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Abstract: Membrane distillation (MD) is a rapidly developing field of research and finds applications
in desalination of water, purification from nonvolatile substances, and concentration of various
solutions. This review presents data from recent studies on the MD process, MD configuration, the
type of membranes and membrane hydrophobization. Particular importance has been placed on the
methods of hydrophobization and the use of track-etched membranes (TeMs) in the MD process.
Hydrophobic TeMs based on poly(ethylene terephthalate) (PET), poly(vinylidene fluoride) (PVDF)
and polycarbonate (PC) have been applied in the purification of water from salts and pesticides, as
well as in the concentration of low-level liquid radioactive waste (LLLRW). Such membranes are
characterized by a narrow pore size distribution, precise values of the number of pores per unit area
and narrow thickness. These properties of membranes allow them to be used for more accurate water
purification and as model membranes used to test theoretical models (for instance LEP prediction).

Keywords: track-etched membranes; membrane distillation; desalination; graft polymerization;
hydrophobic membrane

1. Introduction

According to the World Health Organization, 1 billion people currently do not have
access to clean tap water, and this number may increase to 3.5 billion by 2025 [1–6]. Among
the new technologies for purifying drinking water, membrane processes are the most
efficient and energy-conserving. Membrane water purification processes include micro-
filtration [7], ultrafiltration [8], nanofiltration [9], direct and reverse osmosis [10] and
membrane distillation (MD) [11].

MD is emerging as one of the promising membrane technologies for the purification
of waste and drinking water from various salts of heavy metals [12] and radionuclides [13]
and in applications in food and textile industries [14,15] and pharmaceutics [16]. A typical
MD process is composed of three stages: evaporation of the feed solution from the hot
side of the membrane, transfer of vapor through the pores of the hydrophobic membrane
and condensation of vapor on the permeate side of the membrane. In MD process, the
porous membrane must be hydrophobic, allowing the passing through of only water vapor
molecules but not bulk water. The membrane should also have good thermal stability to
withstand high temperatures and low thermal conductivity to prevent heat loss across
the membrane. Compared to other membrane separation methods, MD has significant
advantages, such as high degree of purification from metal salts (more than 90%) and
other nonvolatile compounds, relatively low operating temperatures and pressures and
simplicity of hardware design.
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The term “membrane distillation” was first introduced by Bodell in a patent [17], and
in 1967, Findley [18] published the first scientific article on membrane distillation. He tested
various types of membrane materials (aluminum foil, cellulose film, glass) in direct contact
membrane distillation (DCMD). Silicone and Teflon have been used as materials to increase
the hydrophobicity of the membrane. On the basis of these results, the requirements
for the membranes to be used in MD were established. The scientific interest in the MD
process, however, quickly faded away in the 1980s. The decline in popularity was due to
several reasons such as the lack of suitable membranes for the process, the high cost of
the membrane module and the poor water flux compared to reverse osmosis. With the
development of new types of membranes and improved membrane modules, interest in
MD began to increase again.

Over the past 20 years, the number of publications on the subject of “membrane
distillation” has been growing every year, as is illustrated in Figure 1 where the numbers
of publications on four types of membrane distillation configurations are shown.
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Figure 1. Number of publications on “membrane distillation” (searched with keywords “mem-
brane distillation”, “DCMD” (direct contact membrane distillation), “VMD” (vacuum membrane 
distillation), “AGMD” (air gap membrane distillation), “SGMD” (sweeping gas membrane distil-
lation)) from 2000 to 2020 (data taken from Science Direct database). 

Due to increasing number of publications on this subject, there has been a need for 
systematization and analysis of published works. There are a number of published re-
view articles on this topic in the literature. Alkhudhiri et al. [11] considered mechanisms 
of heat and mass transfer, types of MD configurations and membrane characteristics. The 
review showed the necessity to collect data from large-scale MD studies, develop mem-
branes with high hydrophobic character and further investigate the effect of operating 
parameters. 

Nanofiber-based membranes prepared by electrospinning for use in MD were de-
scribed in another review [19]. Membranes made from electrospun fibers showed high 
values for salt rejection and water flux. However, authors mentioned that finding the 
appropriate membrane structure, design and fabrication method are important to im-
prove the performance. 
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distillation”, “DCMD” (direct contact membrane distillation), “VMD” (vacuum membrane distilla-
tion), “AGMD” (air gap membrane distillation), “SGMD” (sweeping gas membrane distillation))
from 2000 to 2020 (data taken from Science Direct database).

Due to increasing number of publications on this subject, there has been a need for
systematization and analysis of published works. There are a number of published review
articles on this topic in the literature. Alkhudhiri et al. [11] considered mechanisms of heat
and mass transfer, types of MD configurations and membrane characteristics. The review
showed the necessity to collect data from large-scale MD studies, develop membranes with
high hydrophobic character and further investigate the effect of operating parameters.

Nanofiber-based membranes prepared by electrospinning for use in MD were de-
scribed in another review [19]. Membranes made from electrospun fibers showed high
values for salt rejection and water flux. However, authors mentioned that finding the
appropriate membrane structure, design and fabrication method are important to improve
the performance.

Recent advances in electrospun nonfibrous membranes for MD were reviewed by
Pan et al. [20], where both the original nanofiber membranes and its modification (for
instance, with inorganic nanoparticles and fluorine-containing agents) were considered.
Modification of membranes for MD led to enhancement of performance and degree of salt
rejection. However, the authors refer to the problem of large-scale production of modified
electrospun membranes and their fouling behavior.
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Ghaffour et al. [21] presented new MD hybrids with energy efficiency enhancement.
Perspectives of MD hybrid systems and the pros and cons of each hybrid process are
discussed. Other authors [22] reviewed the possibility of using hybrid MD: hybrid MD
bioreactor (MDBR) and MD forward osmosis (MD-FO) are especially successful combina-
tions for wastewater treatment. MD pressure-retarded osmosis (MD-PRO) and MD reverse
electrodialysis (MD-RED) also can be used for simultaneous recovery of water and energy.
Ray et al. [23] evaluated the incorporation of new-generation nanomaterials such quantum
dots, metal–organic frameworks (MOFs), metalloids and metal oxide based nanoparticles
in MD membranes. The recent progress in photothermal membrane distillation (PMD)
was reviewed by Razaqpur et al. [24], who illustrated new PMD mechanisms and mem-
brane requirements. Fabrication and multistep modification of PMD membranes were
also considered.

Achievements in improving the properties of membranes intended for MD have
been presented in reviews [25,26]. The basic principles, configurations and required
characteristics for membranes in MD were discussed to achieve the best results in water
flux and salt rejection. Particular attention was paid to the production of hydrophobic
membranes by phase inversion with different additives for pore formation, perfluorinated
polymers and inorganic nanoparticles.

Advances in membrane modification to obtain omniphobic or Janus surfaces (conven-
tionally, one side/interface of the membrane is lyophilic, whereas its other side/interface
is lyophobic) allowed expanding MD for water purification from oil, surfactants and
surfactant-stabilized emulsions [27,28].

Most of the reviews indicate that the limitations of membranes for large-scale MD
consist in fouling, relatively high thermal conductivity of most popular hydrophobic
polymers used in MD (PVDF, PTFE and PP) in comparison with PET or PS, high energy
cost, expansion of production and improvement of water fluxes and purification degree.

In this review, we concentrate on using track-etched membranes (TeMs) in MD, which
has not been discussed previously in review articles. Recent advances in main aspects of
MD such as membrane distillation configurations, requirements for membranes and types
of membranes are also elaborated. TeMs are characterized by regular pore geometry with
the ability to control them per unit area, a narrow pore size distribution, a narrow thickness
and a tortuosity of 1. Thus, such membranes have potential to be used as model membranes
for development and confirmation of theoretical mass, heat transfer, LEP and fouling. Servi
et al. [29] quantified the effects of initiated chemical vapor deposition polymer coatings
on PC TeM permeability and LEP. Chamani et al. [30] developed a CFD-based genetic
programming model for LEP estimation and tested it on TeMs. Furthermore, as mentioned
above, the unique properties of TeMs can increase the accuracy of water purification.

