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Abstract: ABCA1 and ABCG1 are two ABC-transporters well-recognized to promote the efflux of
cholesterol to apoAI and HDL, respectively. As these two ABC-transporters are critical to cholesterol
metabolism, several studies have assessed the impact of ABCA1 and ABCG1 expression on cellu-
lar cholesterol homeostasis through ABC-transporter ablation or overexpressing ABCA1/ABCG1.
However, for the latter, there are currently no well-established in vitro models to effectively induce
long-term ABC-transporter expression in a variety of cultured cells. Therefore, we performed proof-
of-principle in vitro studies to determine whether a LoxP-Stop-LoxP (LSL) system would provide
Cre-inducible ABC-transporter expression. In our studies, we transfected HEK293 cells and the
HEK293-derived cell line 293-Cre cells with ABCA1-LSL and ABCG1-LSL-based plasmids. Our
results showed that while the ABCA1/ABCG1 protein expression was absent in the transfected
HEK293 cells, the ABCA1 and ABCG1 protein expression was detected in the 293-Cre cells trans-
fected with ABCA1-LSL and ABCG1-LSL, respectively. When we measured cholesterol efflux in
transfected 293-Cre cells, we observed an enhanced apoAI-mediated cholesterol efflux in 293-Cre
cells overexpressing ABCA1, and an HDL2-mediated cholesterol efflux in 293-Cre cells constitu-
tively expressing ABCG1. We also observed an appreciable increase in HDL3-mediated cholesterol
efflux in ABCA1-overexpressing 293-Cre cells, which suggests that ABCA1 is capable of effluxing
cholesterol to small HDL particles. Our proof-of-concept experiments demonstrate that the LSL-
system can be used to effectively regulate ABC-transporter expression in vitro, which, in turn, allows
ABCA1/ABCG1-overexpression to be extensively studied at the cellular level.

Keywords: metabolic regulation; reverse cholesterol transport; transduction

1. Introduction

Normal cholesterol homeostasis is critical for human health [1]. Dysregulations in
cholesterol homeostasis are associated with numerous conditions, which include cardio-
vascular disease, neurodegenerative disorders, and certain types of cancer [2]. Removing
excess cholesterol from cells is imperative to cholesterol homeostasis, as cells are unable
to catabolize cholesterol effectively [3,4]. Furthermore, toxicity may also occur from high
intracellular cholesterol levels [5].

The removal of cellular cholesterol is called cholesterol efflux and there are four
pathways in humans that regulate this process [6]. The two active cholesterol efflux
pathways are regulated by two transporters known as ABCA1 and ABCG1 [6]. It has been
traditionally recognized that ABCA1 exclusively effluxes cholesterol to circulatory apoAI,
while ABCG1 effluxes cholesterol to circulatory HDL [7]. However, evidence has emerged
to indicate that ABCA1 can also efficiently efflux cholesterol to smaller HDL particles,
too [8].

Both ABCA1 and ABCG1 are generally considered to be atheroprotective due to their
ability to remove excess cholesterol from peripheral tissues [9]. Surprisingly though, stud-
ies involving the whole-body and tissue-specific deletion and overexpression of ABCA1
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and ABCG1 have been conflicting when evaluating whether these two transporters pro-
tect against atherosclerosis [10–29]. Therefore, it is possible that genetic manipulation of
ABCA1/ABCG1 in certain cells or tissues at different stages of life may influence atheroge-
nesis or atherosclerosis progression differently [30]. Studies that have focused on overex-
pressing ABCA1 and ABCG1 systemically or in certain cells/tissues have been conducted
using approaches involving transgenesis and adenoviral-mediated somatic gene trans-
fer [15,16,19,21–24]. However, these two strategies have limitations that include an inability
to control overexpression at a specific point in time for the former [31,32], and transient
overexpression for the latter [33]. There are also issues with determining the role ABCA1
and ABCG1 have at the cellular level, as there are no well-established in vitro models that
involve inducing long-term ABCA1/ABCG1 overexpression in cultured cells at a desired
time point. Understanding how ABCA1 and ABCG1 modulate cholesterol metabolism in
numerous cell types, at various stages, that are being exposed to a variety of stimuli, can
aid scientists in identifying cell-specific atheroprotective roles of ABCA1/ABCG1 during
diverse conditions.

