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Abstract

Dual Oxidases (DUOX) 1 and 2 are efficiently expressed in thyroid, gut, lung and immune system. The function and the
regulation of these enzymes in mammals are still largely unknown. We report here that DUOX 1 and 2 are expressed in
human neuroblastoma SK-N-BE cells as well as in a human oligodendrocyte cell line (MO3-13) and in rat brain and they are
induced by platelet derived growth factor (PDGF). The levels of DUOX 1 and 2 proteins and mRNAs are induced by reactive
oxygen species (ROS) produced by the membrane NADPH oxidase. As to the mechanism, we find that PDGF stimulates
membrane NADPH oxidase to produce ROS, which stabilize DUOX1 and 2 mRNAs and increases the levels of the proteins.
Silencing of gp91phox (NOX2), or of the other membrane subunit of NADPH oxidase, p22phox, blocks PDGF induction of
DUOX1 and 2. These data unravel a novel mechanism of regulation of DUOX enzymes by ROS and identify a circuitry linking
NADPH oxidase activity to DUOX1 and 2 levels in neuroblastoma cells.
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Paternò, Dr. Damiano); MIUR (Ministero dell’Università e della Ricerca) Dr. Laccetti, Dr. Mondola, Dr. Avvedimento; AIRC (IG 11364), Dr. Laccetti, Dr. Avvedimento.
Dr. Fusco is recipient of a fellowship in the PhD program in Molecular Genetics, Università di Napoli Federico II, Naples, Italy. Funders had no role in study design,
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Introduction

Dual oxidases or DUOX (the products of DUOX 1 and 2

genes) are NADPH oxidase (NOX) enzymes (EC 1.6.3.1) that

contain the membrane-bound flavocytochrome segment of

NADPH oxidase, fused to an extra-cellular peroxidase (EC

1.11.1) domain [1-4]. DUOX1 and 2 were first cloned in the

thyroid but their expression has been so far demonstrated in

several tissues, especially colon, lung and immune system [5].

Although these enzymes are important sources of local ROS, their

function and regulation are still unknown. In thyroid DUOX

proteins are localized to the apical pole of follicular cells, where

they produce H2O2, necessary for organification of iodine and

synthesis of thyroid hormones [6-8]. Targeted production of ROS

by DUOX enzymes seems essential for gut immunity in

Drosophila [9]. Since ROS production may be harmful to the

tissue, DUOX enzymes are regulated by several positive and

negative signals to finely adjust ROS production to the changing

environment in lung or intestinal epithelium [10]. A positive

stimulus is received by a not-yet identified G protein-coupled

receptor, which signals through phospholipase C (PLC)-b to

activate DUOX 1 and 2 expression; Ca++ ions, which are essential

for their enzymatic activity, are able also to stimulate or inhibit

DUOX 1 and 2 expression. As example, Ca++ activates

calcineurin, which represses the transcription of DUOX 1 and 2

genes [11].

While targeted production of ROS is an essential element

controlling immune homeostasis in gut, the function and the

regulation of DUOX enzymes in other cell types, such as neurons,

not directly exposed to the foreign environment, are not obvious.

DUOX are also expressed in the respiratory tract epithelium and

are differentially regulated by cytokines, but their specific function

in this compartment remains still elusive [12].

ROS modulate different physiological functions, beside innate

immunity, such as the biosynthesis of thyroid hormones, cellular

signalling, gene expression, cellular growth and death [3,13].
Oscillations of ROS levels mark proliferation and neoplastic

transformation [14]. Inhibitors of oxidases (NOX/DUOX) appear

to prevent in some circumstances complications in chronic diseases

[15,16].

ROS produced by NOX enzymes have been demonstrated to

exert cell signalling functions in CNS modulating neuronal

differentiation [17], synaptic activity [18], learning, memory and

long term potentiation [19-21], etc. The presence of constitutive or

inducible NOX1-4 isoforms have been widely demonstrated in

CNS (for a review see [22]). Instead, the expression of DUOX
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enzymes in cells of CNS is not been clearly documented and no

data are available about the regulation or functions of these

enzymes in the CNS. The current proposed function of DUOX as

component of peroxidase-host defence system, which is similar to

the MPO-hydrogen peroxide in neutrophils, is easily applicable to

lung, gut, thyroid, but difficult to extrapolate it to neurons.

To find the function of the DUOX system in neuronal cells, we

have first investigated the presence of DUOX1 and 2 proteins in

the brain and then the regulation of their expression in SK-N-BE

cells. We have previously demonstrated that, in human neuro-

blastoma SK-N-BE cells, the Ras/extracellular signal-regulated

kinase (ERK1/2) pathway stimulates NADPH oxidase inducing

ROS levels [23]. By using a combination of biochemical and

molecular techniques, we here demonstrate that DUOX 1 and 2

are rapidly induced by ROS produced by membrane NADPH

oxidase. PDGF activates NADPH oxidase and increases ROS

levels, which stabilize DUOX 1 and 2 mRNAs. These data reveal

a regulatory network linking membrane NADPH oxidase, ROS

and DUOX1 and 2 levels and highlight a novel function of

DUOX enzymes in neurons as ROS sensors.

