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ABSTRACT The fern Ceratopteris richardii is an important model for studies of sex determination and
gamete differentiation in homosporous plants. Here we use RNA-seq to de novo assemble a transcriptome
and identify genes differentially expressed in young gametophytes as their sex is determined by the pres-
ence or absence of the male-inducing pheromone called antheridiogen. Of the 1,163 consensus differen-
tially expressed genes identified, the vast majority (1,030) are up-regulated in gametophytes treated with
antheridiogen. GO term enrichment analyses of these DEGs reveals that a large number of genes involved
in epigenetic reprogramming of the gametophyte genome are up-regulated by the pheromone. Additional
hormone response and development genes are also up-regulated by the pheromone. This C. richardii
gametophyte transcriptome and gene expression dataset will prove useful for studies focusing on sex
determination and differentiation in plants.
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Ceratopteris richardii is a homosporous fern that produces a single
type of haploid spore, with each spore having the potential to develop
as a free-living male or hermaphroditic gametophyte. In this and
many other fern species, the sex of the gametophyte is determined
by a male-inducing pheromone called antheridiogen (Warne and
Hickok 1991; Banks 1999). In the absence of ACE (for Antheridiogen

Ceratopteris), a spore develops as a hermaphrodite, which begins to
secrete biologically detectable amounts of ACE after it loses the com-
petence to respond to its male-inducing effects. In the presence of
ACE; a spore develops as a male gametophyte. Thus, in a population,
spores that germinate first in the absence of ACE develop as hermaph-
rodites that secrete ACE; while spores that germinate later and in the
presence of ACE develop as males (Banks et al. 1993; Warne and
Hickok 1991). Given that the self-fertilization of a hermaphroditic
gametophyte results in a completely homozygous sporophyte (similar
to a double haploid), this mechanism of sex determination is pre-
sumed to promote outcrossing by increasing the proportion of males
in a population of gametophytes (Haufler 2002).

Although small (,3mm), male and hermaphroditic gametophytes
are dimorphic and easy to distinguish by size and shape. Each her-
maphrodite forms a multicellular, lateral meristem that contributes to
its heart-shaped appearance, with multiple archegonia developing after
the lateral meristem forms (Figure 1g). The development of this lateral
meristem coincides with the loss of competence to respond to ACE as
well as the production ofACE in the hermaphrodite (Banks et al. 1993).
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Male gametophytes never develop a lateral meristem and are much
smaller than hermaphrodites (Figure 1d), with nearly all cells of the
male gametophyte terminally differentiating as antheridia. If removed
frommedia containing ACE , undifferentiated cells of a male can form a
new hermaphroditic prothallus. Based upon these observations, ACE

has many functions in gametophyte development: it prevents the es-
tablishment of the lateral meristem; it promotes the rapid differentia-
tion of antheridia; it prevents its own synthesis or secretion in the male;
and is necessary to maintain the male program of expression.

To date, all fern antheridiogens characterized are gibberellins (GAs)
(Yamane et al. 1987; Yamane 1998; Takeno et al. 1989; Furber et al.
1989). Although the structure of ACE is unknown, the GA biosynthetic
inhibitors ancymidol, AMO-1618, and uniconazole-P reduce the pro-
portion of males in a population of Ceratopteris gametophytes suggest-
ing that ACE and GA share a common biosynthetic pathway (Warne
and Hickok 1989). That ABA completely blocks the ACE response in
Ceratopteris is also consistent with ACE being a GA (Hickok 1983;
McAdam et al. 2016).

To understand how ACE determines the sex of the Ceratopteris
gametophyte, mutations affecting sexual phenotype have been charac-
terized and used to develop a genetic model of the sex-determining
pathway (Strain et al. 2001; Banks 1994, 1997; Eberle and Banks 1996).
Cloning these genes is challenging because of the large genome size of
C. richardii, ca. 11Gb (Li et al. 2015), and the lack of a reference genome
sequence for this or any other homosporous fern species. An alternative
approach to identifying sex-determining genes involves de novo tran-
scriptome assembly using RNA-seq, which provides a means to per-
form sensitive gene expression studies in organisms that do not have a
reference genome (Grabherr et al. 2011; Robertson et al. 2010; Schulz
et al. 2012). Here we describe the de novo assembly of the transcriptome
of young Ceratopteris gametophytes and identify genes whose expres-
sion differs as their sex is being determined by the absence or presence
of ACE; thus providing a snapshot of the transcriptional changes that
occur as the sex of the spore becomes determined and prior to the
differentiation of male or female traits in the developing gametophyte.

