cycles of 94°C for 30 seconds, 53°C for 45 seconds, 72°C for 45 

seconds, followed by 72°C for 30 minutes.

The CGG repeat at chr7:103989357 in the 5’UTR of RELN could not be amplified using the 

three-primer method and was genotyped using published primers38 (forward: 5′-FAM-

CGCCTTCTTCTCGCCTTCTC-3′ and reverse: 5′-CGAAAAGCGGGGGTAATAGC-3′). 
The TR was amplified with HotStarTaq Polymerase (Qiagen #203203) using PCR program: 

95°C for 15 minutes, followed by 35 cycles of 94°C for 45 seconds, 58°C for 60 seconds, 

72°C for 60 seconds, followed by 72°C for 30 minutes.

Fragment analysis of PCR products was performed on a ThermoFisher SeqStudio instrument 

using the GSLIZ1200 ladder, G5 (DS-33) dye set, and long fragment analysis options. 

Resulting .fsa files were analyzed by manual review in GeneMapper (ThermoFisher # 

4475073).

Analysis of mutation directionality bias

The observed bias of longer alleles to contract and shorter alleles to expand (Fig. 2c) could 

potentially be explained by genotyping errors at heterozygous loci due to “heterozygote 

dropout” of long alleles, leading to erroneous homozygous genotype calls. To reduce the 

potential impact of heterozygote dropout on apparent mutation directionality, we restricted 

this analysis to mutations with an absolute size of ≤5 units. When analyzing mutations from 

heterozygous vs. homozygous parents (Extended Data Fig. 3d-e), we further restricted to 

mutations consisting of a single unit and for which the child had at least 10 enclosing reads 

supporting the de novo allele, indicating the allele could be easily spanned and would be less 

prone to dropout.

Mutation burden statistical testing

Mutation excess in probands vs. non-ASD siblings was tested using a paired t-test as 

implemented in the Python scipy library v1.3.1 (https://docs.scipy.org/doc/scipy/reference/

index.html) function scipy.stats.ttest_rel. We compared a vector of counts of mutations in 

probands to a vector of counts in mutations in non-ASD siblings, ordered by family ID.

Comparison of TR mutation burden in probands vs non-ASD siblings was also computed 

after adjusting for the father’s age at birth. We used the Python statsmodels ordinary least 

squares regression module to regress unaffected mutation counts on paternal age. We then 

used this model to compute residual mutation counts in each sample after regressing on 

paternal age.

Relative risk was computed as the ratio of the mean number of mutations in probands vs. 

non-ASD siblings. Relative risk of greater than 1 indicates a higher burden in the probands. 

We estimated a 95% confidence interval on the fraction of mutations p =
np

np + ns
 in each 
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category that are in probands vs. siblings based on a binomial distribution 

(SE(p) = p(1 − p)
np + ns

) where np and ns are the number of mutations observed in probands and 

siblings, respectively. We then used the upper and lower bounds on the fraction of mutations 

in probands plow = p – 1.96SE (p); phigh = p + 1.96SE(p) to compute the corresponding 95% 

confidence intervals for relative risk as (
tsplow

tp(1 − plow) ,
tspℎigℎ

tp(1 − pℎigℎ) ), where ts and tp are the total 

number of sibling and proband samples considered, respectively.

Gene annotations were obtained from the UCSC Table Browser32 using the hg38 reference 

genome. Fetal brain promoter and enhancer annotations were obtained from fetal brain male 

ChromHMM39 annotations available on the ENCODE Project website (https://

www.encodeproject.org/; accession ENCSR770CMJ).

For analyses stratified by frequency of the mutant allele, we only considered TRs for which 

precise copy numbers could be inferred in at least 80% of SSC parents. For a genotype to be 

considered precise, we required (1) the call to have at least 10 total reads enclosing the entire 

repeat, (2) each allele in the call to be supported by at least 3 enclosing reads, and (3) at least 

90% of enclosing reads matching the reported genotype. Enclosing read counts are based on 

the “ENCLREADS” VCF field reported by GangSTR.

The contribution of de novo TR mutations to ASD risk was calculated by taking the 

difference in total autosomal mutations identified in probands vs. siblings divided by the 

number of probands, as was done in a previous study of non-coding mutations in ASD28.