Materials and Methods

Ethics Statement
All animal procedures were approved by the Ethical Animal

Care Committee of the University of Naples ‘‘Federico II’’ (prot.

N. 2011/0082857 and prot. N. 2012/0009089).

Reagents
Human recombinant PDGF-BB, apocynin, actinomycin D and

4-(2-Aminoethyl) benzenesulfonyl fluoride (AEBSF), were pur-

chased from Sigma (USA). BAPTA-AM was purchased from

Calbiochem (USA).

Cell culture
Human neuroblastoma SK-N-BE cells (American Type Culture

Collection, ATCC, USA) were grown in monolayer in RPMI

1640 medium supplemented with 10% foetal bovine serum (FBS),

2 mM L-glutamine, 50 mg/ml streptomycin and 50 IU/ml

penicillin.

MO3.13 (CELLution Biosystem Inc., Canada), an immortal

human-human hybrid cell line, expressing the molecular markers

of oligodendrocytes, and Caco-2 cells, a human epithelial

colorectal adenocarcinoma cells, were grown in Dulbecco’s

Figure 1. DUOX proteins are expressed in brain and are induced by PDGF in SK-N-BE cells. (A) Western blot analysis of DUOX proteins in
the human oligodendrocyte cell line M03-13, human neuroblastoma (SK-N-BE) cells and rat brain total extract (total) and membrane fraction (M). (B)
Confocal microscopic images displaying DUOX immunoreactivity in coronal rat brain slices. The negative control incubated with secondary antibody
alone is shown in a; x10 (b and c) and x20 (d and e) magnifications are shown; in the inset of image e is shown a further magnification of the cell
indicated by the white arrow to highlight the staining of both cell body and extensions. (C) SK-N-BE cells were incubated for 18h in medium
containing 0.2% FBS and were then stimulated with increasing doses of PDGF for 15min before harvesting them for immunoblot analysis for DUOX
protein. (D) SK-N-BE cells were incubated for 18h in medium containing 0.2% FBS and were then stimulated with 15ng/ml of PDGF for the indicated
times before harvesting them for immunoblot analysis for DUOX protein. The histograms show the mean +/- SEM values relative to control obtained
by densitometric analysis of DUOX bands normalized for a-tubulin of three independent experiments. The same blots were also probed with
antibodies directed against superoxide dismutase (SOD) 1 enzyme to point out the specificity of the effect of PDGF on DUOX proteins. * p,0.01 and
** p,0.05 vs Ctr.
doi:10.1371/journal.pone.0034405.g001

ROS Regulation of DUOX 1 and 2 Expression
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Modified Eagles Medium (DMEM), containing 4.5g/L glucose,

supplemented with 10% FBS, 100 U/ml penicillin and 100 mg/ml

streptomycin.

The cells were kept in a 5% CO2 and 95% air atmosphere at

37uC.

Western blotting analysis
SK-N-BE and M03-13 cell lysates were obtained in RIPA buffer

(50mM Tris-HCl, pH 7.5, 150mM NaCl, 1%NP40, 0.5%

deoxycholate, 0.1% sodium dodecyl sulphate (SDS) containing

2.5mM Na-pyrophosphate, 1mM b-glycerophosphate, 1mM

NaVO4, 1mM NaF, 0.5mM phenyl-methyl-sulfonyl-fluoride

(PMSF), and a cocktail of protease inhibitors (Roche, USA). The

cells were kept for 15min at 4uC and disrupted by repeated

aspiration through a 21-gauge needle. Cell lysates were centri-

fuged for 10 min at 11,600xg and the pellets were discarded. Fifty

micrograms of total proteins were subjected to sodium dodecyl

sulphate – 7.5% polyacrylamide gel electrophoresis (SDS-PAGE)

under reducing conditions. After electrophoresis, the proteins were

transferred onto a nitrocellulose filter membrane (GE-Healthcare,

UK) with a Trans-Blot Cell (Bio-Rad Laboratories, UK) and

transfer buffer containing 25 mM Tris, 192 mM glycine, 20%

methanol. Membranes were placed in 5% non-fat milk in

phosphate-buffered saline, 0.5% Tween 20 (PBST) at 4uC for

2 hr to block the nonspecific binding sites. Filters were incubated

with specific antibodies before being washed three times in PBST

and then incubated with a peroxidase-conjugated secondary

antibody (GE-Healthcare, UK). After washing with PBST,

peroxidase activity was detected with the enhanced chemilumi-

nescence (ECL) system (GE-Healthcare, UK).