MATERIALS AND METHODS

Plants and Growth Conditions
The origins of Hn-n, an isogenic, wild-type strain of Ceratopteris
richardii used in this study, is described in (Hickok et al. 1987). The
conditions for spore sterilization and gametophyte culture are as pre-
viously described (Banks 1994). Medium used to culture gametophytes

in the absence of exogenous ACE is as described in (Banks et al. 1993).
and is referred to as fern medium, or FM. ACE was obtained as a crude
aqueous filtrate from media previously supporting gametophyte
growth in FM as described in (Banks et al. 1993) and is referred to as
conditioned FM (CFM). Scanning electron micrographs (SEMs) were
performed on a FEI NOVA nanoSEM on samples prepared as pre-
viously described (Banks 1994).

For both RNA-seq and qRT-PCR, spores were grown aseptically in
liquid FM at 28� in a growth chamber, shaken at 100 rpm, and at a
density of 1g spores/L. Three days after spore inoculation, gameto-
phytes were filtered from media; 1/6 of the spores were added to each
of three flasks containing 200 mL sterile FM, which is the2ACE treat-
ment, and 1/6 were added to each of three flasks containing 200 mL
sterile CFM, which is the þACE treatment. After 36 hr, gametophytes
were vacuum filtered from media and frozen in N2ðlÞ. Tissue was sub-
sequently stored at -80�. All samples were randomized throughout
incubators and during sample preparation and harvesting protocols.

Library Preparation and Sequencing
Frozen tissue was ground under liquid nitrogen for 20 min and total
RNA extracted using the RNeasy Plant Mini Kit (Qiagen, CA). The
TruSeqkit (Illumina,CA)wasused toselectpoly-adenylatedmRNAand
prepare libraries for sequencing. Libraries were sequenced on an Illu-
mina HiSeq2000 platform using paired-end technology.

Transcriptome Assembly and Annotation
DeconSeq v.0.4.1 was run on each of the FASTQ read files to remove
reads aligning to bacterial, viral, rRNA, mitochondrial RNA, and
chloroplast DNA (Schmieder et al. 2011; Schmieder and Edwards
2011). After removing adapter sequences and trimming reads based
on quality score with Trimmomatic v.0.22 (Lohse et al. 2012), reads
were assembled using the de novo transcriptome assembler Trinity
(Grabherr et al. 2011), with a minimum contig length cutoff of
150 and a fixed k-mer size of 25. An assembly with unique genes was
generated by selecting the longest component from each Trinity de
Bruijn graph. These were used in subsequent differential expression
analyses in order to avoid biasing analyses toward genes that were more
difficult to assembly and thus had many more contigs (subcompo-
nents). The program Assembly Stats in the iPlant Discovery environ-
ment was utilized to obtain basic assembly statistics (Goff et al. 2011;
Earl et al. 2011). Protein-encoding, differentially expressed genes were
annotated using the Trinotate workflow (Ashburner et al. 2000;

Figure 1 Ceratopteris gametophyte development. (a)
SEM of spores three days after inoculation showing tri-
lete markings. (b-d) SEMs of 4.5d, 6d and 14d gameto-
phytes grown in the presence of ACE . (e-g) SEMs of
4.5d, 6d and 14d gametophytes grown in the absence
of ACE . The mature hermaphrodite (g) has a meristem
notch (mn), archegonia (ar) and antheridia (an) while the
mature male (d) has only antheridia (an). Bars =
0.15mm.
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Finn et al. 2011; Grabherr et al. 2011; Kanehisa et al. 2011) using a
50 amino acid minimum cutoff.

Differential Expression Analysis
Paired reads were aligned to the assembled transcriptome using RSEM
v.1.0.1 (Li andDewey 2011; Grabherr et al. 2011; Li et al. 2015).Only the
transcripts with at least one read aligned in at least one of six samples
were used. edgeR v.3.0.8 (Robinson et al. 2010), DESeq v.1.10.1 (Anders
and Huber 2010), and EBseq v.1.1.4 (Leng et al. 2013) were used to
identify differentially expressed genes at a Benjamini-Hochberg
(Benjamini et al. 2001) corrected FDR of q = 0.01. In edgeR, dispersion
was estimated as tagwise dispersion. To retain as much rigor in our
methods as possible, genes that were identified as statistically signifi-
cantly differentially expressed in all three packages and displayed at
least a twofold expression difference between conditions were identi-
fied as “consensus DEGs” and used in all downstream analyses.