Enrichment of common variant risk

GWAS SNP associations were downloaded from GWAS catalog40 (ASD [EFO_0003756] 

n=637 SNPs; SCZ [EFO_0000692] n=3,476; EA [EFO_0004784] n=3,966). We tested 

whether TR mutations falling within 50kb of autosomal GWAS SNPs for each trait showed 

increased burden in probands vs. siblings by performing a Mann-Whitney test (Python 

function scipy.stats.mannwhitneyu) comparing mutation counts in probands vs. non-ASD 

siblings. We performed an additional test excluding mutations resulting in alleles with 

AF<0.05.

Gene expression analysis

The Developmental Transcriptome dataset containing RNA-seq normalized gene expression 

values and meta-data for developmental brain tissue regions was downloaded from the 

BrainSpan Atlas of the Developing Human Brain41 (https://www.brainspan.org/static/

download.html). Expression values were log-transformed before analysis, adding a pseudo 

count of 0.01 to avoid 0 values. We excluded brain structures “CB”, “LGE”, “CGE”, 

“URL”, “DTH”, “M1C-S1c”, “Ocx”, “MGE”, “PCx”, and “TCx” since those structures only 

had data for male samples at 3 or fewer time points. We used a one-sided Mann-Whitney test 

(scipy.stats.mannwhitneyu) to compare the distribution of expression in genes with only 

proband mutations vs. genes with only unaffected sibling mutations separately for each 

tissue. Meta-analysis across all brain regions was performed using Fisher’s method to 

combine P-values. The following abbreviations are used for brain structures: A1C=primary 
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auditory cortex; AMY= amygdaloid complex; CBC=cerebellar cortex; DFC=dorsolateral 

prefrontal cortex; HIP=hippocampus; IPC=posteroventral (inferior) parietal cortex; 

ITC=inferolateral temporal cortex; M1C=primary motor cortex; MD=mediodorsal nucleus 

of thalamus; MFC=anterior cingulate cortex; OFC=orbital frontal cortex; S1C=primary 

somatosensory cortex; STC=posterior superior temporal cortex; STR=striatum; 

V1C=primary visual cortex; VFC=ventrolateral prefrontal cortex. Expression STR summary 

statistics were obtained from Supplementary Data 2 of Fotsing, et al.42.

Inferring selection coefficients using SISTR

We developed SISTR (Selection Inference at Short TRs), a population genetics framework 

for inferring selection coefficients at individual TR loci. SISTR fits an evolutionary model of 

TR variation that includes mutation, genetic drift, and negative natural selection to available 

empirical allele frequencies to infer the posterior distribution of selection coefficients. Our 

mutation model is based on a modified version of the generalized stepwise mutation model 

(GSM)43. To model negative selection, we assume the central allele at each TR has optimal 

fitness (w=1), and that the fitness of other alleles is based on their difference in size from the 

optimal allele.

SISTR applies approximate Bayesian computation (ABC) based on a previously described 

forward simulation technique44 to infer per-locus selection coefficients by fitting allele 

frequencies for one TR at a time given a predefined optimal allele length and fixed set of 

mutation parameters. Our method outputs the median posterior estimate of s and computes a 

likelihood ratio test comparing the likelihood of the inferred s value to the likelihood of s=0. 

Full descriptions of the mutation and selection models and the SISTR inference method are 

given in the Supplementary Methods.

For each TR with a repeat unit length of 2-4bp, we used SISTR to estimate selection 

coefficients based on allele frequencies in SSC parents. We set the optimal allele length at 

each TR to the modal allele and used mutation parameters described in the Supplementary 

Methods as input. We excluded TRs with repeat lengths in hg38 <11 units for dinucleotides, 

<5 units for trinucleotides, and <7 repeats for tetranucleotides, since those repeats are 

typically not polymorphic. We included only TRs for which precise copy numbers could be 

inferred in at least 80% of SSC parents. We further filtered TRs at which the 95% 

confidence interval on our estimate for s was greater than 0.3, indicating we could not 

estimate s precisely. After filtering, 62,941 STRs remained for analysis.

We used the Benjamini-Hochberg procedure45 to adjust P-values for multiple hypothesis 

testing. To identify TRs under significant selection, we chose TRs with adjusted P-value 

<0.01, corresponding to a false discovery rate of 1%. Allele-specific selection coefficients, 

which can be interpreted as pathogenicity scores, were computed as (∣a – opt∣)s, where a is 

the number of repeat copies for the de novo allele, opt is the optimum (modal) repeat and s 
is the selection coefficient for the TR inferred using SISTR.