DUOX 1 and 2 proteins were detected with a rabbit polyclonal

antibody raised against the peptide sequence ETELTPQRLQC

located inside the first intracellular loop of human DUOX1; the

specificity of the antibodies was tested using human primary

thyroid cells as positive control and pre-immune serum as negative

control (not shown); goat anti gp91phox (NOX2) and rabbit p22phox

or SOD1 polyclonal antibodies were purchased by Santa Cruz

Biotechnology (USA);

The filters were also probed with an anti a-tubulin antibody

(Sigma, USA). Protein bands were revealed by ECL and, when

Figure 2. PDGF induction of DUOX levels is mediated by ROS. SK-N-BE cells were incubated 18h in medium containing 0.2% FBS,
preincubated 1h with 50mM Apocynin (Apo) and then stimulated with 15ng/ml of PDGF (A) or 10% FBS (B) for 15min before
harvesting them for immunoblot analysis of DUOX. The histograms show the mean +/- SEM values relative to control obtained by
densitometric analysis of DUOX bands normalized for a-tubulin of three independent experiments. * p, 0.01 vs Ctr; ** p, 0.05 vs PDGF (A); ***p,
0.01vs FBS (B); (C) SK-N-BE cells were incubated 18h in medium containing 0.2% FBS and were then stimulated with 15mM H2O2 15min before
harvesting them for immunoblot analysis of DUOX. The histograms show the mean +/- SEM values relative to control obtained by densitometric
analysis of DUOX bands normalized for a-tubulin of three independent experiments. * p, 0.01 vs Ctr. (D) RT- PCR analysis of DUOX 1 and 2 mRNA
levels of SK-N-BE cells incubated 18h in medium containing 0.2% FBS, preincubated 1h in the presence or absence of 50mM Apocynin (Apo) and then
stimulated with 15ng/ml of PDGF, 15mM H2O2 or 10% FBS for 15min. The histograms show the mean +/- SEM values relative to control of three
independent experiments. * p, 0.01 vs Ctr; ** p, 0.05 vs PDGF; *** p, 0.01 vs H2O2. **** p, 0.05 vs FBS.
doi:10.1371/journal.pone.0034405.g002
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specified, quantified by densitometry using Scion Image software.

Densitometric values were normalized to a-tubulin.

Rat brain membrane preparation
Rat brain was homogenized in 250 mM sucrose, 5 mM

imidazole, pH 6.5, and 0.5 mM dithiothreitol (1:4, wt/vol), using

a glass-Teflon potter and then centrifuged at 800 g at 4uC for

10 min. The supernatant was centrifuged at 100,000 g at 4uC for

45 min in a 70.1 Ti rotor (Beckman, USA). The membrane pellet

was suspended in RIPA buffer and 50 mg of proteins were then

subjected to Western blotting.

Real Time and semi-quantitative PCR
RNA isolation and real-time PCR were performed as follow:

Total RNA was extracted using TRI-reagent according to the

protocol provided by the manufacturer (Sigma, USA). Total RNA

(4 mg) was reverse transcribed with Omniscript Reverse Tran-

scriptase (Quiagen, USA) by oligo-dT primers for 60 min at 37uC
in 40 ml reaction volumes. Real-time PCR was performed with an

ABI 5700 or ABI PRISM-7900HT Sequence Detection System

(Applied Biosystems Inc., USA). Reactions were carried out in 96-

well optical reaction plates in a 50 ml final volume containing 25 ml

of the SYBR-Green (Applied Biosystems Inc., USA) PCR master

mix, 1,25 ml of each gene-specific primer, 40 ng of sample cDNA.

Gene-specific primers were designed to selectively amplify

DUOX1, DUOX2, DUOXA1 or NOX2 and relative expression

values were normalized using glucose-6-phosphate dehydrogenase

(G6PD). The SYBRGreen (Applied Biosystems Inc., USA)

fluorescence was measured at each extension step. The threshold

cycle (Ct) value reflects the cycle number at which the fluorescence

measurement reached an arbitrary threshold. Melting curve

analysis was performed to determine the specificity of the reaction.

Real-time PCR was conducted in triplicate for each sample and

the mean value was calculated.

Semi-quantitative PCR was performed in 20 ml final volume

containing 0.5 mM of dNTP, 0.2 mM of the specific primers and

100 ng of sample cDNA. The PCR conditions used were 94uC
1.5 min, (94uC 30sec, 60uC 30 sec, 70uC 45 sec), 70uC 10 min.

The reactions were carried out at different cycles (15–25–35).

Primers used in these studied are the following:

Human DUOX1: 59-TTC ACG CAG CTC TGT GTC AA-39

39-AGG GAC AGA TCA TAT CCT GGC T-59

Human DUOX2: 59- ACG CAG CTC TGT GTC AAA GGT-

39 59- TGA TGA ACG AGA CTC GAC CAG GC-39.