GO Enrichment and Assembly Validation
Because there is no reference genome sequence for C. richardii, GO
enrichment was performed by annotating the C. richardii transcrip-
tome and the differentially expressed genes against the Arabidopsis
proteome (Araport11) (Hanlon et al. 2015), the non-redundant data-
base, and the Selaginella moellendorffii proteome v. 1.0 (Banks et al.
2011), using BLASTx and an e-value threshold of 1028:Gene Ontology
(GO) terms were then assigned from the Arabidopsis accession identi-
fier from the best hit associated with the differentially expressed tran-
scripts and the reference C. richardii transcriptome. ClueGO (version
2.3.4), a Cytoscape (version 3.5.1) plug-in (Cline et al. 2007; Smoot et al.
2010; Saito et al. 2012; Shannon et al. 2003), and GOTerm Fusion were
used to distill and visualize the GO term enrichments within the bio-
logical processes category using default parameters, with the following
exceptions: the minimum number of genes/cluster was set to 5, the
Benjamini-Hochberg method was used to correct the p-values for mul-
tiple testing, with a significance threshold of P , 0.05 and a custom
backgroundmodel supplied. The GO termsmapping to the entire non-
redundant Ceratopteris richardii transcriptome was used as the back-
ground when assessing the enrichment of GO terms. To assess the
quality of the C. richardii Trinity assembly, the 5133 C. richardii
Sanger-generated ESTs available in GenBank were used to blast the
entire Ceratopteris transcriptome assembly using BLASTn and a
BUSCO (Benchmarking Universal Single-Copy Orthologs) analysis
was performed using BUSCO v.2.0 to assess completeness of the as-
sembled transcriptome using the ‘eukaryotic’ dataset, which consists of
303 highly conserved genes (Simão et al. 2015; Waterhouse et al. 2018).

Expression Analysis Validation
Total RNAwas isolated from six gametophyte populations cultured and
harvested in the samemanner as that used to generate the RNA-seq data.
RNA was reverse transcribed using the Tetro cDNA Synthesis Kit
(Bioline, MA); qRT-PCR was performed using the SYBR green PCR
MasterMix (Applied Biosystems), 3ng cDNA template and the StepOne
Real-TimePCRSystem(AppliedBiosystems,NY). PCRconditionswere:
one cycle of 20min at 95�, 40 cycles of 3 sec at 95� and 30 sec at 60�. Melt
curves were analyzed and only those reactions producing a single Tm
peak were used. Three technical replicates were performed for each
sample. Measurements were normalized to the amount of CrEF1a
(GenBank accession number BE642078) transcript in the samples. Re-
actions without template added served as the negative control. The DCt
method was used in calculating relative fold changes (Livak and
Schmittgen 2001). The primer sequences used are listed in Table S1.

Data Availability
Strains are available upon request. Table S1 contains primers used in
qRT-PCR and supplemental figures. Table S3 contains a list of all 1,163
differentially expressed genes found by all three statistics packages with
annotation and statistical support included. This Transcriptome Shot-
gun Assembly project has been deposited at DDBJ/EMBL/GenBank
under the accession GBGN00000000. The version with 82,870 genes
used in the differential expression analysis is the second version,
GBGN02000000. RSEM results and statistical support for all Trinity
predicted transcripts are available upon request. Supplemental material
available at Figshare: https://doi.org/10.25387/g3.6100139.

RESULTS AND DISCUSSION

Gametophyte Morphology and Selection of
Tissue Samples
The early development of Ceratopteris gametophytes can be divided
into distinct stages (Banks et al. 1993). During the first stage (0-3d after
spore inoculation), the spore swells but remains intact (Figure 1a).
During stage 2 (3-4d), the spore coat cracks along its trilete markings.
The first rhizoid emerges from the spore during stage 3 and the two-
dimensional protonema (Figure 1b and e) emerges during stage 4
(4-6d). The male and hermaphrodite gametophytes become morpho-
logically distinct at stage 5 (6-7d; (Figure 1c and f) at which time
hermaphrodites begin to secrete ACE. For a gametophyte to develop
as a male, it must continuously be exposed to ACE during stages 2 and
3 (Banks et al. 1993). Because we are interested in identifying genes that
are differentially expressed by ACE treatment during the period of time
that the sex of the gametophyte is determined, three populations of
gametophytes were grown withoutACE for three days; at day three (end
of stage 1), each population was divided into two and either media
without ACE or media with ACE was added to the split samples.
All gametophytes were harvested and processed 36hr later (stage 3;
(Figure 1b and e)) when the sex of the gametophyte was determined
but male and hermaphrodites were morphologically indistinguishable.