2. Membrane Distillation Configurations

As shown in Figure 2, there are four known and well-studied membrane distillation
configurations: DCMD, AGMD, SGMD and VMD [31–34]. There are also known three
supplemental configurations: liquid or water gap membrane distillation (LGMD/WGMD),
thermostatic sweeping gas membrane distillation (TSGMD) and vacuum-assisted air gap
membrane distillation (VA-AGMD) [35–37].
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Direct contact membrane distillation (DCMD) is the simplest configuration in which
the flow of hot and cold liquids is separated by a hydrophobic membrane. The pressure
difference caused by the temperature gradient between the two sides of the membrane
entails mass transfer through the pores of the membranes. In the MD process, only water
vapor molecules penetrate through the pores of the membrane, while liquid molecules
should not pass through the pores of the hydrophobic membrane. Due to the difference in
vapor pressure, volatile compounds evaporate, while vapor molecules passing through the
pores condense on the cold side (permeate). This configuration of MD is widely used in
practice [39–45]; it is also well represented in Figure 1.

The configuration of AGMD assumes the presence of an air gap located between the
cold side and the surface of the condensing liquid [46–49]. The vapor, passing through
the membrane pores and air gaps, condenses on the surface of the cooling plate. In this
configuration, the air gap is usually the determining factor in mass and heat transfer, which
helps to increase the thermal efficiency of the process [50,51]. The air gap will reduce the
heat loss by conduction through the membrane and decrease the efficiency of process. At
the same time, the vapor should cross the air barrier, so the flux is reduced depending on
the effective thickness of the air gap. The thickness of the air gap is an important factor
that influences the AGMD performance [52]. The water flux increases with the decrease in
the thickness of the air gap. This is probably due to the growing gradient of temperature
inside vapor space [45,53]. It has been stated that when the thickness of the air gap is less
than 5 mm, it significantly affects the membrane distillation process [54,55]. Pangarkar
et al. [53] tested the effect of air gap thickness on the permeate flux using hydrophobic
PTFE membrane in AGMD. The air gap thickness was varied from 1.2 to 3.2 mm. Results
showed that permeate flux was reduced with increasing air gap thickness.

In SGMD, a sweeping gas is used on the permeate side as a carrier to remove vapor or
collect vapor from the membrane surface [56–58]. As with air gap membrane distillation,
the flow of gas reduces heat loss and significantly increases mass transfer. However, the
use of this type of configuration is inappropriate due to poor water flux and the necessity
of large volumes of sweeping gas, which entails additional costs [59].

Vacuum membrane distillation (VMD) is based on the application of vacuum from
the permeate side. In this configuration, the surface on which the vapor condenses is
separated from the membrane by creating a vacuum on the other side of the membrane.
The disadvantages of this configuration are the difficulty in hardware design associated
with the installation of expensive condensers and large pressure drops on the membrane
surface that can lead to a decrease in hydrophobicity [60–65].

In liquid or water gap membrane distillation (LGMD or WGMD), the gap between
the membrane and the plate is filled with distilled water. Water evaporating from the hot
side diffuses through the pores of the membrane and condenses in the liquid gap. Large
heat losses make this method less practical to use [35,66–68].



Polymers 2021, 13, 2520 5 of 28

In a thermostatic sweeping gas membrane distillation (TSGMD), an inert gas is passed
between the membrane and the condensation surface (cold wall). The presence of a
condensation surface on the cold side lowers the temperature of the sweeping gas, which
leads to an increase in driving force and cleaning efficiency. However, this configuration is
currently not promising since there are difficulties in hardware design [36].

Thus, as can be seen from the published articles, DCMD is the most well studied
and efficient configuration in MD technology. DCMD is characterized by low energy
consumption and simple hardware design, and the process is carried out at relatively low
temperatures. Among the shortcomings, it is worth noting the impossibility of using MD
in the separation of highly volatile mixtures [69–71].

3. Requirements for Membranes to Be Used in MD

The main characteristic of a membrane to be used in MD is high hydrophobicity to
keep the liquid phase from penetrating through the pores of the membrane. In prac-
tice, membranes made of polypropylene (PP), poly(vinylidene fluoride) (PVDF) and
poly(tetrafluoroethylene) (PTFE) perfectly suit to this requirement. Moreover, the mem-
branes must have liquid entry pressure (LEP) of at least 2.5 bar. LEP is the pressure required
for fluid to flow through the pores of the membrane. Usually, membranes with pore diame-
ters from 0.1 to 1 µm are used in MD, as a further increase in the pore diameter negatively
affects the LEP value [72].

It has been argued that water flux and mass transfer are reduced with increasing
membrane thickness, while small thickness leads to heat losses that negatively affect the
driving force of the process [73,74]. Therefore, an optimal membrane thickness [75] has
been considered to be from 10 to 400 µm for various applications. Porosity is another
important factor for membranes, with a high value leading to an increase in water flux.
Typically for membranes, the porosity varies from 30 to 90%, including for membranes
obtained by the electrospinning method [76].

Thus, the membrane to be used in MD should have the following properties:

1. LEP value of at least 2.5 bar.
2. Narrow pore size distribution to reduce the risk of pore wetting.
3. The recommended pore size of membranes is from 0.1 to 1 µm.
4. The optimum membrane thickness should be between 10 and 60 µm. Thicker mem-

branes (>60 µm) should be used in the purification of highly concentrated mixtures.
5. The porosity of the membrane should be as high as possible.
6. The contact angle of membranes must be as high as possible (>90◦).

4. Membranes for MD
4.1. Type of Membranes
4.1.1. Flat-Sheet Membranes

Various types of membranes are used in the MD process. In the separation and
purification technologies over the past 50 years, flat membranes have been the most studied
and widely used [77]. This type of membrane is suitable for all types of MD configurations
such as DCMD, AGMD, and VMD. The main advantages of flat membranes are ease of
manufacturing, assembly, operation and testing, making them most suitable for use in the
membrane applications.

4.1.2. Spiral-Wound Membranes

Spiral-wound membranes in the MD were investigated for the desalination of brackish
water and seawater [78–82]. The following polymers were used as membrane materials:
PP, poly(vinyl chloride) (PVC), polyethylene (PE), PTFE and synthetic resins [83]. The
structure of rolled membranes includes the material itself, a mesh pad, a permeate carrier
and a membrane support layer that forms a cap which is wrapped and twisted around
a perforated tube for collecting permeate. However, spiral-wound membranes have not
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been preferred in MD because of significant drawbacks (difficulty in cleaning and replacing
contaminated areas) [78,84].

4.1.3. Tubular Membranes

In addition to flat-sheet and spiral-wound membranes, tubular membranes have been
studied for the desalination of marine, brackish, and waste water. Tubular membranes
have been used in DCMD, VMD and AGMD [85–88]. Among the main advantages, it is
worth noting a low tendency towards contamination, ease of maintenance and a good
contact area, making them attractive for commercial applications. However, with the
development of MD, the use of tubular membranes decreased due to the advent of more
efficient flat-sheet and hollow fiber membranes.

4.1.4. Hollow Fiber Membranes

In recent years, hollow fiber membranes have become the most commonly used mem-
branes in MD process. According to Camacho [43], the materials used for the manufacture
of hollow fiber membranes are mainly made of PP, PVDF and PVDF–PTFE. The hollow
fiber membrane module has the highest component density [11,89], the best effective sur-
face area per unit volume and high efficiency [77]. In addition, hollow fiber membranes
can operate at very high pressures (above 100 bar) [44] and consume much less energy. De-
spite this, hollow fiber membranes have significant disadvantages. Wang and Chung [90]
determined that the main disadvantages of this type of membrane are poor water flux and
inferior mechanical properties. In addition, hollow fibers tend to become dirty [91], and
replacing damaged fibers is a time-consuming and costly process. Besides MD, hollow
fiber membranes are used in liquid extraction, desalination and wastewater treatment.