The LoxP-Stop-LoxP (LSL) system is a method to control transgenic expression at
a defined time point. Within this system, transgene expression should only be initiated
in the presence of the enzyme Cre recombinase [34], and Cre is able to excise the LoxP
sites [35] that flank the stop sequence, allowing transgene expression to be initiated. There-
fore, this system is a promising strategy for controlling ABCA1 and ABCG1 transgene
expression in cultured cells. In this study, we investigated whether the LSL-system could
be utilized to control ABCA1/ABCG1 transgenic expression in vitro. In our experiments,
we used HEK293 and 293-Cre cells, which are two cell lines that do not normally express
ABCA1/ABCG1 [36–39]. 293-Cre cells are similar to HEK293 cells, but have been mod-
ified to express Cre recombinase [37]. When transfecting these cell lines with plasmids
containing ABCA1-LSL and/or ABCG1-LSL cassettes, robust ABCA1 and ABCG1 pro-
tein expression was detected in the 293-Cre cells, as determined by immunoblotting. To
determine whether these ABC-transporters were functional in the 293-Cre transfected
cells, we measured cholesterol efflux in 293-Cre cells overexpressing either ABCA1 and/or
ABCG1 and showed that cholesterol efflux was enhanced in these cells when compared to
control 293-Cre cells that did not have ABC-transporter transgene expression. Our results
show that the LSL-system appears to be a powerful approach for controlling transgenic
ABC-transporter expression in cultured cells and could be implemented when in vitro
ABCA1/ABCG1 expression needs to be activated at a specific time point.

2. Materials and Methods
2.1. Cell Culture Maintenance

HEK293 cells were purchased from American Type Culture Collection (Manassas, VA,
USA) and 293-Cre cells were provided as a kind gift from Dr. Frank Graham [37]. HEK293
cells were cultured in standard growth medium containing high-glucose DMEM (Corning,
New York, NY, USA), 10% FB Essence (VWR Life Science Seradigm, Radnor, PA, USA), and
1% Pen-Strep (Corning). The standard growth medium used to maintain 293-Cre cells was
similar to what was used for the HEK293 cells, with the only exception being the addition
of G418 (500 µg/mL; VWR Life Science Seradigm) to the standard growth medium used
for culturing 293-Cre cells. Medium for both cell types was replenished every 48–72 h. For
cell maintenance, both HEK293 cells and 293-Cre cells were incubated within 10 cm cell
culture plates at 37 ◦C under 5% CO2 conditions, and the confluency of cultured cells was
based on coverage [40].

2.2. Plasmid Transfection of Cultured Cells

Using standard growth medium, both HEK293 cells and 293-Cre cells were grown
in 6-well cell culture plates for immunoblotting experiments, and 293-Cre cells only were
grown in 48-well cell culture plates for cholesterol efflux studies. Once cells reached 70–80%
confluency, cells either remained untreated, vehicle-treated, or transfected with 2 µg of
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total plasmid for the immunoblotting experiments as follows: (1) empty vector plasmid;
(2) ABCA1-LSL plasmid and empty vector plasmid; (3) ABCG1-LSL plasmid and empty
vector plasmid; (4) ABCA1-LSL plasmid and ABCG1-LSL plasmid. For cholesterol efflux as-
says, only transfected 293-Cre cells were used for these experiments. When the 293-Cre cells
being used for cholesterol efflux studies reached 70–80% confluency, they were transfected
with 250 ng of total plasmid as described above for the immunoblotting experiments. As the
cells used for cholesterol efflux assays were plated in 48-well plates, a lower number of cells
were used per well when compared to the immunoblotting experiments where 6-well plates
were used, and so less plasmid DNA was used to transfect the cells for the cholesterol efflux
assays. All plasmids used in our studies were constructed by VectorBuilder (Chicago, IL,
USA) and contained the ubiquitous CAG promoter [41] that permits constitutive transgene
expression [42]. The empty vector plasmid used was a CAG promoter-only control (i.e., no
transgene), while the LSL-based plasmids employed contained three repeated SV40 pA se-
quences flanked by two LoxP sites, allowing the LSL sequence to be excised by the enzyme
Cre recombinase [43]. This LSL sequence within these plasmids is flanked by the CAG
promoter and transgene, which allows Cre-induced transgene expression [34,43]. For cells
that were transfected with two plasmids in our experiments, an equal mass of plasmid was
used for these respective transfections. To prevent unequal plasmid DNA mass being used
for transfections, cultured cells transfected with either ABCA1-LSL plasmid or ABCG1-LSL
plasmid alone were also transfected with the empty vector plasmid to keep the plasmid
mass identical among all groups. For the immunoblotting experiments, cells were either
vehicle-treated or transfected using jetOPTIMUS transfection reagent (Polyplus, New York,
NY, USA) for 24 h, 36 h, 48 h, 60 h, or 72 h. The reason we transfected cultured cells for up
to 72 h was to determine whether transgenic ABCA1/ABCG1 protein expression may still
be induced in 293-Cre cells, but absent in HEK293 cells. For the cholesterol efflux assays,
plasmid DNA was transfected into 293-Cre cells using jetOPTIMUS transfection reagent
for 6 h.