Gene-level constraint metrics (pLI and missense Z score) were obtained from https://

storage.googleapis.com/gnomad-public/release/2.1.1/constraint/

gnomad.v2.1.1.lof_metrics.by_gene.txt.bgz.
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Extended Data

Extended Data Figure 1: Evaluation of MonSTR using simulated data.
a. Evaluation of a naïve TR mutation calling method. WGS was simulated for probands 

with mutations and controls with no mutation under three different scenarios for a range of 

mean sequencing coverages (Methods). Top plots show the sensitivity (blue line). Bottom 

plots show the false positive rate (FPR). Shaded bars show the percent of transmissions 

called as mutation (blue), no mutation (dark gray), or no call (light ray). b. Evaluation of 
MonSTR’s default model-based method. Plots are the same as in a. but based on 

MonSTR’s default model (Supplementary Methods). Note FPR lines are not visible because 

all are at 0%. c. Evaluation of TR mutation calling using default model-based MonSTR 
settings as a function of mutation size. The top plot is the same as in a-b, and shows the 

sensitivity to detect mutations as a function of their size. The bottom plot compares the 

estimated called mutation size (y-axis) compared to the true simulated mutation size (x-

axis). Bubble sizes show the number of mutation calls represented at each point. d. 
Evaluation of TR mutation calling as a function of mutation size after quality filtering. 
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Plots are same as in c, but using the stringent quality filters in MonSTR applied to analyze 

the SSC cohort. Compared to default settings, sensitivity is decreased especially for larger 

expansions but inferred mutation sizes are unbiased. All plots are based on simulation of 100 

randomly chosen TR loci (Methods). c-d show results for scenario #1.

Extended Data Figure 2: Genome-wide de novo TR mutation rate patterns.
a. Distribution of average TR mutation rates by period. For each repeat unit length (x-

axis), bars give the genome-wide estimated TR mutation rate (y-axis, log10 scale). Average 

mutation rates were computed as the total number of mutations divided by the total number 

of children analyzed. The numbers of TRs considered (rounded to the nearest 1,000) in each 

category are annotated. b. TR mutation rate vs. length. The x-axis shows the TR reference 

length (hg38) and the y-axis shows the log10 mutation rate estimated across all TRs with 

each reference length. Colors denote different repeat unit lengths. c. Number of TR 
mutations observed for CODIS markers. Red dots show observed mutation counts. Black 

dots show expected mutation counts and lines give 95% confidence intervals based on 

mutation rates reported by NIST (Methods). Each x-axis category denotes a separate CODIS 

marker. The total number of children analyzed is annotated above each marker d. Observed 
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TR mutation counts concordant with MUTEA. Boxes show the distribution of log10 

mutation rates estimated by MUTEA13 (y-axis) at each TR with a given number of 

mutations observed in SSC children (x-axis). Black middle lines give medians and boxes 

span from the 25th percentile (Q1) to the 75th percentile (Q3). Whiskers extend to 

Q1-1.5*IQR (minima) and Q3+1.5*IQR (maxima), where IQR gives the interquartile range 

(Q3-Q1). Data is shown for n=548,724 TRs for which MUTEA estimates were available. e. 
Determinants of TR mutation rates. The Poisson regression coefficient is shown for each 

feature in models trained separately for each repeat unit length (Methods). Features marked 

with an asterisk denote significant effects (two-sided p<0.01 after Bonferroni correction for 

the number of features tested across all models). Nominal P-values are annotated above each 

plot. Error bars give 95% confidence intervals.

Extended Data Figure 3: Biases in TR mutation sizes.
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a. Mutation size distributions by repeat unit length. Histograms show the distribution (y-

axis, fraction of total) of de novo TR mutation sizes for each repeat unit length (x-axis, 

number of repeat units). Mutations <0 denote contractions and >0 denote expansions. Colors 

denote different repeat unit lengths (gray=homopolymers; red=dinucleotides; 

gold=trinucleotides; blue=tetranucleotides; green=pentanucleotides; 

purple=hexanucleotides). b-c. Mutation size distributions by parental origin. Histograms 

show the distribution of de novo TR mutation sizes for mutations arising in the paternal (b) 

and maternal (c) germlines (homopolymers excluded). d-e. Mutation directionality bias in 
homozygous vs. heterozygous parents. In each plot, the x-axis gives the size of the parent 

allele relative to the reference genome (hg38). The y-axis gives the mean mutation size in 

terms of number of repeat units across all mutations with a given parent allele length. A 

separate colored line is shown for each repeat unit length (red=dinucleotides; 

gold=trinucleotides; blue=tetranucleotides; green=pentanucleotides). Plots are restricted to 

mutations that were successfully phased to either the mother or the father for which the 

parent of origin was homozygous (b) or heterozygous (c). To restrict to highest confidence 

mutations, these plots are based only on mutations with step size of ±1 and for which the 

child had more than 10 enclosing reads supporting the de novo allele.