As a result, various types of membranes are used in the MD process, regardless of
the type of the process itself. Among the promising types of membranes, hollow fiber
membranes are worth noting; however, the inconvenience in operation and the weak
mechanical properties are significant disadvantages. The most optimal types of membranes
used in MD are flat-sheet types.

4.2. MD Membrane Fabrication Techniques

Membranes for MD can be prepared by stretching, phase inversion and electrospin-
ning processes [25,92–94]. Several types of membranes have been prepared using a combi-
nation of different methods. Zhu [95] developed a new hydrophobic hollow fiber PTFE
membrane by cold pressing, including extrusion, stretching and sintering.

Stretching is a solvent-free method in which membranes are made by extruding a
polymer at a temperature close to its melting point to form micropores [96]. This method
of fabrication is cheaper than other techniques. In stretching a polymer with a partial
crystallinity stretched to the axis of crystallite orientation, the polymer is extruded at
temperature below its melting point to produce a film. With this technique, membranes
with high porosity (90%) and uniform porous structure can be produced [97,98].

Phase inversion is a phase separation process involving the controlled transfer of a
polymer from a solution to a solid state. Fabrication by phase inversion can be divided
into the following steps: first, polymer pellets are dissolved in a solvent to form a casting
solution, which is then cast on a plate. Then, the semiliquid film is cast on the plate and
immersed into the bath for precipitation. Finally, a polymeric film is formed with an
asymmetric or symmetric structure [97].

This method can be used to prepare both asymmetric and symmetric porous mem-
branes using various methods, namely nonsolvent-induced phase separation (NIPS),
thermally induced phase separation (TIPS), vapor-induced phase separation (VIPS) and
evaporation-induced phase separation (EIPS). The first two methods are most commonly
used for manufacturing hydrophobic membranes [99].

The preparation of hydrophobic PVDF membranes by the NIPS method is discussed
in [100]. Hydrophobic membranes with a high contact angle (~148◦) were obtained with low
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surface energy, without surface modification. First, the nascent membrane was immersed
into alcohol solution and then immersed in water coagulation bath for precipitation of
polymer. Modified membranes were tested in DCMD, and the water flux and salt rejection
were found to be close to those of commercially available PVDF membranes [101].

The electrospinning technology was proposed for the manufacture of nanofiber mem-
branes for MD [19,20,76,93]. Electrospinning is an effective method of fabricating nanofi-
brous membranes with high porosity and roughness. This technique consists of three major
components: a high-voltage electric source, a syringe with a metallic needle and a collecting
roller. A high voltage is used to create an electrically charged jet of the polymer solution.
Polymer membranes obtained by electrospinning have a high surface area to pore volume
ratio [102]. Electrospun membranes have been prepared from various polymers, including
PVDF [103–105], PVDF–SiO2 [106], polystyrene (PS) [107], PTFE–polyvinyl acetate [108]
and PVDF–HFP/SiNP [109]. It should be noted that electrospun membranes, as some of
the most popular membranes, have been tested in all types of configurations.

Kebria [104] and others proposed a method for increasing the hydrophobicity of
nanofiber PVDF membranes by introducing dendritic structures during electrospinning.
Dendritic structures were synthesized by polycondensation between the hydroxyl groups
of boehmite and the carboxyl groups of nitriloacetic acid. The effect of different amounts
of dendritic structures on membrane morphology, elemental composition and surface
hydrophobicity was assessed by SEM and contact angle measurements. The contact angle
increased from about 129 to 139◦, and water flux and salt rejection were 11 kg/m2·h and
99%, respectively.

Ke et al. [107] managed to prepare hydrophobic PS membranes by electrospinning
with a fiber diameter ranging from 150 to 240 nm by varying the polystyrene concentration
from 8 to 12%. Sodium dodecyl sulfate was used as an additive. The modified nanofiber
membrane had a fairly high porosity (more than 80%), a narrow pore size distribution,
and a high contact angle (more than 100◦). Hydrophobic membranes were tested in
desalination of sea water by membrane distillation for 10 h of operation with the water flux
of 31 kg/m2·h. Feng and colleagues [110] were the first to use nanofiber PVDF membranes
in the MD process in the purification of NaCl saline solutions. The water flux and salt
rejection were 11,000–12,000 g/m2·h and 99%, respectively. Prince et al. [111] succeeded in
increasing the contact angle of PVDF membranes obtained by electrospinning from 80◦

to 154◦ by embedding hydrophobic clay nanoparticles in the polymer mat. Hydrophobic
membranes showed good salt rejection from 98.2 to 99.9%.

Duong et al. [112] investigated the preparation of nanofiber styrene–butadiene–styrene
membranes (SBS) by electrospinning. Compared to commercially available PTFE mem-
branes, SBS membranes were found to have higher contact angle and salt rejection values.
Among the disadvantages of SBS membranes, poor water flux compared to PTFE can
be mentioned. Khayet et al. [113] studied two-layer nanofiber membranes with different
hydrophobic properties (PVDF–polysulfone) prepared by electrospinning. It was found
that the two-layer type of membranes exhibits better water flux in desalination compared
to single-layer membranes. The water fluxes of two-layer nanofiber membranes at salt
concentrations of 12 and 30 g/L were ~50,000 and ~48,000 g/m2·h, and salt rejection
was 99%.

It has been concluded that electrospinning is a reliable way to obtain hydrophobic
membranes [26,102,114]. Relatively low cost, variability in the use of various polymers and
materials and the possibility of obtaining fibers with diameters from several nanometers
to several microns make this method of fabrication more effective in comparison with the
others [115].

4.3. Main Membrane Materials

Currently, there are various polymeric membrane materials such as PTFE, PP,
PVDF [116–118] and poly(ethylene terephthalate) (PET) used in MD.
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Among the above-listed materials, PTFE ((-C2F4-)n) has the lowest surface energy
of about 9–20·10−3 N/m [119]. It is a highly crystalline polymer with excellent thermal
and chemical resistance. PTFE membrane is often manufactured by sintering or melt
extrusion [120,121].

PP ((-CH2-CH[CH3-])n) is also a highly crystalline thermoplastic but has a higher
surface energy (30·10−3 N/m) than PTFE [43]. Porous PP membranes are generally manu-
factured by the melt extrusion method [122–124], as well as by thermally induced phase
separation [87,125]. Compared to other membranes used in MD, PP is relatively advanta-
geous in terms of materials and production costs. However, poor water flux and moderate
thermal stability at elevated temperatures complicate its use in MD [126].

PVDF ((-CF2-CH2-)n) has almost the same surface energy (~30·10−3 N/m) as polypropy-
lene. Unlike the other polymers used in MD applications, PVDF can be easily dissolved
in some solvents such as n-methyl-2-pyrrolidone, dimethylacetamide and dimethylfor-
mamide [127–129], and it can also be melt-processed easily due to its low melting point of
170 ◦C.

Recently, PET ((-C10H8O4-)n) membranes have begun to be investigated in the pro-
cess of MD [130–133]. PET is a polymer with high chemical and heat resistance and
good resistance to organic solvents and acids, and it has a relatively low thermal con-
ductivity in comparison with PTFE. However, the main disadvantage of PET for MD is
its semi-hydrophobic properties (CA 55–83◦) [134]. In order to use PET membranes in
MD, it is necessary to significantly increase its hydrophobic properties. Improvement of
hydrophobicity can be achieved by, for example, modifying the surface via application of a
hydrophobic coating or grafting various hydrophobic groups onto the surface, as will be
elaborated further in this paper.