Transcriptome Assembly and Annotation
The Ceratopteris transcriptome was assembled from 188 million Illu-
mina paired end reads generated from the six gametophyte samples
(see Table S2 for a summary of run metrics, analysis and assembly of
the transcriptome). Three biological replicate samples were sequenced
and analyzed for each treatment condition. A Trinity (Grabherr et al.
2011) de novo assembly resulted in 82,820 genes with read support of
which 24% could be annotated with the Arabidopsis proteome, and
23% could be annotated by the Selaginella proteome. A large number
of genes (1,064) could be annotated using the Selaginella proteome but
did not have hits in the Arabidopsis proteome. Most of the top hits of
these sequences are from the Selaginella moellendorffi genome (302),
howevermany are also from Physcomitrella patens (175), andMarchantia
polymorpha (131). Of these, the majority (738 sequences) had hit
descriptions of predicted/hypothetical, uncharacterized, or unknown
proteins. That most of these sequences do not have known gene
functions is not surprising given that Arabidopsis is generally used
in annotation of plant datasets. Of the remaining sequences which
were annotated, many are sperm-related. Motile sperm are a charac-
teristic of early divergent land plants such as Selaginella and Ceratotperis
(reviewed in (Hodges et al. 2012)), and thus it is not surprising that
such proteins would be present in these assemblies but notably absent
from Arabidopsis. A total of 44 sequences have blast hits to dynein
related proteins and 18 have hits to flagellar associated proteins.
Additional sequences are also present which are sperm-related,
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including radial spoke protein 9 and sporangia induced deflagella-
tion-inducible protein. Of the annotated sequences, 43 are annotated
with the cellular component GO term cilium, and 13 are annotated
with cilium or flagellum-dependent cell motility; these are likely
sperm-related proteins as flagellum are solely found in sperm cells
in seedless vascular land plants (Raven et al. 2005).

Following the assembly and annotation of the Ceratopteris game-
tophyte transcriptome, the quality of the assembly was assessed. First,
the quality of the Trinity assembly was assessed by comparing 5,133
Ceratopteris Sanger EST sequences available in GenBank to transcript
sequences generated by Trinity using BLASTn. 87% of the Sanger ESTs,
generated either from C. richardii sporophyte and gametophyte tissues
were identical or almost identical (E-value of 0.0) to transcripts in the
transcriptome assembly, indicating that Trinity accurately assembled
transcript sequences from the short Illiumina reads. The expression of
the Sanger ESTs not represented in the transcriptome assembly may be
age or tissue specific and thus not captured in the transcriptome as-
sembly described here. A BUSCO analysis (Waterhouse et al. 2018;
Simão et al. 2015) was also performed to assess the completeness of
the transcriptome. BUSCO identifies highly conserved genes as com-
plete, complete and single-copy, fragmented, or missing in the tran-
scriptome. Of the 303 total BUSCO groups searched, 290 were
complete (95.7%), 181 were complete and single-copy (59.7%), 10 were
fragmented (3.3%), and only 3 were missing (1%). This suggests that
the assembled Ceratotperis gametophyte transcriptome is quite
complete.

Identification and Validation of Differentially Expressed
Genes by Antheridiogen Treatment
Three programs, edgeR (Robinson et al. 2010), DESeq (Anders and
Huber 2010), and EBSeq (Leng et al. 2013), were used to identify genes
that differ in their expression by ACE treatment (See Table S2 for
number of differentially expressed genes found by each package). A
scatterplot (Figure 2) that assesses the overall expression pattern across
all transcripts shows that the expression of most transcripts is similar
regardless of treatment, as expected. The majority (88%) of differen-
tially expressed genes were more highly expressed in ACE treated ga-
metophytes (Figure 2). Of the 1,183 DEGS identified using DESeq,
1,163 were also identified by EBSeq and edgeR; these 1,163 DEGS were
used in subsequent analyses. A list of the 1,163 DEGS, their annotation
and supporting statistics is provided in Table S3. Of the 133 DEGS
more abundant in the non-ACE-treated gametophytes, 55% were an-
notated as protein-encoding genes, while 71% of the 1,030 DEGS more
abundant in the ACE treated samples could be annotated.

To test the validity of the DEG analysis, the expression of 10 genes,
including genes more abundant in ACE-treated samples, genes more
abundant in the non-ACE-treated samples and genes showing a less
than twofold difference in abundance between treatments were
assessed by qRT-PCR. As shown in Figure S1, the qRT-PCR expression
data are consistent with the RNA-seq expression data in the direction of
the fold change.

GO-Enrichment of Differentially Expressed Genes
The enrichment of Gene Ontology (GO) Biological Process terms
associated with the genes that are up-regulated by ACE (Figures 3 and
Figure S2) reveals four major networks of enriched GO terms. One
cluster includes genes related to various aspects of development, includ-
ing meristem, shoot and tissue development. Another cluster includes
genes involved in hormone (ABA, auxin, ethylene and GA) signaling
or responses. A third cluster includes genes that affect chromatin

structure and epigenetic regulation of gene expression. The fourth
cluster includes genes broadly involved in regulating gene expression;
genes within this cluster are included in the “chromatin” cluster. Only
a single GO term (response to light stimulus) was enriched for genes
that are up-regulated in the non-ACE treated samples.

