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Response to comment on “Reexamination of 2.5-Ga
‘whiff’ of oxygen interval points to anoxic ocean
before GOE”
Sarah P. Slotznick1*, Jena E. Johnson2, Birger Rasmussen3,4, Timothy D. Raub5,6,
Samuel M. Webb7, Jian-Wei Zi4, Joseph L. Kirschvink8,9, Woodward W. Fischer8

Sedimentological, textural, and microscale analyses of the Mount McRae Shale revealed a complex postdepo-
sitional history, previously unrecognized in bulk geochemical studies. We found that metal enrichments in the
shale do not residewith depositional organic carbon, as previously proposed by Anbar et al., but with late-stage
pyrite, compromising claims for a “whiff” of oxygen ~50 million years before the Great Oxygenation Event.
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The first step in understanding the history preserved in ancient
rocks requires asking and answering some critical questions: How
did the rock form? How did the minerals present get there? In other
words, where and when did the information get stored?

Several geochemical analyses of Archean sedimentary rocks have
uncovered small enrichments of redox-sensitive metals [molybde-
num (Mo) and rhenium (Re)] in pyritic carbonaceous shale.
Among the earliest and most cited studies is that by Anbar et al.
(1) from the 2.5-Ga Mount McRae Shale intersected in drill core
ABDP-9, Western Australia. The correlation between metal abun-
dance and organic carbon content led those authors to interpret
that contemporaneous seawater was enriched in these metals, sup-
plied from oxidative weathering of pyrite on land.

One limitation of Anbar et al.'s work (1) and many other redox
proxies applied to the ABDP-9 core is that measurements were
carried out on bulk samples (5 cm by 3 cm by 1 cm), destroying
textural information and mixing depositional (primary) and non-
depositional (secondary) components. We collected high-spatial
resolution microscopic and analytical data to probe the origins of
these signals for O2 and answer the critical questions posed above
(2). Our work revealed many stages of overprinting [at least five that
we could date with U-Pb (3)]. These rocks have an exceedingly
complex petrology; our data unraveling this history provide a frame-
work for more nuanced reading of the chronicles recorded
within them.

The usefulness of this textural approach is exemplified by the
conspicuous development of a calcium sulfate, probably gypsum,
within the fissile “whiff” interval in ABDP-9. A naïve interpretation
of these observations might invoke that strata accumulated below
sulfate-rich seawater in the highly evaporitic environment required

to precipitate such a soluble salt. However, our textural and chem-
ical imaging data make clear that this is an incorrect interpretation
because cross-cutting relationships show that the sulfate minerali-
zation was related to oxidative weathering taking place in recent
time (2).

Anbar et al. (4) suggested that the Re and Mo enrichments are
primary because a whole-rock rhenium-osmium (Re-Os) isochron
yielded a plausible depositional age. Note the Re values in (4) used a
different digestion (that dissolves silicates and some organics) than
the Re-Os isochron’s digestion (5) that targets organics (6). Re is
enriched in volcanic glass (7), so it could have a similar source as
Mo without affecting the Re-Os isochron. However, there are
further problems with the interpretation of the Re-Os age,
derived from samples collected across a 3.1-m interval. Our U-Pb
zircon tuff ages (2) indicated that 3.1 m represents 3.2 to 5.5
million years. Because Os and Re residence times are 10,000 and
130,000 years, respectively (8, 9), this violates the requirement
that initial 187Os/188Os be identical between samples; the slope
might reflect a mixing relationship rather than a true isochron
[e.g., (10)].

Our study examined the petrogenesis of Mo; we observed that
Mo is correlated with exceptionally high levels of arsenic (As) and
hosted by late veins of cross-cutting pyrite and nodule-rims concen-
trated in highly fissile regions of the stratigraphy [figures 1, 2, and
S11 of (2)]. Arsenic and other trace metals were also found in pyrite
laminae [figures S8 and S9 of (2)], which were in 50% of the bulk
whiff interval samples analyzed by Anbar et al. (1) (Fig. 1). Dissem-
inated pyrite (4) is not simply early diagenetic [e.g., (11)]—our ob-
servations revealed disseminated pyrite mineralization focused
along microfaults and cross-cutting mud particles [figure 1 of
(2)]. There are many generations of pyrite apart from the one
hosting Mo, so it is unsurprising that Mo and pyrite content do
not correlate (4). Despite the hypotheses by Anbar et al. (1, 4), we
did not detect Mo in organic phases [figure S10 of (2)]. If the Mo
entered the sediment via organic carbon (1, 4), then it must have
been mobilized during later metasomatic events to appear in the
current host phases. Importantly, the organic content of the
Mount McRae Shale is highest in the region where we observed
the most fissile cleavage (Fig. 1). This is also where bulk Mo is
highest, where secondary clinochlore veins are most abundant,
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and where secondary pyrite mineralization is maximal—a suite of
observations that explain why organic carbon correlates with Mo.

We described several subequal hypotheses for the origin of the
Mo, including a primary source in volcanic glass or a secondary in-
troduction of Mo- and As-rich fluids (2). Anbar et al. (4) argue that
enrichments from volcanic glass [Mo of ~10 parts per million
(ppm)] cannot be enough to cause the observed amount in the
whiff interval (up to 40 ppm). However, Mo in volcanic glass
could have been intraformationally concentrated by late pyrite min-
eralization that preferentially targeted the whiff interval due to its
fissile nature and inherent permeability (Fig. 1). If one integrates
Mo across the entire column (and normalizes to 1 cm), then the cal-
culated abundance is only 91 parts per billion (ppb) or, for just the
whiff interval, 194 ppb. Thus, the Mo content of the entire volcani-
clastic-rich Mount McRae Shale is unremarkable, and our observa-
tions showed that it was secondarily concentrated. Put simply, Mo is
hosted by late mineralization and therefore cannot be used as a
robust paleoenvironmental proxy.

All is not lost. Textural observations also pointed to signals that
we can identify as primary—pyrite nodules with differential com-
paction [Fig. 1 and figures 1, S8, and S9 of (2)] with multiple sulfur
isotopic signals that are only produced and preserved when global
O2 is <1 ppm (2, 12). Furthermore, the unusually high organic
carbon preservation at low sedimentation rates is a local signal in-
dicating anoxic conditions in the Mount McRae Shale depositional
environment. These two independent and primary observations
from the original sediments point to anoxic oceans ~2.5 billion
years ago.
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Fig. 1. Relationships between total organic carbon (TOC) and molybdenum (Mo) with permeable regions of abundant fissile cleavage and late mineralization
(clinochlore veins and many generations of pyrite). Images with arrows come from within 2 cm of samples analyzed for bulk geochemistry. Pyrite laminae (py. lam.)
demarcation from (1); pyrite sulfur calculated from (13). wt %, weight %.
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