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Background: Pancreatic adenocarcinoma (PAAD) is one of the most aggressive

and fatal gastrointestinalmalignancieswith highmorbidity andmortalityworldwide.

Accumulating evidence has revealed the clinical significance of the interaction

between the hypoxicmicroenvironment and cancer stemness in pancreatic cancer

progression and therapies. This study aims to identify a hypoxia-stemness index-

related gene signature for risk stratification and prognosis prediction in PAAD.

Methods: The mRNA expression-based stemness index (mRNAsi) data of PAAD

samples from The Cancer Genome Atlas (TCGA) database were calculated based

on the one-class logistic regression (OCLR) machine learning algorithm. Univariate

Cox regression and LASSO regression analyses were then performed to establish a

hypoxia-mRNAsi-related gene signature, and its prognostic performance was

verified in both the TCGA-PAAD and GSE62452 corhorts by Kaplan-Meier and

receiver operating characteristic (ROC) analyses. Additionally, we further validated

the expression levels of signature genes using the TCGA, GTEx and HPA databases

as well as qPCR experiments. Moreover, we constructed a prognostic nomogram

incorporating the eight-gene signature and traditional clinical factors and analyzed

the correlations of the risk score with immune infiltrates and immune checkpoint

genes.

Results: ThemRNAsi values of PAAD samples were significantly higher than those of

normal samples (p < 0.001), and PAAD patients with high mRNAsi values exhibited

worse overall survival (OS). A novel prognostic risk model was successfully

constructed based on the eight-gene signature comprising JMJD6, NDST1,

ENO3, LDHA, TES, ANKZF1, CITED, and SIAH2, which could accurately predict

the 1-, 3-, and 5-year OS of PAAD patients in both the training and external

validation datasets. Additionally, the eight-gene signature could distinguish PAAD

samples from normal samples and stratify PAAD patients into low- and high-risk

groups with distinct OS. The risk score was closely correlated with immune cell

infiltration patterns and immune checkpoint molecules. Moreover, calibration

analysis showed the excellent predictive ability of the nomogram incorporating

the eight-gene signature and traditional clinical factors.
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Conclusion: We developed a hypoxia-stemness-related prognostic signature

that reliably predicts the OS of PAAD. Our findings may aid in the risk

stratification and individual treatment of PAAD patients.
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Introduction

Pancreatic adenocarcinoma (PAAD) is one of the most

aggressive and fatal gastrointestinal malignancies and has

become the fourth leading cause of cancer-related deaths

worldwide, severely threatening people’s lives (Rawla et al.,

2019). Due to its occult and atypical clinical symptoms,

PAAD is difficult to diagnose early. Most patients are

diagnosed at a locally advanced stage or metastatic stage

and are not eligible for surgical resection, which is the only

curative therapy (Skelton et al., 2017). Despite new advances

in comprehensive treatment, targeted molecular therapy and

immunotherapy, PAAD patients still experience a dismal

prognosis with an average 5-year survival rate of less than 5%

due to late detection, drug resistance and postoperative

metastasis and recurrence (Siegel et al., 2019). For

patients with an increased risk of poor outcomes,

individualized systemic treatments may help prolong

survival and improve quality of life. Therefore, there is

still an urgent need to develop an effective predictive

model to accurately evaluate the survival outcomes of

PAAD patients and provide support for clinical decision

making.

Increasing evidence has shown that tumor cell

proliferation and growth are highly dependent on the

existence of a functional subpopulation of cancer stem

cells (CSCs) that play critical roles in tumor metastasis,

recurrence and chemoresistance (Tanase et al., 2014;

Alferez et al., 2018). Prior research suggests that CSCs

promote the development and progression of pancreatic

cancer, and high expression levels of CSC markers such as

CD44 and CD133 are strongly correlated with neoplasm

recurrence and poor prognosis in PAAD (Stoica et al.,

2020). Intratumoral hypoxia is a prominent feature of the

pancreatic tumor microenvironment facilitating tumor

metastasis and invasion and is closely associated with

disease progression and poor survival in patients with

pancreatic cancer (Erkan et al., 2016). Recent work has

established that hypoxia contributes to the induction and

maintenance of CSC stemness by upregulating the

expression of hypoxia-inducible factors (HIFs), while

blockade of HIF-1 activity decreases CSC marker

expression and weakens the CSC population (Hao, 2015;

Tong et al., 2018; Zeng et al., 2019; Mortezaee, 2021). In

addition, Zhang et al. (2018) proposed that hypoxia might

synergistically potentiate chemotherapy resistance through

stemness induction, highlighting the clinical significance of

hypoxia-CSC interactions in the PAAD microenvironment.

Recently, Malta et al. (2018) derived a novel stemness

index (mRNAsi) that could reflect the stemness features of

cancer samples based on the theory of CSCs using a one-class

logistic regression (OCLR) machine learning algorithm.

mRNAsi was found to be closely correlated with overall

survival (OS) in pancreatic cancer, and patients with high

mRNAsi values showed poor prognosis (Tang et al., 2021). In

addition, Huang et al. (2021) established an mRNAsi-related

prognostic model to successfully predict patient survival in

pancreatic cancer. Moreover, multigene prognostic

signatures based on the hypoxic microenvironment have

been verified to be prognostic markers for pancreatic

cancer and could be applied for risk stratification and

clinical treatment (Abou Khouzam et al., 2021; Chen

et al., 2021; Ding et al., 2021). Hence, targeting the

hypoxic microenvironment and establishing reliable

prognostic signatures based on the combination of

hypoxia and cancer stemness may provide new

perspectives for personalized disease management and

therapeutic strategies in PAAD.