Hormone and Development Genes Responsive to ACE

Given that all characterized fern antheridiogens are gibberellins
(Yamane 1998), genes involved in GA hormone biosynthesis, signal-
ing and responses are likely to be involved in sex determination in
Ceratopteris. Of the differentially expressed genes, COPALYL DI-
PHOSPHATE SYNTHASE/KAURENE SYNTHASE (CPS/KS), which
encodes a key enzyme in GA biosynthesis (Sun and Kamiya 1994;
Hedden and Thomas 2012), is more abundant in gametophytes that
will become ACE secreting hermaphrodites (Table 1). No other known
GA biosynthetic genes, including kaurene oxidase andGA20 oxidase
are differentially expressed in C. richardii, indicating that sex-specific
ACE biosynthesis may be regulated or limited by the expression of the
CPS/KS gene in Ceratopteris, and that its expression is down-regulated
by ACE (males do not secrete ACE). All major ABA and GA signaling
genes (Yamauchi et al. 2004; Chan 2012; Sun 2008) are present in the
Ceratopteris transcriptome and are listed in Table S4. Ceratopteris
seems to have all the components seen in Arabidopsis, though instead
of the 7 DELLA proteins, responsible for repressing GA responses,
Ceratopteris has only 2 and two F-box protein encoding genes (SNE
and SLY1) involved in GA response in Arabidopsis are not present in
the assembled Ceratopteris gametophyte transcriptome. Similarities in
the sex determining pathway and the GA (Atallah and Banks 2015) and
ABA (McAdam et al. 2016; Sussmilch et al. 2017) signaling pathways

Figure 2 MA plot showing the log2 Fold change vs. the baseMean
(normalized average expression), as calculated by DESeq (Anders
and Huber 2010). Genes which are more highly expressed in þACE

treatment are shown in blue whereas those more highly expressed
in 2ACE treatement are shown in purple. The majority (88%) of dif-
ferentially expressed genes were more highly expressed in ACE treat-
ed gametophytes.

2208 | N. M. Atallah et al.



have been described. Furthermore, three independent alleles of
Ceratopteris GAMETOPHYTE INSENSITIVE TOABA 1 (GAIA1) were
shown to be mutations of a gene homologous to OST1/SLAC1 of
Arabidopsis (McAdam et al. 2016). Wild type gametophytes are her-
maphroditic in the presence of ACE and ABA, gaia1mutants are male
in the presence of ACE and ABA. However, while the GA receptor
(GID) and GA signaling (the DELLA GAI/RGA and GID2) genes are
present in the transcriptome, they are not differentially expressed by
antheridiogen in C. richardii as they are in gametophytes of the fern
Lygodium japonicum (Tanaka et al. 2014). Three MYB genes are
up-regulated (or de-repressed) by ACE treatment in Ceratopteris
(Table 1). These genes are well-characterized regulators of
GA-induced responses during angiosperm seed germination
(Gubler et al. 2002) and GA-dependent anther development (Aya
et al. 2011) and may serve similar functions by promoting the devel-
opment of antheridia and/or suppressing archegonia development in
Ceratopteris gametophytes exposed to ACE .

Although ferns never evolved seeds, there are interesting physiolog-
ical parallels between seed germination in Arabidopsis and sex deter-
mination in Ceratopteris in that both processes are regulated by two
antagonistic hormones, ABA and GA. In germinating Arabidopsis
seeds, the expression of Mother of FT and TFL (MFT) gene is modu-
lated by GA and ABA (Xi et al. 2010). MFT is up-regulated by ABA
treatment via the ABA-INSENSITIVE3 (ABI3) and ABI5 transcription
factors, as well as by DELLA proteins in the GA signaling pathway.
Because MFT represses ABI5, MFT is central to a negative feedback
loop that regulates seed germination by GA and ABA in Arabidopsis.
Given that the Ceratopteris MFT and ABI3 genes are upregulated by
ACE and ABA antagonizes the ACE response (Hickok 1983; McAdam
et al. 2016; Sussmilch et al. 2017),ACE may promote male development
by ultimately repressing ABA signaling in the gametophyte through a
pathway that involves MFT and ABI3.