4.4. Membrane Modification Methods

Hydrophobicity is the main property of a membrane that plays an important role in im-
proving the water flux. Basically, membranes with a high contact angle (more than 90◦) are
used; however, there are some membranes with less hydrophobic surfaces. Various modifi-
cation methods such as the addition of pore-forming agents [135], perfluorinated polymers
and inorganic nanoparticles [136] were used to improve the hydrophobic properties and
increase the water flux.

Simone et al. [135] modified a microporous hydrophobic fibrous PVDF membrane.
Poly(vinylpyrrolidone) was used as a pore-forming agent. Hydrophobic membranes were
tested in vacuum membrane distillation, with distilled water as the feed. The water flux
varied from 3.5 to 18 kg/m2·h at 50 ◦C at a vacuum pressure of 20 mbar. The disadvantages
of this method are the insufficient water flux in salt purification and the necessity to
maintain a vacuum.

Edwie et al. [136] developed a method for the preparation of hydrophilic–hydrophobic
bilayer PVDF hollow fiber membranes using a hydrophobic modifier, silica. The samples
were tested in DCMD of sodium chloride solution with methanol. The maximum water
flux reached 84 kg/m2·h, and the salt rejection was above 90%. However, the stability of
the two-layer hydrophilic–hydrophobic membrane was low.

García-Payo et al. [137] modified poly(ethersulfone) (PES) membranes using a solu-
tion of trimethylsilyl chloride and trimethylmethoxysilane by the sol–gel method. The
modification of the membrane surface led to an increase in the contact angle to 119◦. Hy-
drophobic membranes were tested in the MD process. The water flux and salt rejection
were 4.47 kg/m2·h and 99%, respectively. The main disadvantage of this method was the
nonuniformity of the hydrophobic coating.

Efome [138] prepared PVDF–SiO2 hydrophobic membranes by the phase inversion
method. The obtained membranes were characterized by scanning electron microscopy,
measurement of contact angle, and infrared (IR) spectroscopy. The salt rejection was above
98% with a salt concentration of 35 g/L.



Polymers 2021, 13, 2520 9 of 28

Generally, the most effective modification methods are membrane surface modifi-
cations, which allow one to widely change the characteristics of membranes, such as
roughness, hydrophobicity and surface energy. In addition, hydrophilic polymers can be
hydrophobized in this way.

Coating the membrane surface is the simplest way to instantly improve the hydropho-
bicity of membranes by applying a thin functional layer to the surface. Surface coating
is often carried out by sol–gel [139], spinning, immersion [140] and other methods [141].
Graft polymerization is considered one of the effective methods for improving membrane
hydrophobicity. The membrane surface can be modified by the formation of covalent bonds
between the membrane and the grafted chains. Unlike the coating process, graft polymer-
ization improves the chemical stability of the graft layer. In other words, it can completely
solve the problem of hydrophobic layer instability. Surface grafting can be achieved by
using various methods, such as plasma- and radiation-induced graft polymerization [116]
and photo- and thermal-initiated graft polymerization of a single monomer or a mixture of
two or more monomers [116].

Plasma treatment is the process of adsorption and polymerization of ionized gas
onto the membrane surface. Modification of the polymer surface is carried out under the
influence of high-energy ions, reactive species and photons generated during the discharge.
The effectiveness of plasma treatment depends on various parameters such as type of
plasma (DC, radiofrequency, microwave), discharge power density, pressure and flow rate
of the gas mixture in the chamber and treatment time. Plasma treatment of polymers in
inert gases (for instance, He and Ar) is effective for creating free radicals and does not
add new chemical functional groups from the gas phase. Plasma treatment in H2O or O2
atmosphere is used to create polar functional groups that can significantly increase the free
energy of the polymer surface. The main advantage of this method is a uniform surface
treatment is achieved and the depth of the modified layer is several nanometers.

During plasma treatment, the monomer is pumped into a vacuum chamber. Further,
under the action of the lamp, the monomer is ionized with the formation of reactive
species to generate free and active radicals. These radicals are adsorbed and subsequently
polymerize on the membrane surface, creating a dense coating layer [142].

Wei et al. [143] proposed a method of plasma treatment of hydrophilic poly(ethersulfone)
(PES) membranes under carbon tetrafluoride (CF4) atmosphere. The results showed that the
modification resulted in a significant increase in the contact angle above 120◦. The water
flux of permeate reached 43 kg/m2·h with a salt rejection of more than 98%.

Plasma modification of a PAN membrane by carbon tetrafluoride (CF4) was also
applied in VMD [144]. The authors proposed a method for purifying ethyl acetate from an
aqueous solution by vacuum membrane distillation. The influence of plasma modification
conditions, surface porosity and separation efficiency of modified membranes were investi-
gated. It was found that the contact angle of PAN membrane increased from 42 to 124◦,
but the water flux was within 8 kg/m2·h.

Tooma [145] studied the modification of PVC with ethyl acrylate by radiation-induced
graft polymerization. The success of grafting ethyl acrylate onto the PVC surface was
confirmed by IR and energy dispersive X-ray (EDX) spectroscopy. The water flux of
permeate was found to increase about 15 times. The maximum water flux was about
37 kg/m2·h at a concentrate temperature of 60 ◦C and a vacuum pressure of 2 mbar.

Liu et al. [146] prepared a hydrophobic membrane based on PES by radiation graft
polymerization of 1H,1H,2H,2H-perfluorodecyl methacrylate. After grafting the monomer,
the contact angle was found to increase to 114◦, and the pore diameter of the membrane
slightly decreased. Membrane distillation was carried out in vacuum mode; the water flux
was 50 kg/m2·h, and the salt rejection was more than 90%. Among the disadvantages, the
short operating time of the membrane may be noted.

UV graft polymerization has been a frequently used grafting method recently.
Salehi et al. [147] developed a method for chemical modification of PP flat sheet mem-
brane surface by UV graft polymerization of acrylic acid, 2-hydroxyethyl methacrylate
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and ethylene glycol dimethacrylate. Hydrophobic membranes were tested in membrane
distillation; the water flux at different ratios of monomers varied from 3 to 8 kg/m2·h, and
the salt rejection was more than 98%.

A brief summary of results for the modification of various types of membranes is
presented in Table 1.

Table 1. Properties of some membranes used in MD modified by different methods.

Type of
Membrane Modification Method Contact

Angle, ◦ Feed Solution Salt Rejection,
%

Water Flux
g/m2·h Ref.

PVDF NIPS 148 NaCl 99 87,400 [100]

Nanofiber PVDF Electrospinning 139 NaCl 99.9 10,700 [104]

Nanofiber PS Electrospinning 113 NaCl 99.9 31,000 [107]

Nanofiber PVDF Electrospinning 154 NaCl 99 5800 [111]

Nanofiber SBS Electrospinning 132 NaCl 99.9 10,500 [112]

PVDF–polysulfone Electrospinning 130 NaCl 99.9 49,000 [113]

PES Sol–gel 119 NaCl 99.3 44,700 [118]

Bilayer PVDF
Addition of

perfluorinated
polymers

~135 NaCl 99.9 83,400 [127]

PVDF–SiO2 Phase inversion 92 NaCl 99.9 2900 [138]

PES Plasma treatment 120 NaCl 99.9 42,000 [143]

PVC Radiation-induced
graft polymerization 96 Water / 37,500 [145]

PES Radiation-induced
graft polymerization 114 NaCl 99.98 50,500 [146]

PP UV graft
polymerization 138 NaCl 97 3000–8000 [147]

Thus, it can be concluded that there are many modification methods, such as graft
polymerization (photo- and thermal-initiated, plasma, radiation), the sol–gel method and
the method of coating the membrane surface. Modification of membranes can significantly
increase and diversify the properties of the material. The choice of the modification method
depends on the convenience, simplicity of hardware design and cost-effectiveness.