In this study, we aimed to explore the prognostic value of

a hypoxia-stemness-based gene signature in PAAD. Based on

the mRNA profile data of PAAD patients from The Cancer

Genome Atlas (TCGA) database, we analyzed the correlation

between mRNAsi and prognosis. A total of 45 hypoxia-

stemness-related genes (HSRGs) with prognostic value

were then identified, and functional enrichment analysis

was performed to reveal the potential functions of these

genes in the pathogenesis and progression of PAAD. A

novel prognostic risk model including eight genes (JMJD6,

NDST1, ENO3, LDHA, TES, ANKZF1, CITED and SIAH2)

was then established, and its predictive performance was

verified in both the training dataset and external validation

dataset. Besides, we further validated the expression levels of

signature genes using the TCGA, GTEx and HPA databases

as well as qPCR analysis. Finally, we constructed a

nomogram for prognostic prediction in PAAD and

analyzed the correlations among the risk score, immune

infiltrates and immune checkpoint genes. Overall, our

prognostic gene signature and nomogram might be useful

tools for the risk stratification and prognosis prediction of

PAAD patients.
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Materials

Data collection and processing

The RNA-sequencing (RNA-seq) data and clinical

information of 180 PAAD samples were downloaded from

the TCGA database. The expression profile and clinical data

of 130 PAAD samples in the GSE62452 microarray dataset

were downloaded from the Gene Expression Omnibus

(GEO) database. After the removal of the samples without

survival information, a total of 162 PAAD tumor samples in

the TCGA database were included in the further analysis as a

training cohort, and a total of 65 PAAD tumor samples in

GSE62452 were enrolled as an external validation cohort.

Since the data used in the present study were obtained from

the open database for free, the approval of the Ethics

Committee was not needed.

mRNAsi in PAAD and its prognostic value

Through the “gelnet” R package (Version 1.2.1, https://CRAN.

R-project.org/package=gelnet), the mRNAsi score of PAAD tumor

samples and control samples in the TCGA dataset was calculated by

using the OCLR machine learning algorithm (Wei et al., 2021). A

significant difference in mRNAsi values between PAAD tumor

tissues and normal samples was defined using the intergroup

t test, and all PAAD tumor samples were then divided into two

groups, namely, the low-mRNAsi and high-mRNAsi groups,

according to the median value of mRNAsi. In addition, the

association between mRNAsi and the OS of PAAD patients in

the two groups was analyzed using the Kaplan-Meier curve method

with the “survival” R package.

Identification of HSRGs

The hypoxia-related genes were downloaded from the hallmark

gene set in the GSEA database (http://www.gseamsigdb.org/gsea/

downloads.jsp), and their expression levels were extracted from

TCGA PAAD samples. The Pearson correlation coefficient (PCC)

between the expression level and mRNAsi value of each hypoxia

gene was then calculated using the Cor function in R software

(http://77.66.12.57/R-help/cor.test.html). Genes with thresholds of |

PCC| > 0.4 and p < 0.05 were determined to be significantly

associated with mRNAsi.

PPI network construction and functional
enrichment analysis

The STRING database (http://string-db.org/) was utilized

to analyze the functional interactions among the encoded

proteins of HSRGs, and those interaction pairs with an

interaction score >0.4 were selected to construct a protein-

protein interaction (PPI) network, which was then visually

presented through Cytoscape (version 3.6.1, http://www.

cytoscape.org/). In addition, we performed enrichment

analysis of the Gene Ontology (GO) and Kyoto

Encyclopedia of Genes and Genomes (KEGG) pathways to

reveal the underlying biological functions and signaling

pathways of HSRGs. p < 0.05 and FDR <0.05 were

considered significantly different.

Construction and validation of a
prognostic gene signature model

Through the “survival” R package, we conducted

univariate Cox regression analysis to identify HSRGs

significantly associated with OS (p < 0.05) and ultimately

screened out survival-related HSRGs. The least absolute

shrinkage and selection operator (LASSO) regression

algorithm in the “lars” R package was subsequently applied

to acquire the optimal OS-related HSRGs. Then, the risk

model was constructed based on the expression levels and

LASSO coefficients of the eight-gene signature. Finally, the

risk score of each sample was calculated as follows:

Risk Score � ∑Coefgenes×Expgenes

In the formula, Coefgenes represents the LASSO coefficient of

the target gene, and Expgenes represents the gene expression level.

The risk scores of PAAD patients in TCGA training cohort and

GSE62452 validation cohort were calculated, and all patients were

then classified into high-risk and low-risk group according to the

median value of risk score served as the cutoff value. Kaplan-Meier

analysis was performed to analyze the correlation between the risk

score and OS. Receiver operating characteristic (ROC) curves were

then used to assess the predictive accuracy of the risk model. To

further verify the predictive performance of the prognostic risk

model, we also performed survival analysis and ROC analysis in the

GSE62452 external validation dataset.