Several additional genes involved in ABA, ethylene, auxin and
cytokinin perception, signaling or response are up-regulated by ACE

Figure 3 Functionally grouped Biological Process GO
terms specific for ACE -up regulated DEGs. The size of
each node represents the term enrichment significance.
Node labels are shown in the bar graph in Figure S2.
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n Table 1 Differentially Expressed Genes Discussed in Text

Ceratopteris Gene Annotation Arabidopsis Accession Blast E-value AdjPval FoldChange

Genes more abundant in 2ACE treated gametophytes

GA

comp112296 copalyl diphosphate synthase AT4G02780.1 3.00E-159 0.001459703 2.2

ABA

comp103387 ABA 8’-hydroxylase AT4G19230.1 0 0.003233766 2.4
comp112296 copalyl diphosphate synthase AT4G02780.1 3.00E-159 0.001459703 2.2
comp112296 copalyl diphosphate synthase AT4G02780.1 3.00E-159 0.001459703 2.2
comp112296 copalyl diphosphate synthase AT4G02780.1 3.00E-159 0.001459703 2.2

CYtokinin

comp80125 ARR9 AT2G41310.1 3.00E-42 1.18E-08 5.3
comp82535 ARR9 AT2G41310.1 2.00E-48 1.30E-08 4.2
comp119738 KAR-UP F-box 1 AT1G31350.1 4.00E-32 9.17E-05 2.3

Genes more abundant in þACE treated gametophytes

GA

comp116986 SCARECROW-like (SCL) AT5G66770.1 1.00E-87 0.006147273 2.4
comp82755 GRAS family transcription factor AT1G63100.1 1.00E-92 0.000454384 2.7
comp103126 LOST MERISTEMS (LOM) AT3G60630.1 5.00E-49 2.53E-05 2.9
comp81241 Lateral root primordium (LRP) AT3G51060.1 2.00E-30 4.22E-06 3.6
comp42166 MOTHER of FT and TF 1 (MFT) AT1G18100.1 5.00E-62 0.000371991 2.5

ABA

comp82182 ARM repeat protein AT5G19330.1 0 0.005713374 2.2
comp100365 ABA-insensitive 3 (ABI3) AT3G24650.1 2.00E-40 0.000180668 2.6
comp103619 Protein phosphatase 2C AT1G72770.3 1.00E-38 2.88E-05 3.2
comp114719 KEEP ON GOING (KEG) AT5G13530.1 0 1.01E-07 3.7

Ethylene

comp106297 ETHYLENE-INSENSITIVE2 (EIN2) AT5G03280.1 1.00E-64 0.001387265 2.5

Auxin

comp101920 NO VEIN (NOV) AT4G13750.1 0 0.000253886 2.7
comp106375 PIN-FORMED 4 (PIN4) AT2G01420.1 4.00E-166 2.68E-08 4.6
comp105872 PIN-FORMED 3 (PIN3) AT1G70940.1 5.00E-156 0.009233133 2.2
comp98976 BIG auxin transport protein AT3G02260.1 0 7.20E-09 4.2
comp109704 ABC transporter AT3G28860.1 0 7.48E-12 4.7
comp97116 SART-1 family protein DOT2 AT5G16780.1 3.00E-132 0.008328934 2.5
comp114948 SAR1 AT1G33410.2 0 4.83E-05 3
comp105798 auxin response factor (ARF) AT1G19220.1 5.00E-53 0.000175818 6.5

Cytokinin

comp111805 AHK4; cytokinin receptor CRE1a AT2G01830.1 0 0.000132766 3.2
comp100079 CKI1 AT2G47430.1 4.00E-108 0.000725748 2.6

DNA methylation/demethylation

comp115365 cytosine methyltransferase (MET1) AT5G49160.1 0 1.45E-06 3.3
comp82159 chromomethylase (CMT3) AT1G69770.1 1.00E-155 0.006306721 2.3
comp112176 DEMETER-like protein 1 (ROS1) AT2G36490.1 8.00E-83 0.001457903 2.7
comp101924 NERD AT2G16485.1 7.00E-96 4.01E-05 3

Chromatin remodeling

comp109662 CHR11; chromatin-remodeling 11 AT3G06400.2 0 0.007217854 2.2
comp83245 CHR5; chromatin remodeling 5 AT2G13370.1 0 2.28E-08 3.9
comp103550 CHR4; chromatin remodeling 4 AT5G44800.1 0.00E+00 6.59E-09 4.1
comp40502 PICKLE (PKL) AT2G25170.1 0.00E+00 0.00059255 2.6
comp103233 PICKLE (PKL) AT2G25170.1 5.00E-124 6.59E-05 2.8
comp39118 BRAHMA (BRM) AT2G46020.2 0 5.18E-12 5
comp43532 CHR21/INO80 1.75E-05 3

Histone modification

comp81987 MBD09; methyl-CpG-binding domain AT3G01460.1 5.00E-103 4.26E-09 4.1
comp99654 SUVH4/KYP AT5G13960.1 0 0.001195543 2.5

(continued)
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treatment (Table 1). While ABA is known to affect sex determination
by blocking the ACE response, these results point to roles for additional
hormones in the sex-determining process. Studies of the effects of
exogenous auxin (Gregorich and Fisher 2006; Hickok and Kiriluk
1984), ethylene (Ka�zmierczak 2010) and cytokinin (Menéndez et al.
2009) on fern gametophyte development have shown that these hor-
mones can affect the overall size and organization of the gametophyte
as well as the number of sex organs in a gametophyte. However, neither
auxin, ethylene or cytokinin substitute for or completely block the
male-inducing effects of antheridiogen, indicating that ACE may influ-
ence these hormones, or the crosstalk among these hormones, in mod-
ulating cell division and expansion in young gametophytes that will
become important as they differentiate.