2.3. Western Blotting

Immunoblotting procedures were conducted as previously described [44]. Post-
transfections, medium was removed, cells were washed with PBS, and protein was har-
vested from cells by using the RIPA lysis buffer and mammalian protease inhibitors (VWR
Life Science). A BCA assay (BioVision, Milpitas, CA, USA) was used for measuring protein
concentrations from the harvested cell lysates. We used SDS–PAGE to separate equal
amounts of proteins within the cell lysate samples and then transferred the separated pro-
teins onto PVDF membranes (Merck Millipore Ltd., Burlington, MA, USA). The molecular
weight ladder used for immunoblotting was ExcelBand™ All Blue Broad Range Protein
Marker (SMOBIO Technology, Hsinchu City, Taiwan/ROC). We blocked PVDF membranes
with blocking buffer [44] and then probed for ABCA1 (1:1000 dilution, sc-58219; Santa
Cruz Biotechnology, Dallas, TX, USA), ABCG1 (1:5,000 dilution, NB400-132; Novus Bio-
logicals, Littleton, CO, USA), and loading control, GAPDH (1:1,000 dilution, sc-365062;
Santa Cruz Biotechnology, Dallas, TX, USA). The secondary antibodies used included
HRP-conjugated goat anti-rabbit IgG (1:10,000 dilution, HAF008; Novus Biologicals) and
HRP-conjugated goat anti-mouse IgG (1:10,000 dilution, AP181P; Sigma-Aldrich, St. Louis,
MO, USA). Bound secondary antibodies were detected with ECL substrate (Immobilon
ECL Ultra Western HRP Substrate; MilliporeSigma, Billerica, MA, USA). Post-ECL incu-
bation, we used a ChemiDoc system (Analytik Jena US, Upland, CA, USA) to perform
imaging analysis.

2.4. Cholesterol Efflux Assays

Cholesterol efflux assays were performed as previously described [45,46]. Briefly, after
transfecting the 293-Cre cells for 6 h, we removed standard growth medium containing
the transfection reagent and untransfected plasmid DNA, washed cells with PBS, and then
cultured cells in serum-free DMEM containing 2 mg/mL of fatty acid-free bovine serum
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albumin (Sigma-Aldrich), 1% pen-strep, and [3H] cholesterol (1 µCi/mL; PerkinElmer,
Waltham, MA, USA) for 18 h, to cholesterol-load cells. To measure apoAI/HDL-mediated
cholesterol efflux in 293-Cre cells, we first removed the medium used for cholesterol-
loading, washed cells with PBS, and then incubated cultured cells with cholesterol efflux
medium that contained either vehicle only, 5 µg/mL of apoAI, or 10 µg/mL of either HDL2,
HDL3, or heterogenous HDL particles (Academy Bio-Medical Company, Houston, TX,
USA), which contain both HDL2 and HDL3 [47], for 24 h. This experimental design utilized
allowed cultured cells to efflux cholesterol to the cholesterol acceptors 24 h after initiating
transfection, and cholesterol efflux was measured for a total of 24 h. Therefore, cholesterol
efflux was measured in cultured cells 24–48 h post-transfection. Protein concentrations of
the cholesterol acceptors used were determined by the Lowry method. The cholesterol
efflux medium we used was identical in composition to the cholesterol-loading medium,
minus the [3H] cholesterol. After treating cells with either vehicle only or the cholesterol
acceptors, we filtered the medium to remove nonadherent cells, washed 293-Cre cells with
PBS, and lysed cells as previously described [45,46]. Using a liquid scintillation counter (LS
6500; Beckman Coulter, Brea, CA, USA), we counted [3H] in the cells/medium, and then
calculated apoAI/HDL-mediated cholesterol efflux as previously described [45,46].