Exploration of the mRNA and protein
expression levels of the eight signature
genes

The expression levels of JMJD6, NDST1, ENO3, LDHA,

TES, ANKZF1, CITED, and SIAH2 were compared between

PAAD tumor tissues and normal tissues using the TCGA and

Genotype-Tissue Expression (GTEx) databases, and the

Human Protein Atlas (HPA) database (https://www.

proteinatlas.org/) was used to investigate the protein

expression levels.
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Cell culture and qRT-PCR analysis

The human pancreatic cancer cell lines (BxPC-3,

SW1990 and PANC-1) and the normal human pancreatic

ductal epithelial cell line (HPNE) were purchased from Cell

Bank of Chinese Academy of Sciences (Shanghai, China) and

Mingzhou Biotechnology Co., LTD. (Ningbo, China). BxPC-3

and PANC-1 cells were cultured in RPMI 1640 medium

(HyClone, United States) with 10% fetal bovine serum (FBS)

and 1% penicillin-streptomycin at a humidified incubator at 37°C

with 5% CO2, while SW1990 cells was 90% L-15 medium with

10% fetal bovine serum (FBS) at a humidified incubator at 37°C

with 100% air. Meanwhile, HPNE cells were cultured in 70.5%

glycoprival DMEM medium with 5% fetal bovine serum (FBS),

23.5%M3 medium, 10 ng/ml human recombinant EGF, 750 mg/

ml puromycin, 2.5 g/L D-glucose and penicillin-streptomycin at

a humidified incubator at 37°C with 95% air and 5% CO2.

Total RNA from the normal human pancreatic ductal

epithelial cells and human pancreatic cancer cells was

extracted using TRIzol reagent (Thermo Fisher Scientific, MA,

United States), and 1 μg of total RNA for reverse transcription

was prepared using the PrimeScript RT reagent Kit with gDNA

Eraser (Toyobo, Japan). Reverse transcription quantitative PCR

was performed under the following cycling conditions: 95°C for

3 min, followed by 40 cycles of 95°C for 10 s and 60°C for 30 s.

The relative mRNA expression levels of JMJD6, NDST1, ENO3,

LDHA, TES, ANKZF1, CITED, and SIAH2 were normalized to

GAPDH expression, and calculated by the 2−ΔΔCt method. The

primer sequences are presented in Supplementary Table S1.

Establishment and assessment of a
prognostic nomogram

The clinical characteristics of PAAD patients, including age, sex,

tumor size, lymph node metastasis, distant metastasis, tumor stage,

chronic pancreatitis history, diabetes history, alcohol history,

tobacco history, radiotherapy and recurrence, were extracted

from the TCGA dataset, and Fisher’s exact test was used to

compare the differences between the low- and high-risk groups.

Subsequently, univariate and multivariate Cox regression analyses

were conducted to identify independent prognostic factors (log rank

p< 0.05). Through the “rms”Rpackage, we established a nomogram

integrating the risk score, age and targeted molecular therapy to

predict the 1-, 3- and 5-year OS rates of PAAD patients. A

calibration curve was plotted to evaluate the agreement between

the predicted and observed OS probabilities. The concordance index

(C-index) was calculated with the “survcomp” R package to evaluate

the predictive accuracy of the nomogram, and a

C-index >0.70 indicated a good predictive model.

Gene set variation analysis

To further investigate the variation in biological pathways

in PAAD patients between the low- and high-risk groups in

the training dataset, GSVA enrichment analysis was carried

out using the “GSVA” R package. The KEGG and genetic data

were downloaded from the GSEA database for GSVA.

Adjusted p < 0.05 was considered statistically significant.

Correlation between the risk score and the
immune microenvironment

Next, we explored the association between the risk score

and the tumor immune microenvironment (TIME), including

immune cell infiltration patterns and immune checkpoint

molecules. The immune cell type in tumors was classified

by utilizing the CIBERSORT method (Chen et al., 2018), and

we obtained a total of 22 kinds of immune infiltrating cells,

including T cells, B cells, dendritic cells, monocytes,

neutrophils, natural killer (NK) cells, eosinophils and mast

cells. The immune checkpoint genes included in this study

were PDCD1/PD-1, PD-L1/CD274, CTLA4, CD278, CD366,

LAG3/CD223, CD73, CD47, BTLA, TIGIT, MYD1, TNFRSF4,

TNFRSF9, and VTCN1.

Statistical analysis

Statistical analyses were conducted using R software

(version 3.6.1) and GraphPad Prism 8 software (GraphPad

Software, CA, United States). All statistical tests with p < 0.05

(two-sided) were considered statistically significant.

Results

mRNAsi in PAAD and survival analysis

This study was performed according to the flow chart

presented in Figure 1. The mRNAsi of each PAAD sample was

calculated via the OCLR algorithm based on the mRNA profile

data downloaded from the TCGA database. As shown in

Figure 2A, the mRNAsi in PAAD tumor tissues was

remarkably higher compared with that in normal tissues.

