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Speech and language impairments are common pediatric conditions, with as many as

10% of children experiencing one or both at some point during development. Expressive

language disorders in particular often go undiagnosed, underscoring the immediate need

for assessments of expressive language that can be administered and scored reliably and

objectively. In this paper, we present a set of highly accurate computational models for

automatically scoring several common expressive language tasks. In our assessment

framework, instructions and stimuli are presented to the child on a tablet computer,

which records the child’s responses in real time, while a clinician controls the pace and

presentation of the tasks using a second tablet. The recorded responses for four distinct

expressive language tasks (expressive vocabulary, word structure, recalling sentences,

and formulated sentences) are then scored using traditional paper-and-pencil scoring

and using machine learning methods relying on a deep neural network-based language

representation model. All four tasks can be scored automatically from both clean and

verbatim speech transcripts with very high accuracy at the item level (83 − 99%). In

addition, these automated scores correlate strongly and significantly (ρ = 0.76–0.99,

p < 0.001) with manual item-level, raw, and scaled scores. These results point to the

utility and potential of automated computationally-driven methods of both administering

and scoring expressive language tasks for pediatric developmental language evaluation.

Keywords: speech, expressive language, language disorders, assessment, automated scoring, neural

language models

1. INTRODUCTION

Untreated and undiagnosed developmental language disorder (DLD) is prevalent in young children
(Tomblin et al., 1997; Conti-Ramsden et al., 2006; Grimm and Schulz, 2014; Rosenbaum and
Simon, 2016) and can have serious behavioral and educational consequences (Clegg et al., 2005).
Wide-reaching language assessment is urgently needed not only for early identification of DLD
but also for planning interventions and tracking the efficacy of these interventions. Such efforts,
however, add strain to scarce and overtaxed clinical resources. To address this challenge, clinicians,
educators, and researchers have begun to explore alternatives to standard assessment paradigms
that can be more easily and more reliably administered and scored.

Conventional language test administration and scoring is a labor-intensive and time-consuming
task relying on significant clinical expertise. Assessment is typically conducted during a clinical
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visit by a speech language pathologist (SLP) using a battery of
standardized language tests in addition to criterion-referenced
and dynamic measures. Responses are scored using paper score
sheets, which are marked in real time and then later reviewed
by the clinician. In addition to the practical overhead required
to administer such assessments, the scoring of these tests can
suffer from intra- and inter-rater variability (Denman et al.,
2017). Although some progress has been made in developing
automatic assessments for receptive language (i.e., language
comprehension), there is no automatic assessment that elicits and
analyzes spoken responses to expressive language tasks (Marble-
Flint et al., 2019, 2020). A sizeable fraction of children with DLD
have primary difficulty with expressive communication (Tomblin
et al., 1997). The nature of an individual’s language disorder
impacts etiology, intervention, and psychiatric sequelae (Boyle
et al., 2010; Yew and O’Kearney, 2013). Given that computerized
administration ought to mimic conventional administration,
spoken responses must be used in any proposed computerized
assessment, just as they are in many subtests that contribute
to general language composite scores (e.g., Semel et al., 2003).
While language assessment for children has predominantly
utilized conventional face-to-face administration, automated
testing could increase clinician efficiency, access to services,
standardization of administration and scoring, and even child
interest (García Laborda, 2007; Noland, 2017).

In this paper, we investigate the utility of a computerized
tablet-based child language assessment instrument, modeled
after the Clinical Evaluation of Language Fundamentals (CELF-
4) (Semel et al., 2003). Using child language data collected
both with this computerized instrument and with standard
paper-and-pencil administration, we demonstrate the accuracy
and feasibility of an automated scoring system for four
expressive language tasks. The scoring methodology fine-
tunes representation learning models to predict the score for
responses to individual test stimuli, from which raw and
scaled scores can be derived. In contrast to models that take
manually-crafted measures of language as input, our deep
neural network (DNN)-based model directly estimates scores
directly from the transcripts. We find that our computerized
scoring system yields very high item-level accuracy and summary
score correlations when applied to both clean and verbatim
speech transcripts. These results demonstrate the promise of
computerized approaches to scoring expressive language tasks,
which in turn can support clinicians tasked with diagnosis and
extend the reach of services for children with developmental
language disorder.

2. MATERIALS AND METHODS

2.1. Data
2.1.1. Participants
Participants in this analysis include 107 English-speaking
children aged 5–9 years. These children represent the subset of
participants from our larger study who completed automatic test
administrations. Our participants and their families provided
informed consent, according to our institutional review board
policies. The children’s demographic information is presented

in Table 1. In order to ensure the utility of our system
for a diversity of child ability, participants included children
with Autism Spectrum Disorder (ASD, n = 20), Attention-
Deficit Hyperactivity Disorder (ADHD, n = 19), Developmental
Language Disorder (DLD, n = 22), and typical development
(TD, n = 46). Diagnoses were confirmed via a combination
of parent report of medical diagnosis, parent report of special
education eligibility criteria, and expert review of parent-
provided developmental history.

The goal of the work presented here is not to create a
novel diagnostic test. Although the four tasks provide important
information about a child’s expressive language abilities, no
developmental disorder, including DLD, is diagnosed on the
basis of these four tasks alone. The purpose of the work here
is to automatically score the four tests using computational
methods and not to perform automated diagnosis or screening.
We intentionally recruited participants with a range of diagnoses
in order to ensure that these testing conditions were accessible to
a wide range of children and abilities.