4.5. Fouling Phenomena

Membrane fouling is the process of precipitation of solutions or particles on the surface
or in the pores of a polymer that causes a decrease in permeate flux. Although membrane
fouling is one of the key problems in membrane distillation, it is still poorly understood.
Typically, there are several types of fouling in membrane distillation: biological, inorganic
and organic fouling [148,149].

4.5.1. Biological Fouling (Biofouling)

The presence of bacteria or microorganisms on the membrane surface leads to the
appearance of biofouling. However, biofouling in MD occurs extremely rarely in compar-
ison with other types of fouling. Since the feed solution has a high salinity and the MD
process occurs at relatively high temperatures, the probability of the survival of bacteria is
extremely small. This type of fouling is less studied in MD [150,151]. Krivorot et al. [152]
studied biofouling behavior using hydrophobic PP membranes in the MD process. Results
showed that there was a small drop in water flux when operating at 40 ◦C with cross-flow
DCMD. Under these conditions, SEM images show the presence of microorganisms on
the membrane surface. An increase in temperature from 40 to 70 ◦C led to a decrease in
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biofouling on the membrane surface. Nthunya et al. [153] researched the influence of silver
nanoparticles (AgNPs) on the biofouling in MD. Modified nanofiber PVDF–AgNPs might
be a good choice for the mitigation of biofouling.

4.5.2. Inorganic Fouling

Inorganic fouling occurs quite frequently in the MD process and is one of the key
problems in water desalination. Inorganic fouling in MD forms due to precipitation and
crystallization of salts present in feed solutions. In the MD process, the main scales are
sodium chloride (NaCl), sulfates of basic metals (CaSO4, BaSO4, MgSO4), phosphates and
calcium carbonates, aluminum and iron oxides, etc. Gryta et al. [154] studied the effect
of salt concentration (NaCl solution) on the permeate flux in MD. Authors observed that
there is a significant decrease in permeate flux at concentrations up to ~48.9 g/L. The
effects of calcium carbonate in the feed solution on the permeate flux were studied by
Qin et al. [119]. Decomposition of calcium carbonate in VMD and SGMD was faster than
in DCMD. This is related to the solubility of CaCO3, which is inversely proportional to
temperature. Therefore, the high temperature of the feed solution promotes CaCO3 crystal
formation.

4.5.3. Organic Fouling

Deposition of organic matter such as polysaccharides, proteins, carboxylic acid and
humic acid on the membrane surface leads to the appearance of organic fouling in MD [155].
Organic fouling in DCMD was investigated by Naidu et al. [156]. They studied organic
fouling with the use of model solutions of humic acid (HA), polysaccharide and bovine
serum albumin (BSA). Results showed that polysaccharide demonstrated minimal fouling
due its hydrophobic nature, whereas BSA and HA on the membrane surface significantly
reduced permeate flux by 50%. Khayet et al. [157] used HA solutions with various concen-
trations by DCMD using PTFE and PVDF membranes. The obtained results showed that
permeate flux decreased by 8% after 30 h of work.

5. Track-Etched Membranes in Membrane Distillation

Track-etched membranes (TeMs) are prepared by irradiation of polymer thin films
with swift heavy ions and subsequent photosensitization and chemical etching for pore
size control [158–165]. A top view of the DC-60 cyclotron complex at the Nuclear Physics
Institute in Nur-Sultan, Kazakhstan, and typical SEM images of cross-section and the
top-surface view of PET TeMs are shown in Figure 3.

This technique is known for its ability to accurately control narrow pore distribution
and pore size. The size and density of pores can be adjusted in a wide range: from a few
nanometers to 15 µm for size and from 106 to 109 pores/cm2 for density. The porosity of the
membrane is mainly determined by the duration of irradiation and the pore size, and pore
geometry is mainly determined by the etching time, temperature, concentration, additives
and etching bath configuration [166–170]. It should be noted that the mechanical properties
of PET film may change during TeM fabrication. With an increase in membrane porosity,
mechanical properties of the membrane decrease. For instance, for PET TeMs with a pore
size of 400 nm and pore density of 4 × 107, the burst strength is 304.1 ± 7.0 kPa [171],
which is quite high for practical use. The chemical composition of the surface of PET
also changes during the etching process. In [164], it was shown that the concentration
of carboxyl groups increases from 0.84 nmol/cm2 for pristine PET to 6 nmol/cm2 after
photosensitization and chemical etching.

Manufacturing of TeMs in Kazakhstan has been performed in the laboratories of the
Institute of Nuclear Physics in Nur-Sultan in the DC-60 accelerator complex (Figure 3a).
This complex is composed of three channels, one of which is being used for irradiation of
polymers for TeM production.
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A characteristic feature and advantage of TeMs is the regular geometry of pores with
the ability to control their number per unit area and narrow distribution of pore sizes.
This, in turn, provides the target selectivity and water flux of membranes [172]. TeMs are
widely used, for example, in the processes of precision ultrafiltration and microfiltration of
liquids and gases; in the analytical control of substances; and in food and pharmaceutical
industries, microelectronics and other areas of science and industry [173–175].

PC, PVDF and PET are the most widely used polymer films (5–24 µm) for the produc-
tion of TeMs. These polymer films have differences in contact angle, thermal conductivity
and cost. PVDF film is more expensive in comparison with PET and PC; moreover, etching
PVDF membranes is more complex and requires high temperature (150 ◦C) and pressure
(4 atm), which makes it difficult to use them in large-scale production.

PET has the lowest thermal conductivity (0.15 W/mK, whereas that of PC is 0.2 W/mK
and that of PVDF is 0.19 W/mK) [176]. The lower the thermal conductivity, the more
energy-efficient the MD process will be.

PVDF is a more hydrophobic polymer (90◦) in comparison with PET (73◦) and PC
(82◦). However, after channel formation, contact angle of PET TeMs varies from 40 to
55◦ [164], depending on pore size, while that of PC TeMs is ~55◦ [177] and that of PVDF
TeMs is ~49–72◦ [158]. Thus, all films need to be hydrophobized to meet the requirements
for membranes in MD.

Laricheva et al. [158] used unmodified PVDF TeMs with CA of 49–72◦ in AGMD of
salt solutions. They achieved a water flux of 38,100 g/h·m2 with salt retention of 99%.
The authors explain this by the fact that the observed contact angle of the surface does
not correspond to reality, but represents the apparent contact angle itself. The porosity of
the solid surface of the membrane reduces the apparent contact angle. However, in this
work, there are not enough data to conclude whether such a hydrophilic membrane can be
used in MD. The authors did not present LEP analysis, which can show the applicability
of the membrane for MD and the possible leakage of water. Moreover, slat rejection was
calculated only by changes in the conductivity of feed solution; permeate solution was not
analyzed, which can lead to overestimated results in terms of the degree of salt rejection.

Methods of PET TeMs hydrophobization for MD were developed by the authors
of [133] and our group [130,131,178,179]. PET has high strength and chemical and heat
resistance. It is resistant to various low-concentrated or nonconcentrated acids and alkalis
and is practically insoluble in most organic solvents. Moreover, it has low cost and low



Polymers 2021, 13, 2520 13 of 28

thermal conductivity properties. Thus, PET is an attractive membrane material for the
TeMs to be used in MD.

The effective use of TeMs in MD and also in the processes of direct osmosis and
filtration requires the expansion of the range of their characteristics (pore size and structure,
hydrophobicity/hydrophilicity, the creation of special chemical groups on the surface). The
development of methods for the intended modification of PET TeMs while preserving the
pore structure to achieve specific physicochemical properties and performance characteris-
tics is a challenging technological task [29,158]. Below, we consider the current methods of
hydrophobization of TeMs for use in MD.