All PAAD patients were then divided into low- and high-

mRNAsi groups based on the median value of mRNAsi, and

survival analysis revealed that PAAD patients with high

mRNAsi values had a worse prognosis than those with low

mRNAsi values (Figure 2B).
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Identification of HSRGs

We downloaded the hallmark gene set from the GSEA

database and obtained a total of 200 hypoxia-related genes,

and a total of 108 HSRGs were identified according to the

threshold criteria |PCC| > 0.4 and p < 0.05 (Supplementary

Table S2). These genes were then arranged in order of PCC

from lowest to highest, and correlation analysis of these genes

was performed to determine the association between gene

expression and mRNAsi. The top 3 hypoxia genes exhibiting

negative and positive correlations with mRNAsi are

represented in Supplementary Figure S1.

PPI network construction and functional
enrichment analysis

At the protein level, the interactions among 108 HSRGs

products were evaluated using STRING, and a PPI network

consisting of 92 nodes and 297 edges was constructed

FIGURE 1
Overall flow chart of our current work.

FIGURE 2
mRNAsi and its prognostic value in PAAD. (A) Comparison of mRNAsi between PAAD tumor tissues and normal tissues in the TCGA dataset. (B)
Kaplan-Meier curve analysis of patients in the low- and high-mRNAsi groups.
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(Figure 3A). In addition, GO and KEGG pathway enrichment

analyses were carried out to reveal the biological functions of

these genes and participating pathways. The results showed that

they were significantly enriched in biological processes, including

glycosaminoglycan metabolic process, glycolytic process,

angiogenesis, response to hypoxia and negative regulation

apoptotic process (Figure 3B). KEGG pathway analysis

suggested that these genes were principally involved in the

HIF-1 signaling pathway and glycolysis/gluconeogenesis

(Figure 3C).

Construction of the eight-gene
prognostic signature in PAAD

A total of 45 HSRGs strongly correlated with OS were

identified using univariate Cox regression analysis

(Supplementary Table S3). A novel prognostic signature

composed of eight genes, including Jumonji domain

containing 6 (IMJD6), N-deacetylase-N-sulfotransferase-1

(NDST1), enolase 3 (ENO3), lactate dehydrogenase A

(LDHA), testin LIM domain protein (TES), ankyrin repeat

and zinc finger peptidyl tRNA hydrolase 1 (ANZF1), CBP/

p300-interacting transactivator with glutamic acid/aspartic

acid-rich carboxyl-terminal domain 2 (CITED2) and seven

in Absentia Homolog 2 (SIAH2), was successfully

established by LASSO-penalized regression analysis

(Supplementary Figure S2). Subsequently, the risk score of

PAAD patients in the training cohort was calculated

according to the following formula: Risk score =

[(−0.003993857) × Expression value of JMJD6] +

[(−0.010590801) × Expression value of NDST1] +

[(−0.090216539) × Expression value of

ENO3]+[0.00552938 × Expression value of LDHA] +

[0.085804528 × Expression value of TES] +

[(−0.021876003) × Expression value of ANKZF1] +

[(−0.040066157) × Expression value of CITED2] +

[0.114809344 × Expression value of SIAH2].

FIGURE 3
Construction of a PPI network and functional enrichment analysis of HSRGs. (A) A PPI network with 29 nodes and 297 edges was constructed to
evaluate protein interactions. (B) Top 28 enriched biological processes. (C) Top 8 enriched KEGG pathways.
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Internal and external validation of the
predictive performance of the eight-gene
signature

The risk scores of PAAD patients in the TCGA training

dataset and the GSE62452 external validation dataset were

calculated, and the optimal cutoff values of the risk score in

the TCGA and GSE62452 datasets were 0.5 and 0.51,

respectively (Figures 4E,F). PAAD patents in both datasets

were then divided into high-risk and low-risk groups

according to the median value. The survival time, survival

status, and gene expression of eight genes in each PAAD

FIGURE 4
Internal evaluation and external validation of the prognostic performance of the eight-gene signature. (A,B) Time-dependent ROC analysis of
the eight-gene signature for survival prediction in the TCGA training cohort and GSE62452 testing cohort. (C,D) Kaplan-Meier analysis of the
correlation between the risk score and the OS of PAAD patients. (E,F) The distribution of the eight-gene risk scores of each PAAD patient. (G,H)
Survival status of PAAD patients ranked by risk score. (I,J) The mRNA expression heatmap of the eight genes in the low- and high-risk groups.
Red represents upregulation, and blue represents downregulation.
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patient in both datasets are shown in Figures 4E–J. Kaplan-

Meier survival analysis revealed a notable correlation

between high risk scores and the dismal prognosis of

PAAD patients in the TCGA dataset (Figure 4A). The

prognostic value of the eight-gene signature was assessed

by utilizing time-dependent ROC, and the area under the

curve (AUC) values for 1-, 3-, and 5-year OS were 0.936 (95%

CI: 0.901–0.974), 0.836 (95% CI: 0.782–0.883) and 0.840

(95% CI: 0.790–0.889), respectively (Figure 4C),

demonstrating the good predictive efficacy of the eight-

gene signature in predicting the OS of PAAD patients.

Corresponding with the results of the TCGA dataset, the

survival outcomes of patients in the high-risk group were

significantly worse than those of patients in the low-risk

group in the GSE62452 dataset (Figure 4B). Time-dependent

ROC analysis suggested that the AUCs for 1-, 3-, and 5-year

OS were 0.814 (95% CI: 0.762–0.853), 0.784 (95% CI:

0.709–0.821), and 0.714 (95% CI: 0.685–0.767),

respectively (Figure 4D), which confirmed the stability of

the eight-gene signature in survival prediction for PAAD.