3. Results
3.1. The LSL-System Is Effective in Restricting Transgenic ABC-Transporter Expression

We initially attempted to detect the presence of ABC-transporter expression in HEK293
cells that were either untreated, vehicle-treated for 24–72 h, or transfected with the following
plasmids for 24–72 h: (1) empty vector; (2) ABCA1-LSL and empty vector; (3) ABCG1-LSL
and empty vector; (4) ABCA1-LSL and ABCG1-LSL. We used HEK293 cells to determine
whether ABC-transporter expression is prevented by the LSL-system, as HEK293 cells are an
easily transfectable cell line that do not normally express ABCA1 or ABCG1 [36,38,39]. For
our results, we failed to observe ABC-transporter expression in any of the HEK293 cells ex-
posed to the untreated, vehicle-treated, and plasmid-transfected conditions (Figure 1A–E).
These results confirm that the LSL-system effectively inhibits ABCA1 and ABCG1 transgene
expression when Cre recombinase is not present.
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treatments. (A–E) Western blotting was used for attempted detection of ABCA1 and ABCG1 pro-
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Figure 1. ABC-transporter protein expression is absent in HEK293 cells transfected with ABCA1-LSL
and ABCG1-LSL-based plasmids. (A–E) Cultured HEK293 cells were either untreated (UN), vehicle-
treated (VEH), transfected with empty vector plasmid (E), transfected with ABCA1-LSL plasmid
and empty vector plasmid (A1/E), transfected with ABCG1-LSL plasmid and empty vector plasmid
(G1/E), or transfected with ABCA1-LSL and ABCG1-LSL plasmids (A1/G1). Post-treatments, cell
lysates were harvested 24 h (A), 36 h (B), 48 h (C), 60 h (D), or 72 h (E) after the respective treatments.
(A–E) Western blotting was used for attempted detection of ABCA1 and ABCG1 proteins in cell
lysates, with GAPDH used as a loading control.

3.2. Cre Recombinase Effectively Induces Transgene Expression of ABCA1-LSL and ABCG1-LSL

293-Cre cells are considered an identical cell line to HEK293 cells, with an exception
being that the 293-Cre cell line stably expresses Cre recombinase [37]. For these reasons,
we used 293-Cre cells to introduce Cre into our in vitro system to directly test whether Cre
recombinase can initiate transgenic ABC-transporter expression in cultured cells transfected
with ABCA1-LSL and/or ABCG1-LSL-based plasmids. To test this, we used an experimen-
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tal design similar to the sets of experiments outlined in Figure 1, with the difference being
that 293-Cre cells were utilized instead of HEK293 cells. Our results showed robust protein
expression of ABCA1 or ABCG1 only being detected in 293-Cre cells that were transfected
with the ABCA1-LSL and/or ABCG1-LSL-based plasmids, respectively (Figure 2A–E).
These results imply that ABCA1/ABCG1 transgene expression can be controlled within
in vitro models by employing an LSL-system that only initiates expression when Cre is
introduced to the cultured cells.
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Figure 2. Robust ABCA1/ABCG1 protein expression is detected in 293-Cre cells transfected with
ABCA1-LSL and ABCG1-LSL-based plasmids. (A–E) Cultured 293-Cre cells were either untreated
(UN), vehicle-treated (VEH), transfected with empty vector plasmid (E), transfected with ABCA1-
LSL plasmid and empty vector plasmid (A1/E), transfected with ABCG1-LSL plasmid and empty
vector plasmid (G1/E), or transfected with ABCA1-LSL and ABCG1-LSL plasmids (A1/G1). Post-
treatments, cell lysates were harvested 24 h (A), 36 h (B), 48 h (C), 60 h (D), or 72 h (E) after the
respective treatments. (A–E) Immunoblotting was used to assess ABCA1, ABCG1, and GAPDH
(loading control) protein expression in cell lysates.