5.1. Hydrophobization of PET Track-Etched Membranes by Covalent Bonding of Silanes

Hydrophobization of PET TeMs by covalent bonding of silanes is a simple and effective
way to change the hydrophilic–hydrophobic properties of the surface without altering
the pore structure by creating a thin layer of a hydrophobic agent. Scheme of PET TeMs
modification by covalent bonding shown in Figure 4.
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The polycondensation reaction between the surface of PET TeMs and 1H,1H,2H,2H-
perfluorododecyltrichlorosilane (FDTS) or dichlorodimethylsilane (DCDMS) proceeds due
to the high reactivity of the Si–Cl bond, which is sensitive to hydrolysis and interaction
with hydroxyl groups on the PET TeMs surface. The etching process introduces numerous
hydroxyl and carboxyl groups on the etched surface of PET.

Various reaction parameters affecting the grafting degree and the value of the contact
angle have been studied. The morphology of the membrane surface also depends on
the modification conditions. With an increase in concentration and time, an increase
in roughness occurs. It was found that effective grafting with preservation of the pore
structure was achieved by using 20 mM FDTS solution in 2-propanol and a reaction
time of 24 h. In this case, the water contact angle was 109◦. The obtained hydrophobic
membranes were tested in the purification of a saline solution of NaCl with a concentration
of 1.5–30 g/L. The average water fluxes were 1005 and 97 g/m2·h at concentrations of 1.5
and 30 g/L, and the salt rejection was 99.5% and 98.4%, respectively. A significant decrease
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in water flux has been observed with increasing salt concentration, which is probably due
to the gradual contamination of the membrane surface [178].

5.2. Hydrophobization of PET Track-Etched Membranes by Photo-Initiated Graft Polymerization

Photo-initiated graft polymerization is characterized by the fact that it does not sig-
nificantly affect the substrate by changing its properties since the radiation energy is low
and the grafting takes place under mild conditions [180]. Moreover, during graft polymer-
ization, stable covalent bonds are formed with the surface, which brings stability to the
hydrophobic layer. Thus, it appears as a convenient method suitable for hydrophobization
of membranes for use in MD. Graft polymerization usually takes place in two stages: im-
mobilization of the photoinitiator/photosensitizer at the inner walls of the nanochannels of
the membrane and then graft polymerization of the monomers from the membrane surface.
Results of some recent studies on graft modification of PET TeMs for MD applications from
this laboratory are briefly described in the following section.

5.2.1. Photo-Initiated Graft Polymerization of Triethoxyvinylsilane (TEVS)

As shown in Figure 5, photo-initiated graft polymerization was carried out in several
stages: the photosensitizer benzophenone (BP) was first adsorbed onto the membrane
surface from a 5% dimethylformamide (DMF) solution. BP-immobilized PET TeMs were
then soaked in TEVS solution and UV irradiated. The degree of grafting was found to be
very low as this monomer has a low tendency toward graft polymerization [181].
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Figure 5. Scheme of surface modification of PET TeMs with TEVS (a); water flux (b) and electrical
conductivity (c) for NaCl solutions with concentrations of 15 and 30 g/L. Adapted from [130].

In order to increase the degree of grafting, a monomer (N-vinyl imidazole) with a high
tendency towards graft polymerization was introduced into TEVS solution in amounts
from 0.3 to 6.6%. Various parameters (time, concentration of monomers and additives)
influencing the degree of grafting were studied, as the degree of grafting significantly
affects the membrane morphology and pore size. A high degree of grafting may lead to
complete clogging of pores in the polymer. In radiation-induced grafting of acrylic acid
inside the nanochannels of PVDF TeMs, it was observed that the pores were completely
filled after 40% of grafting [182].

The use of VIM together with TEVS made it possible to obtain membranes with a high
CA value of 104.9◦. The LEP value for modified membranes was >0.43 MPa, which makes
them applicable for MD. The prepared samples were tested in the purification of 15 and
30 g/L NaCl saline solution by the MD method. The average water fluxes were 295 and
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88 g/m2·h for solutions with concentrations of 15 and 30 g/L with purification degrees of
99.3% and 95.2%, respectively [130].

5.2.2. Photo-Initiated Graft Polymerization of Styrene

Scheme of modification PET TeMs by styrene grafting is shown in Figure 6. The
method of modification by graft polymerization of styrene on the surface of PET TeMs was
also studied in [179]. Various parameters influencing the degree of grafting were studied.
After the graft modification, the surface morphology was found to become smoother than
that of the pristine PET TeMs. A slight decrease in the pore diameter was observed, which
is expected due to the formation of a polystyrene layer inside the channels. With an increase
in the concentration of styrene, the value of the CA was found to increase significantly;
at a concentration of 40%, the value reached was 98◦. Analysis of previously published
works on using styrene as a hydrophobic agent shows us that the contact angle of different
materials can be increased up to 94–104◦ [158–160]. Thus, full coverage of PET TeMs
was achieved. From the AFM images presented in [179], it can be seen that roughness
increased from 2.15 ± 0.04 nm to 5.16 ± 1.01 nm with grafting. Thus, the hydrophobicity
of the membrane is almost totally due to the grafting of hydrophobic polystyrene, and full
coverage of PET TeMs was achieved.
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Hydrophobized membranes with different pore diameters were used in the purifica-
tion of saline solution with a concentration of 7.5–30 g/L by MD. The average water fluxes
were 286, 238, and 219.3 g/m2·h for solutions with concentrations of 7.5, 15 and 30 g/L,
respectively, for membranes with pore diameters of 220 nm, and the salt rejection varied
from 97.5 to 98.9% [179].

5.3. Hydrophobization of PET Track-Etched Membranes by Immobilization of Silica Nanoparticles

Another strategy to introduce hydrophobic properties of PET TeMs is simultaneously
applying hydrophobic agents together with increasing the roughness. For this purpose,
the possibility of immobilization of silica nanoparticles (Si NPs) on the membrane surface
was studied. Hydrophobization of PET TeMs by immobilization of silica nanoparticles
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is shown in Figure 7. First of all, Si NPs with C=C bonds were synthesized from TEVS
by the sol–gel method [183]. The resulting solution of silica nanoparticles in ethanol was
subsequently used to modify PET ion-track membranes. The modification of PET ion-track
membranes was performed according to the scheme presented in Figure 7.
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In the first stage, 2,2′-azobis(2-methylpropionamidine) hydrochloride (AAPH) was
covalently bonded with COOH end-groups of PET via activation with pentafluorophenol
and N-(3-dimethylaminopropyl)-N’-ethylcarbodiimide (EDC).

In the second stage, the ethanol solution of prepared Si NPs was passed through the
membranes from both sides, using a vacuum pump to fill the nanochannels with Si NPs.
Membranes with Si NPs were immersed in an ethanol solution of 0.2% AAPH. The solution
was purged with argon and kept at 75 ◦C for 3 h to initiate immobilization of Si NPs on
the surface of PET ion-track membranes. After the reaction, membranes were washed in
ethanol to flush away loose NPs and dried.

In the third stage, prepared membranes were modified with 1H,1H,2H,2H-perfluorodecyl
triethoxysilane (PFDTS). Hydrophobization led to a significant increase in the CA up to 143◦.
The morphology of the membrane was investigated by AFM, and it was found that the
roughness of modified membranes increased from 3.7 to 15.5 nm. Testing of hydropho-
bic membranes in the purification of saline NaCl by the MD showed the water flux of
~15 kg/m2·h, and salt rejection reached 99%.

Thus, an increase in roughness together with the immobilization of hydrophobic
chemical groups made it possible to obtain hydrophobic membranes with high water
flux [131].
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5.4. Hydrophobization of PET Track-Etched Membranes by Plasma Deposition of Fluoropolymers

Another method of PET TeMs surface hydrophobization is the plasma deposition
of fluoropolymers [133]. Due to their unique properties, fluoropolymers are well suited
for plasma surface polymerization. This method has several advantages, such as high
deposition degree and relatively safe and simple process. The modification was carried out
on PET TeMs using various plasma parameters (reaction time, distance between electrodes,
pressure). The deposition degree was proportional to the plasma treatment time. The
values of the CA varied in the range of 85–95◦ ± 3. The hydrophobic membranes were
used in concentrating apple juice by MD. At the same time, the membrane modified with
perfluorohexane showed a higher value of water flux (~2850 mL/m2·h) than commercial
analogs made from PTFE for fruit juice solution (~2100 mL/m2·h). The degree of sugar
removal was 98–100%.