Validation of the expression and alteration
of the eight genes in PAAD tissues

To explore the clinical significance of the eight genes in the

model, their mRNA expression levels were validated using the

TCGA and GTEx databases. As shown in Figure 5A, the

mRNA expression levels of LDHA, TES and SIAH2 were

obviously increased in PAAD tissues, while those of JMJD6,

ANKZF1, ENO3 and CITED2 were significantly decreased in

PAAD. HPA analysis showed that the protein levels of LDHA

and TES were highly upregulated in cancer tissues compared

to normal pancreatic tissue, while those of NDST1, ANKZF1,

FIGURE 5
Validation of the expression of the eight signature genes in PAAD. (A) The mRNA expression profile of the eight genes in tumor tissues from the
TCGA database and normal pancreatic tissues from the TCGA and GTEx databases. (B) Kaplan-Meier curve of the association between the mRNA
expression levels of the eight genes and the OS of PAAD patients. (C) The protein expression of the eight genes in pancreatic tumor tissues and
normal tissues. The data were obtained from the HPA database. ENO3 was not found in the database.
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and SIAH2 were significantly decreased in cancer tissues.

However, ENO3 was not detected in PAAD tumor tissues

in the HPA database (Figure 5C). In addition, the Kaplan-

Meier curve method was used to explore the effect of these

eight genes on PAAD prognosis. We found that PAAD

patients with overexpression of JMJD6, NDST1, ENO3,

ANKZF1, and CITED2 had a relatively favorable prognosis,

while patients with high levels of LDHA, TES and SIAH2 had

poor survival outcomes (Figure 5B). Furthermore, the qPCR

results indicated the mRNA expression levels of JMJD6,

ANKZF1, CITED2, and ENO3 was obviously decreased in

pancreatic cancer cells versus the normal pancreatic ductal

epithelial cells, whereas those of LDHA, TES, and SIAH2 were

oppisite (Figure 6).

Evaluation of prognostic factors in PAAD

Among the clinicopathological characteristics of

162 PAAD patients acquired from the TCGA dataset, three

clinical parameters (pathologic T stage, smoking history and

radiotherapy) were observed to be strongly associated with

high risk scores (Table 1), and the distribution proportion of

the three factors as well as mRNAsi variables between

different risk groups was visualized (Figure 7). Univariate

and multivariate Cox regression analyses revealed that age and

targeted molecular therapy were significantly associated with

OS. Moreover, multivariate analysis suggested that the eight-

gene risk model was an independent prognostic factor for

PAAD (HR = 2.503, p < 0.001) (Figure 8A and Table 2). In

addition, the HR value of the risk score was higher than that of

age and targeted molecular therapy, indicating that the risk

score was more valuable for survival prediction in PAAD.

Construction and evaluation of a
predictive nomogram for PAAD prognosis

The 162 PAAD patients with complete clinical

information in the TCGA dataset were used to construct

the prognostic nomogram. By integrating the risk score and

traditional prognostic factors, including age and targeted

molecular therapy, we established a prognostic nomogram

to predict the 1-, 3-, and 5-year OS of PAAD patients

(Figure 8B). The C-indexes of the nomogram for 1-, 3-,

and 5-year OS were 0.745 (95% CI: 0.698–0.803), 0.709

(95% CI: 0.624–0.763) and 0.678 (95% CI: 0.602–0.727),

respectively (Figure 8C), suggesting that the 1-year, 3-year

and 5-year survival rates predicted by the nomogram were

close to the actual survival rates, and the nomogram showed

superiority in 1- and 3-year survival prediction but not in 5-

year survival prediction for PAAD patients.

FIGURE 6
Further verification of the mRNA expression levels of seven genes in human pancreatic cancer cell lines and human pancreatic ductal epithelial
cell line by RT-qPCR analysis. *p < 0.05, **p < 0.01, ***p < 0.001.
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TABLE 1 Clinical characteristics and pathological parameters of PAAD patients.

Characteristics N of case 162 Risk group p Value

Low risk (N = 81) High risk (N = 81)

Age (years)

≤60 54 23 31 0.2432

>60 108 58 50

Gender

Male 89 45 44 0.1054

Female 100 63 37

Pathologic M

M0 74 33 41 0.9990

M1 3 1 2

Pathologic N

N0 44 25 19 0.2883

N1 114 53 61

Pathologic T

T1 8 4 4 0.0289

T2 19 15 4

T3 131 59 72

T4 3 2 1

Pathologic stage

Stage I 20 14 6 0.1247

Stage II 134 62 72

Stage III 4 3 1

Stage IV 3 1 2

Chronic pancreatitis history

Yes 13 4 9 0.1470

No 115 62 53

Diabetes history

Yes 36 21 15 0.4361

No 97 48 49

Alcohol history

Yes 95 52 43 0.1799

No 56 24 32

Tobacco history

Never 58 32 26 0.0371

Reform 55 33 22

Current 19 5 14

Ratiotherapy

Yes 38 26 12 0.0138

No 106 47 59

Recurrence

Yes 101 52 49 0.9990

No 48 24 24
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FIGURE 7
Associations between the risk score and clinical data as well as mRNAsi values. (A) The association between the risk score and pathologic T
grading. (B) The association between the risk score and tobacco history. (C) The association between the risk score and radiotherapy. (D) The
association between the risk score and mRNAsi values.