3.3. Cre-Induced Transient Expression of ABCA1 and ABCG1 Transgenes Enhances Cholesterol
Efflux in 293-Cre Cells

To test whether transfecting 293-Cre cells with ABCA1-LSL and/or ABCG1-LSL-based
plasmids causes an increase in cholesterol acceptor-mediated cholesterol efflux in this cell
line, we measured apoAI, heterogeneous HDL, HDL2, (i.e., large HDL particles), and HDL3
(i.e., small HDL particles)-mediated cholesterol efflux in 293-Cre cells transfected with the
following plasmids: (1) empty vector; (2) ABCA1-LSL and empty vector; (3) ABCG1-LSL
and empty vector; (4) ABCA1-LSL and ABCG1-LSL. As expected, apoAI-mediated choles-
terol efflux was only enhanced in 293-Cre cells expressing ABCA1, and HDL2-mediated
cholesterol efflux was only increased in 293-Cre cells expressing ABCG1 (Figure 3A,B).
However, HDL3-mediated cholesterol efflux was shown to be increased in 293-Cre cells
expressing both ABCG1 and ABCA1 alone, with an additive effect in cholesterol efflux
being observed in the 293-Cre cells co-expressing transgenic ABCA1/ABCG1 (Figure 3C).
Moreover, an increase in heterogenous HDL-mediated cholesterol efflux was observed in
293-Cre cells expressing ABCA1 and ABCG1 simultaneously when compared to control
293-Cre cells and 293-Cre cells expressing ABCA1 alone, but not in 293-Cre cells expressing
ABCG1 alone. Additionally, while enhanced (heterogenous) HDL-mediated cholesterol
efflux was observed in 293-Cre cells expressing ABCG1 alone when compared to 293-Cre
control cells, no significant difference was observed when these ABCG1-overexpressing
293-Cre cells were compared to the 293-Cre cells expressing ABCA1 alone (Figure 3D).
These results demonstrate that ABCA1 is capable of efficiently effluxing cholesterol to
smaller HDL particles, which has been previously demonstrated [8,48].
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293-Cre cells transfected with either empty vector plasmid (E), ABCA1-LSL plasmid and empty
vector plasmid (A1/E), ABCG1-LSL plasmid and empty vector plasmid (G1/E), or ABCA1-LSL
and ABCG1-LSL plasmids (A1/G1), and incubated with either apoAI (A), HDL2 (B), HDL3 (C), or
heterogenous HDL (D) particles. Three independent experiments with three biological replicates per
treatment for each experiment. Data are mean ± SEM. Asterisks (*) indicate statistical significance
(p < 0.05).

4. Discussion

In this study, we wanted to demonstrate that employing an in vitro LSL-system is an
effective way to control ABCA1 and ABCG1 transgene expression in cultured cells through
the Cre-activated transgenic expression of ABCA1/ABCG1. When we transfected HEK293
cells and the HEK293-derived cell line 293-Cre cells with ABCA1-LSL and/or ABCG1-LSL-
based plasmids, we only detected the robust expression of transgenic ABCA1/ABCG1 in
the Cre-expressing 293-Cre cells. Thus, the in vitro model used in our experiments shows
proof-of-concept that an LSL-system can be successfully utilized when the transgenic ABC-
transporter expression needs to be induced at a precise point in time. From these results,
we propose that the LSL-system may be utilized to overexpress ABC-transporters at a
desired time point under specific stimuli. However, we do acknowledge that a limitation to
our sets of experiments was not measuring ABCA1/ABCG1 transgenic expression under a
variety of stimuli and diverse conditions.