This DEG analysis suggests that ACE affects the sex of the gameto-
phyte by not only activating genes associated with development, but
also by epigenetically reprogramming the nucleus that will divide and
ultimately give rise to amale gametophyte. The relatively few genes that
are up-regulated in gametophytes not treated with ACE likely represent
genes that are normally expressed in the gametophyte destined to
become hermaphrodite but are repressed by ACE:

An Epigenetic Response to ACE

A striking number of DEGs up-regulated by ACE encode factors in-
volved in epigenetic regulation of gene expression or epigenetic reprog-
ramming of the genome. These genes were sorted into five groups
(Table 1) following the classification of Pikaard and Scheid (Pikaard
and Scheid 2014): DNAmodification, histonemodification, Polycomb-
group proteins and interacting components, chromatin formation/
chromatin remodeling and RNA silencing.

The first group includes DNA modification genes that affect cyto-
sine methylation. The DEGs assigned to this group encode DNA
METHYLTRANSFERASE 1 (MET1), which maintains CpG methyl-
ation (Saze et al. 2003; Jullien et al. 2012), CHROMOMETHYLASE 3
(CMT3), which maintains CpHpG methylation (Law and Jacobsen
2010) and REPRESSOR OF SILENCING 1 (ROS1), a cytosine demeth-
ylase (Gong et al. 2002). Differences in global DNA methylation

patterns between gametes and adjacent cells of both male and female
gametophytes of Arabidopsis have been observed (Pillot et al. 2010;
Calarco et al. 2012; Ibarra et al. 2012; Jullien et al. 2012) and are
thought to silence transposable elements and reset silenced imprinted
genes in sperm cells (Kawashima and Berger 2014; Martínez et al.
2016). While sex determination in a homosporous fern, which occurs
during the gametophyte generation, differs from sex determination in
the heterosporous angiosperms, which occurs during the sporophyte
generation (Tanurdzic and Banks 2004), the up-regulation of these
genes during sex determination in Ceratopteris adds another stage of
plant development where DNA methylation may play an important
role in stabilizing or destabilizing transposable elements and contrib-
utes to epigenetic reprogramming of the male gametophyte. Whether
the observed differential expression of these DNA methylation genes
alters DNA methylation patterns in the genomes of young Ceratopteris
gametophytes, and whether additional changes in DNA methylation
occur as their gametes differentiate, remain to be tested.

A number of ACE-up-regulated DEGs encode proteins belonging to
the second group, histone-modifying enzymes known to affect gene
expression (Table 1). Among them are the histone acetyltransferases
HAC1, HAC12 and ROS4, a histone deacetylase (HDA14), the histone
methyltransferases TRITHORAX-LIKE PROTEIN 2 and 3 (ATX2
and 3), the SU(VAR)3-9 related proteins SUVH4/KYP and SUVH6,
and EARLY FLOWERING IN SHORTDAYS (EFS/SDG8). These pro-
teins are involved in eithermaintaining transcriptionally active states or
transcriptionally inactive states (reviewed in (Liu et al. 2010; Bannister
and Kouzarides 2011; Grossniklaus and Paro 2014; Pikaard and Scheid
2014; Xiao et al. 2016) and can contribute to the maintenance of DNA
methylation at silenced loci. ATXR3 is notable in that it is essential for
male and female gametophyte development (Berr et al. 2010) in angio-
sperms. Only one DEG, CURLYLEAF (CLF), was classified as encoding
proteins from the third group of chromatin modifiers: Polycomb pro-
teins. Polycomb proteins and interacting partners are often involved
in determining cell proliferation and identify through methylation
and chromatin compaction (Grossniklaus and Paro 2014; Kingston
and Tamkun 2014). The fourth group of genes, those involved in

n Table 1, continued

Ceratopteris Gene Annotation Arabidopsis Accession Blast E-value AdjPval FoldChange

comp83034 CURLYLEAF (CLF) AT2G23380.1 0 0.000158512 2.8
comp102724 ATX2 AT1G05830.2 0 0.000231694 2.8
comp83655 ATXR3 AT4G15180.1 2.00E-180 8.34E-08 3.8
comp98691 HAC12 histone acetyltransferase AT1G16710.1 0 0.000576165 2.6
comp62161 HAC1 histone acetyltransferase AT1G79000.1 0 0.001018811 2.6
comp108638 HAC1 histone acetyltransferase AT1G79000.1 0 0.00334741 2.5
comp98650 subunit of Elongator AT5G13680.1 0 0.009770466 2.2
comp106634 ASHH2 histone-lysine N-methyltransferase AT1G77300.2 2.00E-94 5.83E-06 3.1
comp110316 IDM1 histone H3 acetyltransferase AT3G14980.1 1.00E-111 7.37E-05 3
comp111521 histone deacetylase HDA14 AT4G33470.1 0 0.007411904 2.3
comp109495 SUVH6 AT2G22740.1 2.00E-142 0.00720228 2.5