5.5. Application of Hydrophobized PET TeMs in Water Contaminated with Pesticides

Hydrophobization of PET TeMs described above was carried out in two ways: by
UV-induced graft polymerization of TEVS and covalent binding of PFDTS. Scheme of
modification and water flux for mod189ified PET TeMs are shown in Figure 8.

Polymers 2021, 13, x FOR PEER REVIEW 18 of 29 
 

 

Hydrophobized PET TeMs membranes were tested to decontaminate water from 
pesticides (carbendazim) with concentrations of 5, 10 and 20 mg/L. Table 2 shows the 
contact angle and pore size values before and after modification. The average water 
fluxes at these concentrations of carbendazim for PET TeMs-PFDTS were 214, 142.85 and 
119 g/m2·h, respectively. The average water fluxes for PET TeMs-g-TEVS were 95.2, 119.2 
and 142 g/m2·h for the above-listed concentrations. It was found that the concentration of 
carbendazim measured by UV spectroscopy in all selected samples was below the detec-
tion limit (100 μg/L) [184]. 

 
Figure 8. Scheme of surface modification of PET TeMs (a); water flux for modified PET TeMs-PDFTS and PET 
TeMs-g-TEVS (b) of pesticide solution (carbendazim) with different concentrations. Adapted from [184]. 

Table 2. Properties of PET TeMs before and after hydrophobization. 

Sample Contact 
Angle, ±4° 

Effective Pore Size, nm Pore Size (from 
SEM Analysis), nm 

LEP, MPa 

Initial PET TeMs 58 198 ± 5 220 ± 8 0.12 
PET TeMs-g-TEVS 89 167 ± 8 216 ± 3 >0.43 
PET TeMs—PFDTS 134 148 ± 6 174 ± 4 >0.43 

Initial PET TeMs 55 302 ± 8 310 ± 15 0.015 
PET TeMs-g-TEVS 85 287 ± 10 292 ± 20 0.04 
PET TeMs—PFDTS 115 274 ± 12 285 ± 18 0.04 

5.6. Application of Hydrophobized PET TeMs in Liquid Low-Level Radioactive Waste Treatment 
MD is an effective method for water treatment of liquid low-level radioactive waste 

(LLLRW). In our previous work [179], LLLRW samples were taken from the secondary 
circuit of the WWR-K research reactor (Almaty, Kazakhstan, Institute of Nuclear Physics) 
and concentrated by the MD method using modified PET TeMs-g-PS. The efficiency of 
salt rejection was monitored by atomic emission spectroscopy for the analysis of the main 
ions in LLLRW, such as Na, Mg, K, Fe, Ca, Al, Sb, Sr, Mo and Cs (Table 3). The gamma 
spectrometer was used to monitor the activity of some radioisotopes: 60Co, 137Cs and 
241Am. In the experiment, membranes with different pore diameters (142, 206, and 242 
nm) were tested. According to Table 3, all degrees of rejection were higher than 90%, 
most of them being close to 100%. 

  

5

10

20

--

0 50 100 150 200 250
Water flux, g/m2*h

Co
nc

en
tra

tio
n 

of
 c

ar
be

nd
az

im
, m

g/
L  PET TeMs-g-PFDTS

 PET TeMs-g-TEVS
(b)

(a)

Figure 8. Scheme of surface modification of PET TeMs (a); water flux for modified PET TeMs-PDFTS and PET TeMs-g-TEVS
(b) of pesticide solution (carbendazim) with different concentrations. Adapted from [184].

Hydrophobized PET TeMs membranes were tested to decontaminate water from
pesticides (carbendazim) with concentrations of 5, 10 and 20 mg/L. Table 2 shows the
contact angle and pore size values before and after modification. The average water
fluxes at these concentrations of carbendazim for PET TeMs-PFDTS were 214, 142.85 and
119 g/m2·h, respectively. The average water fluxes for PET TeMs-g-TEVS were 95.2, 119.2
and 142 g/m2·h for the above-listed concentrations. It was found that the concentration of
carbendazim measured by UV spectroscopy in all selected samples was below the detection
limit (100 µg/L) [184].

Table 2. Properties of PET TeMs before and after hydrophobization.

Sample Contact Angle, ±4◦ Effective Pore Size, nm Pore Size (from SEM Analysis), nm LEP, MPa

Initial PET TeMs 58 198 ± 5 220 ± 8 0.12

PET TeMs-g-TEVS 89 167 ± 8 216 ± 3 >0.43

PET TeMs—PFDTS 134 148 ± 6 174 ± 4 >0.43

Initial PET TeMs 55 302 ± 8 310 ± 15 0.015

PET TeMs-g-TEVS 85 287 ± 10 292 ± 20 0.04

PET TeMs—PFDTS 115 274 ± 12 285 ± 18 0.04
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5.6. Application of Hydrophobized PET TeMs in Liquid Low-Level Radioactive Waste Treatment

MD is an effective method for water treatment of liquid low-level radioactive waste
(LLLRW). In our previous work [179], LLLRW samples were taken from the secondary
circuit of the WWR-K research reactor (Almaty, Kazakhstan, Institute of Nuclear Physics)
and concentrated by the MD method using modified PET TeMs-g-PS. The efficiency of
salt rejection was monitored by atomic emission spectroscopy for the analysis of the main
ions in LLLRW, such as Na, Mg, K, Fe, Ca, Al, Sb, Sr, Mo and Cs (Table 3). The gamma
spectrometer was used to monitor the activity of some radioisotopes: 60Co, 137Cs and
241Am. In the experiment, membranes with different pore diameters (142, 206, and 242 nm)
were tested. According to Table 3, all degrees of rejection were higher than 90%, most of
them being close to 100%.

Table 3. Chemical composition of the LLLRW sample and the effluent after DCMD process.

Element Concentration in
the Feed (µg/L)

Concentration in
the Permeate (PET

TeMs-g-PS,
d = 268 nm) (µg/L)

Concentration in
the Permeate (PET

TeMs-g-PS,
d = 220 nm) (µg/L)

Concentration in
the Permeate (PET

TeMs-g-PS,
d = 135 nm) (µg/L)

Concentration in
the Permeate

(PTFE Nanofiber
Membrane

d = 220 nm) (µg/L)

Cs (σ = ± 26%) 304 1.45 0.33 <0.05 34.3

Mo (σ = ± 15%) 458 1.11 <0.3 <0.3 76.0

Sr (σ = ± 15%) 136 <0.5 <0.5 <0.5 11.1

Sb (σ = ± 15%) 46.3 <0.3 <0.3 <0.3 8.96

Al (σ = ± 16%) 660 <3 <3 <3 <30

Ca (σ = ± 16%) 1780 55.3 52 44 208

Fe (σ = ± 10%) 383 <0.6 <0.6 <0.6 <6

K (σ = ± 15%) 249,200 377 414 150 7476

Mg (σ = ± 15%) 1046 2.52 4 2 <10

Na (σ = ± 15%) 4,710,000 13,200 3200 540 601

Results of water flux and electrical conductivity during DCMD are shown in Figure 9.
The average water fluxes for membranes with pore diameters of ~135 and 268 nm were
198.5 and 980 g/m2·h, respectively.
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Figure 9. Water flux (a) and electrical conductivity (b) during continuous DCMD tests using hydrophobized PET TeMs-g-PS
with different pores for radioactive waste solution. Adapted from [179].