In our experiments, we also measured cholesterol acceptor-mediated cholesterol efflux
in the transfected 293-Cre cells, and as expected, increased apoAI-mediated cholesterol
efflux was observed in ABCA1-overexpressing 293-Cre cells and increased HDL2-mediated
cholesterol efflux was observed in 293-Cre cells overexpressing ABCG1. An appreciable
amount of cholesterol being effluxed to small HDL particles was also observed in ABCA1-
overexpressing 293-Cre cells, which was shown in the heterogenous HDL- and HDL3-
mediated cholesterol efflux assays, indicating that small HDL particles can participate in
ABCA1-mediated cholesterol efflux. While our data strongly suggest ABC-transporter func-
tionality, including a catalytically deficient ABCA1/ABCG1 mutant as a negative control
might further strengthen our findings, as this may be considered to be a superior negative
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control over empty vector plasmids [49]. Furthermore, incorporating appropriate, well-
established ABCA1/ABCG1 positive/negative controls into future respective immunoblots
may enhance experimental observations, and so should be strongly considered for future
studies [8,11,50]. Additionally, we also acknowledge that analyzing cellular localization
of the transgenic ABC-transporters and assessing function using other novel approaches
would strengthen our cholesterol efflux assay results, as these proposed experiments are
sometimes performed when assessing both overexpression and function [51]. Moreover,
we recognize from our immunoblot experiments that a lack of replication and including
only one experiment per condition may be viewed as a weakness within our study.

ABCA1 and ABCG1 function has been analyzed in various tissues/organs by using
ABCA1fl/fl:ABCG1fl/fl mice and tissue-specific Cre-driver mice [11,25,26,52–55]. When using
inducible Cre mouse lines, ABC-transporter expression can also be ablated at a certain point
in time [56]. Moreover, culturing cells from ABCA1fl/fl:ABCG1fl/fl floxed mice ex vivo and
then transducing these cells with a Cre-expressing viral vector permits some control [57,58]
over when ABC-transporter expression would be ablated from these cultured cells. In
addition, developing immortalized cell lines from these floxed ABCA1/ABCG1 cells would
provide even greater flexibility on when ABC-transporter expression can be ablated, as this
would eliminate the issues of primary cells exhibiting a short lifespan in culture [59,60].
However, with regard to inducing ABCA1- and/or ABCG1-overexpression at a precise
time in vivo, there are currently no animal models generated that display this ability (to
the authors’ knowledge), which prevents the possibility of employing ex vivo approaches
to induce ABCA1/ABCG1-overexpression in cultured cells, as described above.

Viral vectors are a potential option to constitutively express ABC-transporters in vivo,
as viral vectors that overexpress ABCA1 or ABCG1 can be injected intravenously into mice
at various stages of life. However, there are challenges when using viral vectors to over-
express ABC-transporters in vivo. For instance, if ABCA1/ABCG1-overexpression needs
to be restricted to a certain tissue or cell type, a tissue-specific promoter would need to be
used along with a very high transduction efficiency to occur in the cells of interest. While
lentivirus transduces a broad range of cells and can provide stable transgene expression
through genome integration, lentivirus has a packaging capacity that can become prob-
lematic [61,62] for accommodating an expression cassette containing an ABCA1 transgene.
This in turn may result in inefficient lentiviral production and sub-optimal transduction ef-
ficiency when attempting to use an ABCA1-overexpressing lentiviral vector [62]. Moreover,
intravenous lentiviral injections have been shown to poorly transduce large arteries [63],
which makes this route of administration ineffective for overexpressing ABC-transporters
within the vessel wall through the use of viral vectors [33]. Though adenoviral vectors can
effectively package larger transgenes such as ABCA1 [64] (and ABCG1 [19]), tropism is
a concern when using adenovirus, as adenoviral vectors are unable to transduce certain
cells efficiently [65–67]. Another concern with adenoviral vectors is that they only provide
transient transgene expression due to adenoviral vector genomes remaining episomal and
so loss of transgene expression occurs during repeated cell division [68–70].