Human G6PD (F), ACA GAG TGA GCCC TTC TTC AA

(R), ATA GGA GTT GCG GGC AAA G

Human NOX1 (F), GTA CAA ATT CCA GTG TGC AGA

CCA C (R), CAG ACT GGA ATA TCG GTG ACA GCA

Human cytochrome b-245, beta polypeptide (CYBB, alias NOX2)

(F), GGA GTT TCA AGA TGC GTG GAA ACT A (R), GCC

AGA CTC AGA GTT GGA GAT GCT Human NOX 3 (F),

CAC ACC ATG TTT TCA TCG TCT T (R), GAA GAT ATG
GCTGGG CAC TG

Human NOX4 (F), GCT TAC CTC CGA GGA TCA CA (R),

CGG GAG GGT GGG TAT CTA A Human NOX 5 (F), ATC

AAG CGG CCC CCT TTT TTT CAC ( R), CTC ATT GTC
ACA CTC CTC GAC AGC

Human DUOXA1 (F), TTC ATC GTC ATC CTG CCT

GGC ATT (R), TCC ACT CAG AAC TGA AGG CCT TGT

RNA interference
Human NOX2 small interfering RNAs (siRNAs) were obtained

from DHARMACON (ON-TARGETplus) (USA). Human

p22phox siRNA (Stealth RNAiTM) were obtained from Invitrogen

Corporation (USA). Transfection of siRNAs was carried out by

MicroPorator (MP-100) Digital Bio Technology, a pipette-type

electroporation. Cells were dissociated by a brief treatment with

trypsin-EDTA, and counted. Indicated plasmids, DNAs and

siRNA were introduced into each 1X106 dissociated cells in 300

ml volume according to manufacturer’s instructions. The experi-

mental conditions were optimized for SK-N-BE cells: Voltage

1200, width 20 msec, 3 pulse. Electroporated cells were then

seeded into culture dishes containing pre-warmed culture media.

We transfected independently 2 different NOX2 and p22phox

siRNAs and obtained similar results. NOX2 or p22phox knockdown

was tested by immunoblot. NOX2 knockdown was also tested by

RT-PCR. As controls were used ‘‘nontargeting’’ (NT) scrambled

siRNAs. In all experiments siRNAs were used at a final

concentration of 100 nM and cotransfected with 2mg of Green

Fluorescent Protein (GFP) plasmid to evaluate transfection

efficiency. Percent of GFP positive cells were evaluated after 48h

of transfection by flow cytometry. Transfection efficiency was 70

67%.

Fluorimetric Determination of Reactive Oxygen Species
ROS levels were determined by the membrane-permeant ROS

sensitive fluorogenic probe 5,6-carboxy-2’, 7’-dichlorofluorescein-

diacetate, DCHF-DA (Molecular Probes, The Netherlands). SK-

N-BE cells were grown to semi-confluence in 24 multiwell plates

and incubated for 18h in medium containing 0.2% FBS before the

experiments. The cells were washed twice with calcium-free PBS

and incubated in the same buffer with 10mM DCHF-DA for

10min and with or without 10mM of the intracellular calcium

chelator BAPTA-AM for 5 min at 37uC. Then, cells were washed

three times with PBS containing 10mM glucose, 1.2 mM MgCl2
and 1.2 mM CaCl2 and stimulated with 15ng/ml of PDGF.

Dichlorofluorescein (DCF) fluorescence was measured at different

time intervals using the plate reader Fluoroskan Ascent FL

fluorometer and data analysed by Ascent software.

H2O2 measurement
Extracellular H2O2 levels were determined with the Colorimet-

ric Hydrogen Peroxide kit from Stressgen (USA). 8x105 SK-N-BE

cells were grown in 24- Multiwell plates and the test was carried

out on 50ml of cell medium.

Immunofluorescence and confocal microscope analysis
of DUOX in rat brain sections

The animals were anesthetized intraperitoneally with chloral

hydrate (200 mg/kg) and perfused transcardially with 4%

paraformaldheyde in phosphate buffer. The brain was sectioned

coronally at vibratome (slice thickness 100 mm) and after blocking

in phosphate buffer containing 10% FBS, 1% BSA, 0.1% Triton

X100 (buffer A) for 1h at room temperature, sections were

incubated overnight at 4uC with a mix of primary goat anti human

DUOX1 and DUOX2 antibodies from Santa Cruz Biotechnology

(USA), at 1:100 dilution in buffer A. Then, the sections were

washed in phosphate buffer, and incubated for 1h at room

temperature with Cy5-conjugated anti goat Ig secondary antibody

at 1:200 dilution in buffer A.

The sections were examined using a Zeiss LSM 510 Meta laser

scanning confocal microscope. The negative control, incubated with

secondary antibody alone, did not show any non-specific staining.

Statistical analysis
Statistical differences were evaluated using a Student’s t-test for

unpaired samples.