Extended Data Figure 4: Power to detect per-locus TR mutation enrichments.
a. Number of recurrent mutations required to reach genome-wide significance. We 

performed a Fisher’s exact test to test for an excess of mutations in probands (n=1,593) vs. 

non-ASD siblings (n=1,593), for a different number of hypothetical mutation counts in 

probands (x-axis) and assuming 0 mutations observed in non-ASD siblings. The black line 

shows the two-sided P-value (log10 scale) obtained for each test. The gray dashed line 

denotes the P-value required to meet a genome-wide significance of p<0.05 with Bonferroni 

multiple testing correction. b. Sample sizes required to identify genome-wide significant 
TRs. The x-axis shows sample size (log10 scale) in terms of the number of quad families 

analyzed. Each line represents a different rate of mutation at a particular TR in probands, 

assuming 0 mutations at that TR in siblings (blue=0.001%; orange=0.01%; green=0.05%; 

red=0.1%; purple=0.3%). The y-axis shows the power to detect a specific TR at genome-

wide significance for each rate. c. Quantile-Quantile plots for per-locus TR mutation 
burden testing. For each TR we performed a Fisher’s exact test to test for an excess of 

mutations in probands vs. siblings. The x-axis gives expected -log10 P-values under a null 

(uniform) distribution. The y-axis gives observed -log10 P-values from burden tests. Each 

dot represents a single TR. Black=all TRs. Gray=homopolymers excluded.
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Extended Data Figure 5: TR mutation burden near SNPs associated with ASD and related traits.
Bars show mean TR mutation counts in probands (red) vs. non-ASD siblings (blue) for TRs 

within 50kb of published GWAS associated SNPs (ASD=autism spectrum disorder; 

SCZ=schizophrenia; EA=educational attainment) considering (a) all TR mutations (ASD 

n=4,213; SCZ n=22,811; SCZ n=25,668 TR mutations) or (b) mutant allele frequency is 

>5% in controls (SSC parents) (ASD n=2,774; SCZ n=14,661; SCZ n=16,364 TR 

mutations). Error bars give 95% confidence intervals around the mean. Single asterisks 

denote nominally significant increases (Mann-Whitney one-sided p<0.05). Double asterisks 

denote trends that are significant after Bonferroni correction for the six categories tested. 

Circles and squares show counts for females and males, respectively.

Extended Data Figure 6: Proband de novo TR mutations enriched in brain-expressed genes.
a. Ratio of median expression in proband-only genes to control-only genes across time 
points. The heatmap shows the ratio of the median expression of genes with only proband 

mutations (n=268 genes) to that of genes with only mutations in non-ASD siblings (n=242 

genes). Each row shows a different brain structure from the BrainSpan dataset. Each column 

shows a different developmental timepoint. The black vertical line separates pre-natal from 

post-natal time points. Gray boxes indicate no data was available for that time point. Brain 

structure acronyms are defined in Methods. b. Proband TR mutations enriched for brain 
expression STRs. The quantile-quantile plot shows the distribution of expression STR 

(eSTR) unadjusted P-values based on associating TR length with gene expression in Brain-

Caudate samples in the GTEx cohort46. eSTR association P-values are two-sided and are 

based on t-statistics computed using linear regression analyses performed previously. Each 

point represents a TR by gene association test using a linear regression model42. The x-axis 

gives expected -log10 P-values and the y-axis gives observed -log10 P-values. Red points 

show TRs with at least one de novo mutation in probands and 0 in controls. Blue points 
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show TRs with at least one de novo mutation in controls and 0 in probands. We found no 

significant difference in either Brain-Cerebellum or the other 15 non-brain tissues analyzed 

in that study, which we expected should not be relevant to ASD (not shown).