FIGURE 8
Construction of a nomogram for OS prediction in the TCGA PAAD dataset. (A) Forest plot of the multivariate Cox regression analysis of the risk
score and clinicopathological parameters in PAAD. *p < 0.05, ***p < 0.001. (B) The nomogram incorporating risk score and clinical factors for survival
prediction in PAAD. (C) The calibration curve of the nomogram for predicting the 1-, 3- and 5-year OS rates of PAAD patients in the training cohort.
The X-axis represents the predicted OS rates, and the Y-axis represents the actual OS rates. The dashed line at 45° indicates the ideal
performance, and the C-index was calculated to reflect the predictive accuracy of the nomogram.
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GSVA analysis between the low- and high-
risk groups

To illustrate the potential molecular mechanisms of the

eight-gene prognostic signature, 162 patients in the training

cohort were classified into low- and high-risk groups. We

further performed GSVA to estimate the difference in the

pathway activation state of PAAD samples between the low-

and high-risk groups, and a heatmap was used to visualize the top

15 distinct KEGG pathways arranged in order of p value from

small to large. We found that several activation pathways of

oncogenesis were remarkably enriched in the high-risk group,

TABLE 2 Univariate and multivariate Cox regression analysis of clinical factors.

Variables Univariate analysis Multivariate analysis

HR 95% CI p Value HR 95% CI p Value

Age (mean ± SD) 1.030 1.008–1.053 0.0053 1.028 1.004–1.052 0.0203

Gender (Male/Female) 0.912 0.591–1.408 0.678 — — —

Pathologic_M (M0/M1) 1.83 0.434–7.719 0.403 — — —

Pathologic_N (N0/N1) 2.078 1.210–3.567 0.0048 1.646 0.844–3.210 0.1430

Pathologic_T (T1/T2/T3/T4) 1.713 1.087–2.700 0.0116 1.258 0.607–2.608 0.5370

Pathologic_stage (I/II/III/IV) 1.561 1.033–2.355 0.0430 1.313 0.561–3.072 0.5310

Chronic pancreatitis history (Yes/No) 1.091 0.518–2.295 0.8200 — — —

Diabetes history (Yes/No) 0.899 0.506–1.600 0.7160 — — —

Alcohol history (Yes/No) 1.103 0.689–1.765 0.6830 — — —

Tobacco history (Never/Reform/Current) 1.191 0.835–1.695 0.3360 — — —

Tumor recurrence (Yes/No) 1.613 0.970–2.683 0.0707 — — —

Radiation therapy (Yes/No) 0.509 0.284–0.910 0.0151 1.105 0.559–2.184 0.7740

Targeted molecular therapy (Yes/No) 0.489 0.310–0.772 0.0017 0.344 0.197–0.602 0.0002

RS prediction model (High/Low) 2.508 1.575–3.992 ＜0.0001 2.503 1.483–4.226 ＜0.0001

FIGURE 9
GSVA enrichment analysis of biological behaviors between the low- and high-risk groups in the training dataset. The heatmap was applied to
visualize the top 15 distinct KEGG pathways arranged from small to large according to the p value; red indicates activated pathways, and blue
indicates inhibited pathways.
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such as adherens junction, tight junction, sphingolipid

metabolism, and pathways in cancer (Figure 9), indicating

that abnormal expression of signature genes in PAAD is

closely related to cancer-related pathways.

Correlation between the eight-gene
signature and immune status

To estimate the immunity relevance of our prognostic

signature, the correlation of the risk score with infiltrating

immune cells and immune checkpoint genes in PAAD tumor

samples was analyzed. A remarkable difference in CD8+ T cells

(p < 0.007), regulatory T cells (Tregs, p < 0.044) and neutrophils

(p < 0.019) was found between the low- and high-risk groups

(Figure 10A). In addition, the expression levels of immune

checkpoint genes, including PDCD1/PD-1, CTLA4, LAG3,

BTLA and TNFRSF4, were significantly decreased in the high-

risk group, while the level of CD47 was dramatically increased in

the high-risk group compared with the low-risk group

(Figure 10B). Moreover, Pearson correlation analysis suggested

that the prognostic risk signature was strongly inversely

associated with CTLA4 (r = −0.17; p = 0.026), LAG3

(r = −0.17; p = 0.034) and TNFRSF4 (r = −0.34; p = 1.5e-05),

whereas positively correlated with CD47 (r = 0.34; p = 1.4e-05;

Figures 10C,D). These findings indicated that the eight-gene

signature might play a critical role in regulating the immune

response.