Some of the challenges described above for viral vector-mediated ABCA1/ABCG1-
overexpression in vivo are also present when using viral vectors to overexpress ABC-
transporters in vitro, which hinders the ability for assessing any potential therapeutic
role robust, long-term ABCA1, and/or ABCG1 expression might exhibit at the cellular
level. Furthermore, as plasmid transfection is poor in certain cultured cells and transgene
expression from plasmid transfection is transient [71,72], this unfortunately cannot be used
as an alternative to test for any possible long-term therapeutic effects of ABCA1/ABCG1-
overexpression at the cellular level. To overcome these concerns, stable cell lines can be
generated [73] via incorporating ABCA1-LSL and/or ABCG1-LSL into their respective
genomes. As we demonstrate in our proof-of-concept experiments involving transfected
HEK293 and 293-Cre cells, ABC-transporter expression would not be initiated in these
newly developed stable cell lines until the cells are exposed to Cre. Introducing Cre
recombinase to the stable cell lines can be easily accomplished via transfecting cultured cells
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with a Cre-expressing plasmid for easily transfectable cell lines. For difficult-to-transfect
cells, transducing cultured cells with either a Cre-expressing adenoviral vector, lentiviral
vector, or AAV vector can be performed instead. Exposing Cre-expressing plasmids or
viral vectors to the newly developed cell lines should result in robust and permanent [43]
ABC-transporter transgene expression within the cultured cells that have been successfully
transfected or transduced. As producing stable cell lines is relatively simple, fast, and
economical [60,73], this method could easily be employed to determine what therapeutic
role(s) robust ABC-transporter expression has at the cellular level, and allows scientists to
initiate long-term ABCA1/ABCG1 transgene expression at any specific time, regardless of
what experimental conditions are being used in vitro.

Data from our cholesterol efflux assays provided us with some expected and intriguing
results, when cholesterol efflux was measured in transfected 293-Cre cells exposed to
various cholesterol acceptors. While we anticipated increased apoAI-mediated cholesterol
efflux in 293-Cre cells constitutively expressing ABCA1 and enhanced HDL2-mediated
cholesterol efflux in ABCG1-overexpressing 293-Cre cells, we also observed a substantial
amount of both heterogenous HDL- and HDL3-mediated cholesterol efflux in the ABCA1-
overexpressing 293-Cre cells. However, the considerable amount of cholesterol efflux
observed in the ABCA1-overexpressing 293-Cre cells exposed to small HDL particles
accords with data that demonstrates ABCA1 is capable of efficiently effluxing cholesterol
to smaller HDL particles [8], and also suggests that ABCA1 is the primary contributor to
total cholesterol efflux via participating in both apoAI and small HDL-mediated cholesterol
efflux [48], while ABCG1 plays a minor, more supportive role in cellular cholesterol efflux.
Another interesting point to mention in our cholesterol efflux data is that we observed
trivial amounts of cholesterol efflux in HDL-mediated cholesterol efflux in 293-Cre cells
not expressing ABCA1 and ABCG1. While we initially assumed we would detect higher
levels of HDL-mediated cholesterol efflux in this group, it is possible that the low levels of
HDL-mediated cholesterol efflux observed in the ABCA1/ABCG1 non-expressing 293-Cre
cells is from the 293-Cre cells being a HEK293-derived cell line, and HEK293 cells only
express negligible amounts of SR-BI [74]. As SR-BI is able to participate in HDL-mediated
cholesterol efflux [6], this may partially explain why we observed such low levels of HDL-
mediated cholesterol efflux in control 293-Cre cells not expressing ABCA1 and ABCG1.

In conclusion, we demonstrate proof-of-concept how implementing an in vitro LSL-
system can effectively control ABC-transporter expression in cultured cells through Cre-
mediated activation. Utilizing in vitro models that employ this LSL-system to regulate
constitutive ABCA1 and/or ABCG1 expression is superior to overexpressing transgenic
ABCA1/ABCG1 expression in cultured cells via plasmid transfection or transduction using
viral vectors. Lastly, when robust ABCA1 expression occurred in 293-Cre cells transfected
with an ABCA1-LSL plasmid, we observed an appreciable increase in smaller HDL particle-
mediated cholesterol efflux in addition to apoAI-mediated cholesterol efflux. These results
suggest that ABCA1 appears to participate in both apoAI- and (small) HDL-mediated
cholesterol efflux, which would imply that ABCA1 plays a predominant role in total
cholesterol efflux. Hence, ABCA1-dependent cholesterol efflux may better facilitate the
removal of excess cholesterol when compared to ABCG1, with ABCA1 contributing to the
efflux of cellular cholesterol by interacting with multiple cholesterol acceptors.
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