Extended Data Figure 7: All coding and 5’UTR mutations to novel alleles.
a. Mutations in probands at coding or 5’UTR TRs to unobserved alleles. Each panel 

shows a de novo TR mutation observed in ASD probands to an allele (x-axis, repeat copy 

number) not observed in SSC parents. Black histograms give the allele counts in parents. 

Red arrows denote the allele resulting from each specified de novo TR mutation. Pedigrees 

show genotypes of parents and the child with the mutation (probands=black diamonds; non-

ASD siblings=white diamonds). The text below pedigrees gives the gene and region in 

which the mutation occurred. b. Mutations in non-ASD siblings at coding or 5’UTR TRs 
to unobserved alleles. Plots are the same as in a. except show mutations in non-ASD 

siblings.
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Extended Data Figure 8: TR mutation burden in ASD excluding homopolymers.
a. Mutation burden by gene annotation. b. Mutation burden by frequency of the allele 
arising by de novo mutation. The x-axis stratifies mutations based on non-overlapping bins 

of the frequency of the de novo allele in healthy controls (SSC parents). “All” includes all 

mutations. For other allele frequency bins, only TRs for which precise copy numbers could 

be inferred in at least 80% of SSC parents are included (Methods). AF=allele frequency. In 

both plots, the y-axis gives RR in probands vs. non-ASD siblings. Dots show estimated 

relative risk and lines give 95% confidence intervals. Gray=all samples; green=males only; 

purple=females only. Both plots show only TRs with repeat unit length >1bp.
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Extended Data Figure 9: A method to estimate selection coefficients for short TRs (STRs).
a. STR mutation model. Mutation is modeled by a stochastic mutation matrix with length-

dependent mutation rates and mutation sizes following a geometric distribution with a 

directional bias toward the central allele. Unless otherwise indicated, alleles are specified in 

terms of the number of repeat units away from the central, or modal, allele at each STR. b. 
STR selection model. Negative selection is modeled by a diploid selection surface 

constructed as a function of the fitness of the individual alleles. The fitness of each allele is 

calculated as a function of a selection coefficient s, where the central allele has optimal 

fitness (w=1), and the fitness of other alleles is a function of the number of repeat units away 

from the optimal allele. c. Example output of forward simulations of allele frequencies. 
The simulation starts with one ancestral (“optimal”) allele. As s increases, variability in the 

resulting allele frequency distributions decreases as the less fit alleles are removed by natural 

selection. d. Overview of per-STR selection inference using Approximate Bayesian 
Computation. For each STR, the method takes a prior on s, mutation model, and 

demographic parameters, and the observed allele frequency distribution as input. It outputs a 

posterior distribution of s and a P-value from a likelihood ratio test of whether a model with 

selection fits better than a model without selection (s=0).
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Extended Data Figure 10: Evaluation of SISTR.
a. Comparison of true vs. inferred per-locus selection coefficients. The x-axis shows the 

true simulated value of s, and the y-axis shows the mean s value inferred by SISTR across 

200 simulation replicates. b. Power to detect negative selection as a function of s. The x-

axis shows the true simulated value of s, and the y-axis gives the power to reject the null 

hypothesis that s=0. Left, middle, and right panels show results using models for 

dinucleotide, trinucleotide, and tetranucleotide TRs, respectively. c. Inferred genome-wide 
distribution of s is robust to prior choice and demographic models. We applied SISTR 

genome-wide using 2 different demographic models (Supplementary Methods) and 3 

different prior distributions (left panels) on s. Right panels show the inferred genome-wide 

distribution of s using different combinations of priors and demographic models. Only loci 

inferred to be under selection (adjusted SISTR p<1%) are included in the histograms. Red, 

yellow, and blue denote dinucleotides (n=29,874), trinucleotides (n=39,250), and 

tetranucleotides (n=13,099), respectively. d. Genes containing coding STRs under strong 
selection are more missense-constrained. The x-axis gives the missense constraint Z-score 

reported by Gnomad47. The y-axis gives the frequency of genes with each missense Z-score. 
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e. Genes containing coding STRs under strong selection are more loss-of-function 
intolerant. The x-axis gives the pLI score measuring loss of function intolerance of each 

gene reported by Gnomad. For d and e, black bars show the distribution for all genes 

containing an STR not inferred to be under selection (n=177; adjusted SISTR p≥1%) and red 

bars show the distribution for all genes containing an STR inferred to be under selection 