ROS Regulation of DUOX 1 and 2 Expression
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Results

DUOX proteins are expressed in the brain
Since the presence of DUOX enzymes in the brain has not been

firmly demonstrated, we first have analyzed by Western blotting the

expression of DUOX1 and 2 proteins in rat brain, in a stabilized

human oligodendrocytes cell line (M03-13) and in neuroblastoma

(SK-N-BE) cells (Fig. 1A). In addition, to obtain information on the

localization of these proteins at cell level, we have evaluated their

presence in the membrane fraction of rat brain tissue. Both cell lines

tested and brain tissue express high levels of the proteins that are

concentrated in membranes. A specific DUOX immunoreactivity

in the brain has been detected also in rat coronal brain slices by

confocal immunofluorescence analysis (Fig. 1B). Large brain areas,

in part corresponding to cortical layers, are selectively immuno-

stained for DUOX. Higher magnification shows that the signal is

confined to the cell body and dendrites.

PDGF stimulates DUOX1 and 2 levels by increasing ROS
in neuroblastoma cells

To study the regulation of these proteins, we have stimulated

SK-N-BE cells with PDGF, which exerts trophic effects on a

variety of neurons [24-26]. PDGF induces DUOX proteins in cells

preincubated for 18 hrs in medium containing 0.2% FBS in a

dose- and time-dependent manner with a peak of activity at

15 ng/ml for 15 min (Fig. 1C and D). These conditions have been

used for all subsequent experiments. Serum starvation does not

exert any toxic effect as evidenced measuring cell death by

propidium iodide staining and cytofluorimetric analysis; also,

serum starvation strongly downregulates the phosphorilation levels

of ERK1/2, a kinase downstream PDGFR (data not shown) that

normally increases in stress conditions.

Since PDGF stimulates in many cellular systems, neurons

included, NADPH oxidase and increase ROS production [27] and

(Agnese et al. in preparation), we have tested if ROS produced by

Figure 3. Silencing of p22phox inhibits the induction of DUOX 1 and 2 protein and mRNA levels by PDGF. (A) Identification of NOX
expressed in neuroblastoma (SK-N-BE) and colon carcinoma (Caco-2) cells. Total RNA was extracted with Trizol, reverse transcribed and analyzed by
PCR (see Materials and Methods) with specific primers to NOX1, NOX2 and NOX4 (left) or NOX3 and NOX5 (right). The number of cycles was 35. (B)
Cells were transfected by electroporation with two different (45 and 46) siRNA to p22phox (siRNA p22phox) or control, scrambled siRNA (scramble) as
described in Materials and Methods. 48h after transfection, total proteins were extracted and subjected to immunoblot analysis of p22phox. The
histograms show the mean +/- SEM values relative to scramble obtained by densitometric analysis of p22phox bands normalized for a-tubulin of three
independent experiments. *p, 0.01 vs scramble. (C) 24h after transfection cells were incubated in medium containing 0.2% FBS for 18h and then
stimulated with 15ng/ml of PDGF for 15min. Total proteins were extracted and subjected to immunoblot analysis of DUOX. The histograms show the
mean +/- SEM values relative to samples not stimulated with PDGF (Ctr) obtained by densitometric analysis of DUOX bands normalized for a-tubulin
of three independent experiments. * p, 0.01 vs Ctr. (D, E) 24h after transfection with a mix of the two p22phox siRNA, cells were incubated in medium
containing 0.2% FBS for 18h and then stimulated with 15ng/ml of PDGF for 15min, mRNA was extracted and DUOX1 and DUOX2 mRNA levels were
analyzed by RT-PCR as described in Materials and Methods. The histograms show the mean +/- SEM values relative to samples not stimulated with
PDGF (Ctr) of three independent experiments. * p,0.05 vs Ctr; ** p,0.05 vs PDGF stimulated scramble.
doi:10.1371/journal.pone.0034405.g003
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membrane NADPH oxidase mediate PDGF effects on DUOX1

and 2 expression. To this end, we have treated the cells with

PDGF or 10% FBS in the presence of apocynin, a ROS scavenger

and inhibitor of NADPH oxidase [16]. Pre-treatment of cells with

apocynin eliminates PDGF or 10% FBS induction of the protein

(Fig. 2A and B) and mRNAs (Fig. 2D). The induction of DUOX 1

and 2 protein and mRNA levels by FBS indicates that growth

factors other than PDGF could play a similar role in the regulation

of the expression of these proteins. Also, hydrogen peroxide alone

is able to induce DUOX protein and mRNA levels and this effect

is eliminated by apocynin, an anti-oxidant an NADPH inhibitor

[28] (Fig. 2C and D). These data indicate that ROS, induced by

PDGF and other growth factors, stimulate DUOX1 and 2

expression (proteins and mRNAs); apocynin, as anti-oxidant and

NADPH oxidase inhibitor [28], prevents PDGF, FBS or H2O2

induction of DUOX, suggesting that ROS, possibly generated by

NADPH oxidase, mediate such an effect. To find the role of

NADPH oxidase (NOX) on DUOX1-2 expression, we first

determined which NOX is expressed in neuroblastoma cells.