Results on decontamination factors of radioisotopes are presented in Table 4. PET
TeMs-g-PS with pore diameters of 220 nm showed decontamination factors of >85 for 60Co,
>1727 for 137Cs and 5 for 241Am. It should be noted that in most cases the results obtained
were below detection limits.
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Table 4. Radioisotope composition of feed waste solution and permeate solution after DCMD process.

Radioisotope Activity of the
Feed (Bq/kg)

Activity of the
Permeate (PET

TeMs-g-PS,
d = 220 nm) (Bq/kg)

Decontamination
Factor (D)

Activity of the
Permeate (PTFE

Nanofiber Membrane
d = 220 nm) (Bq/kg)

Decontamination
Factor (D)

60Co 85.4 ± 6.1 <1.0 85 16.5 ± 1.1 10
137Cs 1900 ± 27 <1.1 1727 4.33 439

241Am <2.2 <0.45 5 >0.49 2

LLLRW was also purified with MD by using other types of membranes (see Table 5).
However, it is difficult to compare various results with each other, since the source of
contaminated waters was different, and therefore the composition of LLLRW was also
different. However, our group made a comparison between TeMs and nanofiber PTFE [179],
and relevant results are presented in Tables 3 and 4. The decontamination factor of PTFE
membrane is 10 for 60Co, 439 for 137Cs and >2 for 241Am; the degree of purification is
several times lower than that of TeMs.

Table 5. A comparative analysis of the water flux, salt rejection and decontamination factor for some isotopes for different
types of membranes used in LLLRW applications.

Type of Membrane Water Flux of LLLRW,
g/m2·h Salt Rejection, % Decontamination

Factor for Isotopes Reference

Hydrophobic PET TeMs-g-PS 980 99.9

60Co—85
137Cs—1727

241Am—5
[179]

PTFE membrane 5000 90–95

60Co—10
137Cs—439
241Am >2

[179]

PTFE spiral-wound membrane 1300–1800 >93
60Co—4336.5
137Cs—43.8

[13]

PES membrane 70,000–159,000 >90

60Co—400–1000
137Cs—900–1400

85Sr—400–800
[185]

PP hollow fiber membrane 6300 99.6 Co (simulated) [186]

Ceramic NF membrane 20,000 99.9 Co (simulated) [187]

Hydrophobic PP membrane 7100–30,300 /

85Sr—105

60Co—104

137Cs—103
[188]

PP hollow fiber membrane 5000–50,000 >90

85Sr—3700
60Co—8300
137Cs—6000

[189]

The results of the modification of PET TeMs for use in membrane distillation are
summarized in Table 6.

It was observed that the immobilization of silica nanoparticles leads to the highest
hydrophobization of the TeM surface, which makes it possible to modify membranes with
large pore diameters (up to 350 nm), which allows achieving water flux of 15 kg/m2·h.
The main challenge of membrane hydrophobization is to find methods that allow the
hydrophobization of membranes with the largest pore diameter, which in turn will lead
to high porosity and water flux while maintaining a high degree of purification. As can
be seen from Table 6, covalent bonding of FDTS, photo-initiated graft polymerization of
TEVS, photo-initiated graft polymerization of styrene, immobilization of Si nanoparticles



Polymers 2021, 13, 2520 20 of 28

and plasma deposition of fluoropolymers led to sufficient hydrophobization of TeMs
with pore diameters of 220, 200, 220, 315 and 400 nm, respectively. Thus, the last two
methods have prospects for further use, since modified membranes have high values of
performance and purification degree, and they can compete with other types of membranes
(see Table 1). It should be noted that the main disadvantage of TeMs is their low porosity,
which limits water fluxes. However, as shown in [179], TeMs with narrow pore size
distribution led to better water purification from salts and LLLRW in comparison with
nanofiber PTFE membranes.

Table 6. Dependence of the LEP values and the contact angle on the pore size of the PET TeMs modified with different
methods and their performance in MD process.

Modification Method Pore Size, nm Contact
Angle, ◦

Water Flux,
g/m2·h

Salt
Rejection, % LEP, MPa Reference

Covalent bonding of FDTS 410 ± 14 104 / / 0.012 [178]

Covalent bonding of FDTS 305 ± 13 107 / / 0.039 [178]

Covalent bonding of FDTS 220 ± 11 109 97—for 30 g/L
NaCl 98.4 0.340 [178]

Photo-initiated graft
polymerization of TEVS and VIM 200 ± 18 105 88—for 30 g/L

NaCl 95.2 >0.430 [130]

Photo-initiated graft
polymerization of styrene 268 ± 21 91 1254—for

30 g/L NaCl 83.2 0.140 [179]

Photo-initiated graft
polymerization of styrene 220 ± 15 99 219.3—for

30 g/L NaCl 97.5 0.340 [179]

Photo-initiated graft
polymerization of styrene 135 ± 15 104 107.7—for

30 g/L NaCl 98.1 0.390 [179]

Immobilization of silica
nanoparticles 315 ± 6 125 15,000—for

30 g/L NaCl 93 0.350 [131]

Immobilization of silica
nanoparticles 263 ± 5 132 6500—for

30 g/L NaCl 98 0.430 [131]

Immobilization of silica
nanoparticles 201 ± 5 135 2200—for

30 g/L NaCl 99 >0.430 [131]

Plasma deposition of
fluoropolymers 400 85–95 1100–2900 95–100 / [133]

There is also the problem of evaluation of the degree of salt rejection. This parameter
has been estimated in different ways by different authors. Some of them take into account
changes in conductivity only in the feed solution, while others use the following equation:
R% = 1–TDSpermeate/TDSfeed. This equation gives an overestimated value of the degree of
salt rejection, since it does not take into account the volume of liquid from the permeate
side, and evaporation of water from the hot side is also possible.

In our works, for a more accurate evaluation of the degree of salt rejection (R), the use
of the following equations is proposed [131]:

R = 100 −
(

Creal
Cfic

× 100%
)

(1)

Creal =
∆σ × 1000

2.3
(2)

Cfic =
∆m × Cfeed

mp
(3)

where R—degree of salt rejection,%; Creal—concentration of NaCl in permeate side after
MD, g/L, calculated according to conductivity (conductivity of 1 mg/L NaCl solution is
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2.3 µS/cm); Cfic—theoretical concentration of NaCl (provided that feed solution passed
without purification), g/L; ∆σ—difference in conductivity of permeate solution before and
after MD, µS/cm; 2.3 mS/cm—change in the conductivity of the solution with the addition
of 1 g/L of NaCl; ∆m—permeate gain after MD, g; Cfeed—initial concentration of salt in
feed solution, g/L; mp—mass of water from the permeate side before MD, g.

Thus, different methods for estimation of the degree of salt rejection do not allow
direct and reliable comparison of the data obtained. Therefore, it is necessary to adopt and
use a universally agreed method of calculation of salt retention.

6. Conclusions

The studies presented in this review allow us to say that TeMs have the prospect of
being used in membrane distillation. Specific features of TeMs such as controlled pore size
and narrow pore size distribution and thickness lead to more efficient water purification,
and this is clearly seen in the purification of low-level liquid radioactive waste. On the
other hand, the low porosity of such membranes limits their water flux; nevertheless, water
fluxes have an average value in comparison with nanofiber or electrospun membranes.
Thus, we are confident that TeMs can be used in the precision treatment of hazardous
wastes. Moreover, further developments in the modification of track-etched membranes
for membrane distillation may result in the formation of omniphobic and Janus surfaces
with the aim to expand the use of such membranes in the separation of oil- and surfactant-
containing aqueous systems.

Moreover, we would like to emphasize that such membranes can be obtained with
precisely defined channel sizes and porosity; that is, the number of these channels per cm2

can be controlled with high accuracy. Thus, such membranes have the potential to be used
as model membranes for the development and confirmation of models, including for the
MD process. For instance, they have been used to confirm a model for LEP prediction.
We believe that by grafting biocidal polymers and polymers showing affinity to specific
compounds and metals, research in this field will widen the use of TeMs in MD applications.
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