RNA-mediated gene silencing pathways

comp108491 ARGONAUTE1 (AGO1) AT1G48410.1 0 0.000891723 2.5
comp82278 ARGONAUTE1 (AGO1) AT1G48410.1 0 0.000345422 2.6
comp112142 DICER-LIKE 1 (DCL1) AT1G01040.1 0 0.001158223 2.5
comp110523 DICER-LIKE 1 (DCL1) AT1G01040.1 0 0.000162621 2.9
comp37939 DICER-LIKE 4 (DCL4) AT5G20320.1 2.00E-179 0.00411352 2.4
comp81990 THO complex subunit 2 AT1G24706.1 0 2.46E-05 3
comp82821 SOU AT3G48050.2 3.00E-91 2.98E-08 3.9
comp81850 NRPD2a AT3G23780.1 0.00E+00 8.85E-03 2.2
comp111720 NRPD2b AT3G18090.1 0.00E+00 1.06E-03 2.5
comp115970 XRN4 AT5G57610.1 8.00E-148 2.28E-07 2.9
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chromatic formation/remodeling, are also represented among the genes
up-regulated in response to ACE. PICKLE (PKL), the gene encoding for
a chromatin remodeling factor which is necessary for gibberellin mod-
ulated development in Arabidopsis, (Park et al. 2017) and INOSITOL-
REQUIRING 80 (INO80), are both members of remodeling complexes
and are required for normal development (Zhang et al. 2015).

The fifth group of genes involving epigenetic regulation is those
relating toRNA-mediatedgene silencingpathways (Table 1).Argonaute
(AGO) 1, a core member of the RNA-induced silencing complex
(RISC) which is involved post transcriptional gene silencing (PTGS)
through cleavage or transcriptional inhibition (reviewed in (Czech and
Hannon 2011; Martienssen and Moazed 2015)) is significantly
up-regulated by ACE. Also up regulated are genes encoding two Dicer
endonucleases: DCL1 which generates miRNAs of mostly 21nt and
DCL4, which generates siRNAs that are 21nt (Pouch-Pélissier et al.
2008). Additional genes involved in RNA-mediated PTGS are XRN4,
which encodes a nuclease involved in small RNA processing (Cao et al.
2014), and SUO, which encodes a component of the miRNA pathway
(Yang et al. 2012). NRPD2, encoding the catalytic subunit of RNA
polymerase IV and V in plants (Ream et al. 2009) is also
up-regulated by ACE . Pol IV and V are both required for intercellular
RNA interference and are involved in PTGS maintenance (Onodera
et al. 2005; Pontier et al. 2005; Kanno et al. 2005). Also modulated by
ACE is a component of the THO/TREX complex, which has a putative
role in siRNA biosynthesis (Furumizu et al. 2010). Interestingly, the
THO complex represses female germline specification in Arabidopsis
(Su et al. 2017). Together, these results show that small RNA-mediated
PTGS is involved in the suppression of female characteristics in
C. richardii gametophytes.

All of the epigenetic mechanisms known to occur in plants are
represented among the genes up regulated by ACE. The importance of
epigenetic regulation for sex determination in C. richardii should per-
haps not come as a surprise. Gametophytes which are removed from
ACE containing media will over time develop into hermaphrodite ga-
metophytes, thus the promotion of male/suppression of female traits
must be reversible. Epigenetic regulation of sex determination would
allow for such plasticity in development.

Conclusions
This work reports the first transcriptome ofCeratopteris richardii, along
with a survey of significant differential gene expression changes be-
tween male and hermaphrodite gametophytes as sex is being deter-
mined. A high-quality reference gametophyte transcriptome was
assembled and used in the identification of genes which may be in-
volved in sex determination. The majority of differentially expressed
genes were more highly expressed in the male gametophyte. Many of
these up regulated genes are known to be involved in development and
in response to hormones. A significant number of differentially
expressed genes are involved in chromatin remodeling and epigenetic
regulation. Outcomes of this research shed light on the molecular
mechanisms involved in sex determination of C. richardii as well as
provide a resource for other plant science researchers. Future work will
probe and functionally classify these differentially expressed genes and
as well as survey how these changes persist as the gametophyte moves
from sex determination to differentiation.
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