Fig. 3A shows that SK-N-BE cells express NOX2 and NOX5, as

colon carcinoma cells (Caco-2) used as control [29] and NOX3

(Fig. 3A). Since the membrane subunit p22phox is closely associated

with the catalytic membrane subunit of 4 of the 5 NOX isoforms

(NOX1-4) [30], we have silenced this subunit to knock down all

the NOX isoforms in SKB cells. Fig. 3B shows that the specific

siRNAs selectively reduce p22phox protein levels and eliminate

PDGF induction of DUOX enzymes (Fig. 3C). PDGF induction of

DUOX 1 and 2 mRNA levels is also abolished by p22phox silencing

(Fig. 3D and E). We have silenced also NOX2 (Fig. 4A and B) and

we found that PDGF induction of DUOX protein (Fig. 4C) and

mRNA levels (Fig. 4D and E) was abolished as well as in p22phox

knock-down cells. The maturation factor DUOXA1, which is

essential for the biological activity of the enzyme, is also stimulated

by PDGF but its induction is not influenced by NOX2 levels

(Fig. 4F). Taken together these data indicate that NOX2 is the

major inducer of DUOX expression in neuroblastoma cells

exposed to PDGF.

We next have examined whether the induction of DUOX1 and

2 mRNA levels by PDGF is mediated by stimulation of gene

transcription or by a post-transcriptional mechanism. To test

Figure 4. Silencing of NOX2 inhibits the induction of DUOX 1 and 2 protein and mRNA levels by PDGF. (A-F) SK-N-BE were transfected
by electroporation with siRNA to NOX2 (05 and 06) (siRNA NOX2) or control, scrambled siRNA (scramble) as described in Materials and Methods. (A)
48h after transfection, total proteins were extracted and subjected to immunoblot analysis of NOX2. The histograms show the mean +/- SEM values
relative to scramble obtained by densitometric analysis of NOX2 bands normalized for a-tubulin of three independent experiments. *p, 0.01 vs
scramble. (B) 48h after transfection with a mix of the two NOX2 siRNA, mRNA was extracted and NOX2 mRNA levels were analyzed by RT-PCR as
described in Materials and Methods. The histograms show the mean +/- SEM values relative to scramble of three independent experiments. * p, 0.01
vs scramble. (C) 24h after transfection cells were incubated in medium containing 0.2% FBS for 18h and then stimulated with 15ng/ml of PDGF for
15min. Total proteins were extracted and subjected to immunoblot analysis of DUOX. The histograms show the mean +/- SEM values relative to
samples not stimulated with PDGF (Ctr) obtained by densitometric analysis of DUOX bands normalized for a-tubulin of three independent
experiments. * p, 0.01 vs Ctr. (D-F) 24h after transfection with a mix of the two NOX2 siRNA, cells were incubated in medium containing 0.2% FBS
for 18h and then stimulated with 15ng/ml of PDGF for 15min, mRNA was extracted and DUOX1 (D), DUOX2 (E) and DUOXA1 (F) mRNA levels were
analyzed by RT-PCR as described in Materials and Methods. The histograms show the mean +/- SEM values relative to samples not stimulated with
PDGF (Ctr) of three independent experiments. * p, 0.01 vs Ctr; **p, 0.01vs PDGF stimulated scramble.
doi:10.1371/journal.pone.0034405.g004
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specifically this point, we have measured the half-life of DUOX1

and 2 mRNAs by exposing the cells for various periods of time to

actinomycin D, under conditions of selective inhibition of RNA

polymerase II-driven transcription. Fig. 5A and B show that the

mRNAs of both proteins decay with a rapid kinetic with an half-

life of 11min and 14 min for DUOX1 and DUOX2, respectively.

PDGF is able to induce DUOX1-2 mRNA levels even in the

presence of actinomycin D. In fact, the decay of the DUOX

mRNAs was significantly modified by PDGF. The half-life of

DUOX1 and DUOX2 mRNAs in cells exposed to PDGF is

approximately 299 and 196 min, respectively, compared to 11 and

14 min, respectively in the absence of PDGF. This induction is

mediated by ROS, because co-incubation of the cells with PDGF

and apocynin in the presence of actinomycin D, eliminates the

effects of PDGF on mRNAs stabilization by decreasing the half-life

(18.5 and 22 min for DUOX1 and DUOX2, respectively). Under

these conditions, apocynin inhibition of PDGF induction is

reversed by hydrogen peroxide (not shown) supporting the

hypothesis that ROS produced by NADPH oxidase are mediators

of PDGF effects on mRNA stability. Western blotting analysis of

DUOX protein levels measured in the same experimental

conditions, shows that the time-dependent decay of the proteins

in the presence of actinomycin D and PDGF is similar to that of

mRNA levels and that apocynin inhibits PDGF induction of

DUOX proteins. Collectively, these data indicate that PDGF

regulates DUOX1-2 levels by modifying the stability of the specific

mRNAs and that this effect is mediated by ROS generated by

NADPH oxidases (Fig. 5C).