Discussion

PAAD is one of the deadliest cancers in humans and is a

hallmark of cellular and phenotypic heterogeneity (Melendez-

Zajgla and Maldonado, 2021). The presence of CSCs may help

explain the high mortality of pancreatic cancer, since the vital

role of CSCs in the occurrence, development and recurrence of

pancreatic cancer has been previously described in several studies

(Hermann et al., 2007; Nassar and Blanpain, 2016; Stoica et al.,

2020). As a key regulator of the cell response to hypoxia in the

tumor microenvironment, HIF-1α is known to contribute to the

maintenance of CSC stemness (Hao, 2015). Lv et al. (2019)

reported that HIF-1α modulated the proliferation and

differentiation of stem cells via the Wnt/β-catenin signaling

FIGURE 10
Correlation analysis between risk score and immune status. (A) The correlation between the risk score and infiltrating immune cells. (B) The
correlation between risk score and immune checkpoint genes. (C) Correlation between risk score and immune checkpoint genes, including BTLA,
CD274, CTLA4, LAG3, TNFRSF4 and PDCD1/PD-1. (D) Correlation analysis between risk score and the expression levels of immune checkpoint
inhibitors. Red represents a positive correlation, and green represents a negative correlation.
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pathway under hypoxic conditions, and activation of HIF-1α

enhanced hypoxia-induced cancer stemness, thus facilitating

cancer progression and resulting in unfavorable prognosis in

PAAD patients (Colbert et al., 2015; Chen et al., 2019). To date,

studies have clarified the prognostic value of gene signatures in

the survival prediction of patients with pancreatic cancers, and

prognostic signatures combined with conventional

clinicopathological parameters such as TNM staging and

tumor grade have been demonstrated to be superior to a

single biomarker (Metzger et al., 2020; Abou Khouzam et al.,

2021; Chen et al., 2021). However, few reports have well

established reliable prognostic signatures for PAAD based on

the combination of hypoxia and cancer stemness.

In this work, we identified a novel eight-gene signature for the

survival prediction of PAAD patients based on comprehensive

analyses of publicly available data. A prognostic risk model was

established based on the eight-gene signature, in which NDST1,

LDHA, TES and SIAH2 were significantly upregulated and

correlated with poor prognosis, whereas the declined levels of

JMJD6, ENO3, ANKZF1 and CITED was associated with adverse

survival outcomes of PAAD patients. In addition, the expression

levels of eight genes in pancreatic tumor cells was also verified by

HPA database and qPCR analyses. Besides, the eight-gene

signature was identified as an independent prognostic factor,

and its excellent predictive efficiency was confirmed in both the

training and external validation datasets. Furthermore, a

prognostic nomogram incorporating the eight-gene signature

and clinical factors was constructed and could reliably predict

1- and 3-year OS of PAAD patients. Overall, our findings

highlighted the important clinical value of the eight-gene

signature in the risk assessment and survival prediction of PAAD.

To better elucidate themolecularmechanisms underlying PAAD,

we performed functional enrichment analysis of the identifiedHSRGs

and found that theywere closely correlatedwith angiogenesis, hypoxia

response and the apoptotic process, and the HIF-1 signaling pathway

and glycolysis/gluconeogenesis were the most enriched signaling

pathways, suggesting that suggest these genes are tightly associated

with cancer-related pathways. Additionally, GVSA analysis showed

that adherens junction, tight junction and sphingolipid metabolism

were abnormally developed in PAAD patients with high risk scores,

revealing that the molecular alterations in the high-risk group were

highly associated with the occurrence and development of PAAD.

Collectively, these results provide important insights into the

pathogenesis and development of PAAD.

Among the eight genes, the crucial roles of ENO3, LDHA and

SIAH2 in the progression of pancreatic cancer have been

demonstrated. ENO3, as a member of the human enolase (ENO)

family catalyzing the transformation of 2-phosphoglycerate to

phosphoenolpyruvate during glycolysis, was reported to inhibit the

growth of cancer cells (Kong et al., 2016; Feng et al., 2021). Tan et al.

(2020) reported that the expression level of ENO3 mRNA was

remarkably downregulated in tumor tissues of pancreatic ductal

adenocarcinoma (PDAC), and patients with decreased

ENO3 levels had poor survival, suggesting that ENO3 is a

promising biomarker for prognostic prediction in PADC patients.

LDHA is an enzyme that promotes glycolytic processes by converting

pyruvate to lactate, and its high expression is correlated with poor

outcome in cancer patients (Brand et al., 2016). Knockdown of LDHA

prevented tumor growth and metastasis by increasing the production

of reactive oxygen species in several cancers (Rizwan et al., 2013; Jin

et al., 2017). Previous studies demonstrated the strong correlation of

LDHA overexpression with the poor prognosis of patients with

pancreatic cancer, and the anticancer effect of LDHA inhibitors

offered proof of LDHA as a potential therapeutic target for human

cancers (Feng et al., 2018). SIAH2 functions as an E3 ubiquitin ligase

that mediates the stabilization of HIF-1α and activates its downstream
transcription, which reversely promotes SIAH2 expression through

the PI3K/AKT pathway (Matsui-Hasumi et al., 2017). Inhibitors

targeting SIAH2 and the SIAH2-HIF-1 axis altered the response of

tumor cells to hypoxia and thus affected tumorigenesis and cancer

progression (Xu and Li, 2021), highlighting the vital role of SIAH2 as a

potential target for cancer therapy. Collectively, these results indicate

that the stemness-related hypoxia genes ENO3, LDHAandSIAH2 are

promising therapeutic targets in PAAD.

Nevertheless, the clinical significance of JMJD6, NDST1,

TES, ANKZF1 and CITED2 has not been revealed in PAAD.