(n=21; adjusted SISTR p<1%). Vertical lines show medians of each distribution. For c-e, 

SISTR P-values are one-sided and based on the likelihood ratio test described in the 

Supplementary Methods.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: Identifying de novo TR mutations in the SSC cohort.
a. Study design. We analyzed de novo TR mutations from WGS data for quad families from 

the Simons Simplex Collection. b. Distribution of the number of autosomal de novo TR 
mutations. TR mutation counts are shown for non-ASD siblings (blue) and probands (red). 

c. Correlation of mutation rate with paternal age per child. The scatter plot shows the 

father’s age at birth (x-axis) vs. the number of autosomal de novo TR mutations identified 

(y-axis). Each point represents one child (n=3,186). The dashed black line gives the best fit 

line.
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Figure 2: Patterns of TR mutations.
a. Mutation size distribution. Sizes are in terms of repeat units, where >0 represents 

expansions and <0 represents contractions. b. Mean absolute mutation size by parental 
origin. Dots show the mean absolute mutation size for mutations phased to the paternal 

(black) and the maternal (gray) germlines. The x-axis denotes the length of the repeat unit in 

bp. Error bars give +/− 1 s.d. One-sided P-values were computed using a Mann-Whitney 

test. c. Directionality bias in mutation size. The x-axis gives the size of the parent allele 

relative to hg38. The y-axis gives the mean mutation size.
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Figure 3: TR mutation burden in ASD.
a. Mean mutation counts by gene annotation. Bars denote the mean number of mutations 

in non-ASD siblings (blue) and probands (red). Error bars give 95% confidence intervals. 

Circles and squares show counts for females and males, respectively. b. Mean mutation 
sizes in probands vs. non-ASD siblings. Bars denote mean mutation sizes (in # repeat 

units). The number of mutations in each category is annotated in the figure. Error bars give 

95% confidence intervals. In a-b, single and double asterisks denote significant increases 

(p<0.05) before and after Bonferroni correction, respectively. c. Brain expression of genes 
with de novo TR mutations. Red and blue lines show the distribution of expression for 

genes with only proband (n=268 genes) or sibling mutations (n=242 genes), respectively. 

Dots give medians and lines extend from the 25th to 75th percentiles of expression across all 

genes in each set. Brain structure acronyms are defined in Methods. d. Mutation burden by 
allele frequency (AF). The x-axis stratifies mutations based on non-overlapping bins of the 

frequency of the mutant allele in SSC parents. The y-axis gives relative risk (RR). Error bars 

give 95% confidence intervals. The number of mutations in each category is annotated in the 

figure. “All” includes all mutations. For other bins, only TRs for which precise copy 

numbers could be inferred in at least 80% of SSC parents are included (Methods). a., b., and 

d. are based on mutations in n=1,593 probands and n=1,593 siblings.
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Figure 4: Prioritizing TR mutations by fitness effects.
a. Comparison of true vs. inferred per-locus selection coefficients. The x-axis shows the 

true simulated value of s, and the y-axis shows the mean s value inferred by SISTR across 

200 simulation replicates. Each color denotes a separate mutation model based on the repeat 

unit length (period) and optimal allele. b. Comparison of SISTR and MUTEA. Boxes 

show the distribution of MUTEA constraint scores for TRs inferred to have non-significant 

(top; n=43,672 TRs) or significant (bottom; n=6,251 TRs) selection coefficients (FDR<1%). 

White middle lines give medians and boxes span from the 25th percentile (Q1) to the 75th 

percentile (Q3). Whiskers extend to Q1-1.5*IQR (minima) and Q3+1.5*IQR (maxima), 

where IQR gives the interquartile range (Q3-Q1). c. Mutation burden at TR loci under 
negative selection. The x-axis stratifies mutations based on the same allele frequency 

categories as in Fig. 3d. The y-axis gives relative risk (RR). Blue dots give RR considering 

only TRs inferred to be under the strongest negative selection (FDR<1%). Error bars give 

95% confidence intervals. d. Per-allele selection coefficients stratify mutation burden 
within allele frequency bins. Larger s values denote a mutation resulting in an allele 

predicted to be more deleterious. s10 and s1 correspond to the top 10% and top 1% of 

pathogenicity scores, respectively. The y-axis gives relative risk (RR). Error bars give 95% 

confidence intervals.
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