PDGF stimulates both NOX and DUOX enzymes
To test whether higher levels of DUOX proteins are translated

into higher levels of enzymatic activity, we have measured ROS

levels in the presence or absence of the intracellular calcium

chelator BAPTA-AM. Since DUOX activity is tightly dependent

on calcium, the difference between ROS levels measured in the

presence and absence of BAPTA-AM represents an indirect

measure of DUOX activity. We note, however, that also the

activity of NOX5, expressed by neuroblastoma cells (Fig. 3A), is

stimulated by calcium; NOX5 does not require p22phox subunit

[30] and is not involved in the PDGF induction of ROS and

DUOX1-2 expression, since silencing of p22 phox inhibits PDGF

Figure 5. PDGF increases DUOX1 and 2 mRNAs stability. (A, B) RT- PCR analysis of DUOX 1 and 2 mRNA levels of SK-N-BE cells incubated 18h
in medium containing 0.2% FBS, and then treated with of 1mg/ml of actinomycin D for the indicated times in absence or presence of 15ng/ml of
PDGF and 50mM apocynin as indicated. Values are mean +/- SEM relative to control of three independent experiments. (B) Western blotting analysis
of DUOX protein levels of SK-N-BE cells treated as in (A). Values are mean +/- SEM relative to control obtained by densitometric analysis of DUOX
bands normalized for a-tubulin of three independent experiments. 1 p,0.05 and 11 p,0.01 vs Ctr; * p,0.01 vs the corresponding time point of ActD
curve; ** p,0.01 and *** p,0.05 vs the corresponding time point of ActD + PDGF curve.
doi:10.1371/journal.pone.0034405.g005
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induction as well as silencing of NOX2 (Figs. 3, 4 and 6).

Therefore, under our conditions, we believe that the major Ca-

stimulated ROS producing activity induced by PDGF is the

activity of DUOX enzymes. PDGF induces total ROS levels

through NADPH oxidase activation as demonstrated by the

inhibition of ROS induction by PDGF in the presence of NADPH

oxidase inhibitor AEBSF (Fig. 6A). In addition, Fig.6A shows that

a substantial fraction of PDGF stimulated-ROS is sensitive to

BAPTA-AM and that calcium-resistant ROS (mainly produced by

the other NOX enzymes) increase faster than the calcium-sensitive

fraction (mainly DUOX-dependent), suggesting that NOX

precedes DUOX activation. To test directly whether the induction

of extracellular H2O2 levels by PDGF were mediated by NADPH

oxidase activation, we measured extracellular H2O2 in cells, in

which p22phox was silenced by the specific siRNA. In these cells

PDGF was not able to induce extracellular H2O2 (Fig. 6B) as well

as and DUOX1 and 2 expression (Fig. 3C, D and E).

Collectively, these data demonstrate that ROS produced by

NADPH oxidase mediate PDGF induction of DUOX 1 and 2

expression by stabilizing the specific mRNAs.

Discussion

DUOX in brain
This is the first report demonstrating the presence of DUOX in

the brain by immunofluorescent staining of rat brain slices or by

immunoblot analysis of rat brain membrane and oligodendrocyte

or neuroblastoma SK-N-BE cell line (Fig. 1). The function of

DUOX enzymes in the nervous system and specifically in

neuronal cells is not apparently linked to the innate immunity,

as shown in other tissues. DUOX proteins are dual function

enzymes, containing not only the ROS generating domain,

homologous to NADPH enzymes but also a peroxidase domain,

that may be used to carry on oxidations of other proteins. In C.

Elegans, for example a similar Duox enzyme catalyzes the cross

link of tyrosine residues in the cuticle (for a review see [1]). It is

possible that a ROS-regulated activity of DUOX enzyme may be

Figure 6. ROS levels in PDGF stimulated SK-N-BE cells. (A) Cells were incubated 18h in medium containing 0.2% FBS, loaded with 10mM DCHF-
DA in the presence or absence of the intracellular calcium chelator, BAPTA-AM (10mM), and then stimulated with 15ng/ml of PDGF as described in
Materials and Methods. ROS levels were measured fluorimetrically at the time intervals indicated. Ca++-independent ROS were measured in presence
of BAPTA-AM. Ca++-dependent ROS levels were derived from the assays performed in the presence or absence of BAPTA-AM. Total levels of ROS
induced by PDGF were also measured in the absence (Total) or presence of the NADPH oxidase inhibitor AEBSF. Values are Mean +/- SEM of three
independent experiments performed in triplicate. * p, 0.01 and ** p, 0.05 vs not stimulated; 1 p,0.01 vs the corresponding time point of Total (Ctr)
curve. (B) Cells were transfected by electroporation with siRNA to p22phox (siRNA p22phox) or control, scrambled siRNA (scramble) as described in
Materials and Methods. 24h after transfection cells were incubated in medium containing 0.2%FBS for 18h and then stimulated with 15ng/ml of PDGF
for 15min. An aliquot of cell medium was collected and analyzed for H2O2 levels as described in Materials and Methods. The histograms show the
mean +/- SEM values of three independent experiments. * p, 0.01 vs Ctr. ** p, 0.01 vs PDGF stimulated scramble.
doi:10.1371/journal.pone.0034405.g006