Existing evidence suggests the crucial role of JMJD6 as a

tumorigenic factor in several cancers, and the high expression

of JMJD6 was found to promote the proliferation and survival of

tumor cells and predicted the dismal prognosis of patients (Wang

et al., 2014; Wong et al., 2019; Biswas et al., 2020). Previous

studies have demonstrated the tumorigenic effects of NDST1 in

primary glioblastoma and breast cancer, suggesting that it is a

promising target for anticancer therapy (He et al., 2014; Xue

et al., 2019). TES serves as a tumor suppressor in several cancers,

such as gastric cancer and breast cancer, and overexpression of

TES reduces the oncogenicity and metastasis of tumor cells

(Okolicsanyi et al., 2014; Xue et al., 2019). Xu et al. (2020)

proved the association of a glycolytic risk signature, including

ANKZF1, with cancer progression and patient prognosis in renal

cell carcinoma. Zhou et al. identified ANKZF1 as a prognostic

biomarker in colon cancer, and overexpression of ANKZF1 could

predict poor OS and recurrence-free survival (Zhou et al., 2019;

Chen et al., 2020). CITED2 is highly expressed in many

malignancies, including breast cancer, lung cancer, colon

cancer and gastric cancer, and it plays critical roles in cancer

metastasis and invasiveness (An et al., 2020). In addition,

CITED2 is a direct product of HIF-mediated transcription

and acts as a vital regulator of stem cell transcription factors

in cancer stem-like cells (Rasti et al., 2018; Usui-Ouchi et al.,

2020), suggesting that targeting CITED2 expression might be a

novel therapeutic strategy for cancer treatment and relapse

prevention. Therefore, the roles of JMJD6, NDST1, TES,

ANKZF1 and CITED2 in PAAD should be further investigated.

The tumor microenvironment is an immune-related complex

environment conducive to tumor cell survival and development.
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Existing research recognizes the significant effect of immune

infiltration on tumorigenesis and metastasis and its association

with patient survival in pancreatic cancer (Zhou et al., 2021).

Activation of CD8+ T cells is crucial for the prevention of

tumorigenesis and the induction of tumor regression and

correlates with the long survival of patients with pancreatic cancer

(Zhang et al., 2020). The prevalence of Treg cells showed a close

relationship with tumor metastasis and poor survival of PDAC

patients (Tang et al., 2014). Notably, Mota Reyes et al. (2020)

revealed that depletion of Tregs could alter the TIME and

accelerate pancreatic carcinogenesis and disease progression

partially by inducing pathological CD4+ T-cell responses. By

analyzing the infiltration of immune cells in PAAD samples, we

found a remarkable decrease inCD8+T cells (p< 0.007) andTreg cells
(p < 0.044) in the high-risk group, which may partly explain the poor

prognosis in the high-risk group from an immunological perspective.

CTLA-4 and PD-1 are the most studied coinhibitory receptors of

T cell receptor signaling, and blockade of CTLA-4 and PD-1 results in

T-cell activation and enhanced immune responses (Lee et al., 2018;

Henriksen et al., 2019). A preclinical study proved that a CTLA-4

antagonist combined with gemcitabine was safe and tolerated in

patients with metastatic PDAC (Aglietta et al., 2014), and PD-1

inhibitors along with chemotherapy showed antitumor effects on

advanced PDACpatients, although single-agent checkpoint inhibitors

showed disappointing limited activity in pancreatic cancer (Weiss

et al., 2017). We further analyzed the association between the risk

score and immune checkpoint genes and found that patients in the

low-risk group showed higher levels of CTLA4, PD-1, BTLA,

LAG3 and TNFRSF4, suggesting that these patients might be

more likely to benefit from the combined use of immune

checkpoint inhibitors. Collectively, our findings shed light on the

close correlation between the risk score and immune status in PAAD.

Our study comprehensively analyzed and identified the HSRGs

associated with prognosis on the basis of public TCGA-PAAD

database. More importantly, we developed a eight-gene

prognostic signature with good capacity in predicting the survival

outcomes of PAAD patients. However, our research presents several

limitations. The construction and verification of the nomogram for

predicting the OS of PAAD patients were conducted based on the

TCGA dataset, and external dataset validation needs to be

performed in the future. Additionally, we validated the gene

expression of the eight signature genes at the cellular level, their

expression in PAAD patient specimens also needs further

experimental verification. Moreover, more researches are required

to elucidate the underlyingmolecular mechanisms of the eight genes

in the pathogenesis and progression of PAAD.

Conclusion

In summary, we developed a novel eight-gene signature

and a prognostic nomogram that could reliably predict patient

survival in PAAD. Our prognostic gene signature could be

beneficial for the risk stratification and prognostic prediction

of PAAD.
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SUPPLEMENTARY FIGURE S1
Top 3 hypoxia genes correlated with mRNAsi. Green represents the top
3 genes negatively correlated with mRNAsi, while red represents the top
3 genes positively correlated with mRNAsi.

SUPPLEMENTARY FIGURE S2
Identification of the optimal genes used to develop the prognostic
signature by the LASSO regression algorithm. (A) Selection of the
optimal parameter (lambda) in the LASSO model. The two vertical lines

are lambda.min and lambda.lse. (B) LASSO coefficient profiles of eight
OS-related genes with nonzero coefficients determined by the optimal
lambda.

SUPPLEMENTARY TABLE S2
The 108 hypoxia genes significantly associated with mRNAsi.

SUPPLEMENTARY TABLE S3
The 45 HSRGs strongly correlated with OS of PAAD patients.
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