Figure 7. Regulation of DUOX by PDGF receptor. Schematic
diagram showing the circuitry induced by PDGF leading to DUOX
induction. PDGF activates the specific receptor, which stimulate NADPH
oxidase. This sets off a loop that amplifies ROS cascade [32,38]. ROS
stabilize DUOX mRNAs and increase the level of DUOX proteins in
plasma membrane.
doi:10.1371/journal.pone.0034405.g007
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important in neurons to modify membrane proteins during

synapses formation or maintenance.

PDGF stimulates DUOX 1 and 2 expression
The data reported here indicate that PDGF and serum are able

to induce rapidly DUOX1 and 2 in neuroblastoma cells (Fig. 1

and 2). PDGF induces a rapid (15–30 min) post-transcriptional

stabilization of the DUOX1 and 2 specific mRNAs (Fig. 5), by

stimulating the membrane NADPH oxidase, which appears to be

the first target of PDGFR action. Thus, PDGF induction of

DUOX1 and 2 is abolished by silencing p22phox or NOX2 (Fig. 3

and 4). Our data indicate that DUOX mRNAs are very unstable

in the absence of ROS and consequently also the levels of the

protein are low under these conditions. Stimulation of the cells by

growth factors or microrganisms can induce a strong cellular

response by increasing the levels of DUOX proteins on the

membranes.

We suggest the following link between PDGF and DUOX:

PDGF and its receptor binds NOX2 (Agnese et al., in

preparation), induces ERK 1/2 and phosphoinositide 3-kinase

(PI3K), which in turn activate NADPH oxidase [31,27,32]. ROS,

produced by NADPH oxidase, inhibit tyrosine phsophatases and

maintain active ERK1/2 [32]. Ultimately, ERK1/2 may stabilize

the specific DUOX1-2 mRNAs and increase the levels of the

proteins [33,34].

DUOX1 and 2 are exquisite sensors of ROS in neurons
Our data indicate that DUOX 1 and 2 mRNAs are rapidly

degraded under normal conditions and accumulate upon oxidative

stress (Fig. 5). Following PDGF stimulation, cellular ROS increase

and this is accompanied by rise of DUOX enzymes (Fig. 2 and 6).

We do not know the specific function of DUOX in neurons but it

is possible that targeted DUOX protein focus ROS production in

a specific membrane compartment contacting the extra-pericellu-

lar space (Fig. 7). In other cell types, such as thyroid cells or

leukocytes, this is relevant for the formation of the iodine fixation

complex on the apical membrane of thyroid cells or the formation

of the spatial tissue gradient of hydrogen peroxide, required for

rapid recruitment of leukocytes to the wound [35].

The function of DUOX enzymes: focusing and targeting
ROS production to the membrane

The regulation of DUOX expression by ROS seems conserved

in different cell types. In lymphocytes, calcium and ROS generate

a loop that modulates the strength of the final signal triggered by

the receptor(s) and DUOX activity is central in this circuitry [36].

ROS production, upon DUOX induction, becomes restricted to

discrete membrane segments. Apparently, this function cannot be

complemented by membrane NADPH oxidase and has been

exploited by intestinal epithelium for maintenance of gut

immunity [11], by thyroid cells for iodine organification [37]

and by lymphocytes for signaling [36]. It remains to be seen the

function of DUOX in neurons and oligodendrocytes. Highly

compartmentalized ROS production coupled to peroxidase

activity may induce membrane fusion by cross-linking membrane

proteins. We believe and suggest that this may be relevant in

neurons for the formation and maintenance of synapses.

Acknowledgments

Special thanks to Claudia Cosentino for DUOX antibodies, Agnese

Secondo for calculation of DUOX1 and 2 mRNAs half-life and Lucia

D’Esposito from Centro Servizi Veterinari of the University of Naples

‘‘Federico II’’.

The term DUOX in the text refers to both DUOX1 or DUOX2

proteins since the antibodies used for western blotting experiments are not

specific for the two different isoforms. DUOX1 and DUOX2 refer to the

specific genes.

Author Contributions

Conceived and designed the experiments: SD RP MS PM FM EA.

Performed the experiments: SD R. Fusco AM MD SA. Analyzed the data:

SD RP R. Frunzio MS EA. Contributed reagents/materials/analysis tools:

FM AD RS. Wrote the paper: SD PL MS EA.

References

1. Lambeth JD (2004) NOX enzymes and the biology of reactive oxygen. Nat Rev

Immunol 4: 181–189.
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