2.1.2. Data Collection
Our goal was to demonstrate the technological capability to
automate certain aspects of expressive language testing, not to
create an automated version of a gold standard assessment. For
this reason, we created parallel stimuli for our data collection
designed to mimic the subtest objectives for a gold-standard
assessment of expressive language. Each single-word stimulus
was selected by an expert speech-language pathologist from a list
of possible words matching the corresponding CELF-4 stimulus
on age-of-acquisition (Kuperman et al., 2012), relative frequency
(Masterson et al., 2003; Brysbaert and New, 2009; Davies,
2010), emotional valence (Mohammad and Turney, 2013),
phonological/phonetic complexity, and overall appropriateness
for the child language domain. Full sentence stimuli used
identical or nearly-identical syntactic structures with each
content word replaced by a word chosen by an SLP from a list
of words matching the original content word on the above four
dimensions. In addition, each sentence stimulus was matched
to the original CELF-4 sentence in terms of its overall Flesch-
Kincaid readability score (Kincaid et al., 1975) and its child
language domain content. For example, many prompts in the
original CELF-4 were specific to school, classrooms, and peer and
family relationships, content that was mirrored in our stimulus
selection. We then verified all stimuli via informal inspection
of meaningfulness and appropriateness by all team members,
including clinical experts in pediatric speech-language pathology,
psychology, and psychiatry. We note that while that our versions
of these subtests have not been subjected to the same scrutiny as
the original CELF-4 stimuli and that they not been normed on
a large population, the methodology we use to score a response
given a stimulus, which is the focus on the work presented here,
is independent of any particular stimulus.

The automated administrationwas conducted using a custom-
built iPad application. The application presented the stimuli for
four subtests, mimicking the original presentation prompts as
closely as possible, and recorded the audio of children’s spoken
responses. The pacing and presentation of tasks and stimuli
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TABLE 1 | Baseline characteristics of participants.

All (N = 107) TD (N = 46) ADHD (N = 19) DLD (N = 22) ASD (N = 20)

Female/Male 44%/56% 57%/43% 53%/47% 36%/64% 15%/85%

Age in years, X (SD) 7.29 (1.05) 7.03 (1.13) 7.54 (1.18) 7.54 (0.75) 7.38 (0.97)

Race

Asian, N (%) 3 (3%) 3 (15%)

Black/African American, N (%) 3 (3%) 1 (5%) 2 (10%)

White/Caucasian, N (%) 90 (84%) 43 (93%) 15 (79%) 20 (91%) 12 (60%)

More than one race, N (%) 11 (10%) 3 (7%) 3 (16%) 2 (9%) 3 (15%)

Ethnicity

Hispanic/Latino, N (%) 10 (9%) 2 (4%) 4 (21%) 1 (5%) 3 (15%)

Not hispanic/Latino, N (%) 97 (91%) 44 (96%) 15 (79%) 21 (95%) 17 (85%)

Language scores

EV scaled, X (SD) 12.48 (2.59) 13.59 (1.90) 12.89 (2.02) 10.82 (2.99) 11.35 (2.70)

FS scaled, X (SD) 11.08 (3.67) 12.70 (2.29) 11.00 (2.36) 10.09 (3.34) 8.55 (5.58)

RS scaled, X (SD) 10.62 (3.84) 12.65 (2.70) 10.42 (2.04) 8.32 (3.72) 8.65 (5.06)

WS scaled, X (SD) 10.79 (3.25) 12.46 (2.16) 11.11 (2.45) 9.09 (3.26) 8.55 (3.89)

ELI composite, X (SD) 105.32 (19.27) 115.96 (10.61) 105.26 (9.72) 95.45 (18.60) 91.75 (27.43)

were controlled by a clinician using a second iPad. Trained
examiners transcribed the responses and scored them according
to conventional pen-and-paper rules.

2.1.3. Expressive Language Tasks
Four subtests are included in this study: expressive vocabulary
(EV), word structure (WS), recalling sentences (RS), and
formulated sentences (FS). In the EV subtest, the child views an
image and must verbally name the person, object, or activity
depicted in that image. Responses are scored with full credit (2)
if correct, partial credit (1) if the response is not incorrect but not
specific enough (e.g., “fruit” for “lime”), and no credit (0) if the
response is entirely incorrect. The test is discontinued if there are
seven consecutive scores of zero.

WS is used to assess a child’s grasp of inflectional morphology.
A child is generally asked to complete a sentence after being
given a prompt and shown a picture. Targets include morphemes
expressing verb tense, possessives, plurals, and comparatives. An
example item is, “the woman is fixing the car; here is the car that
the woman. . . [fixed].” Scores for this subtest are simply correct
(1) or incorrect (0), and there is no discontinuation rule.

In the FS subtest, the child hears a target word and
views a photograph of a scene, and must produce a complete
sentence about the scene using the target word. The targets
include a variety of word classes and increase in their syntactic
requirements, including more challenging targets such as,
“safely” and “because.” Responses are scored as 0,1, or 2,
depending on the use of target word, grammatical correctness,
and meaningful content. The test is discontinued if there are five
consecutive scores of zero.

In the RS subtest, the child hears a sentence once (along with
the video of a person saying the sentence in our automated task)
and is asked to repeat it verbatim. Responses are scored on a
scale of 0-3 based on number of errors (omissions, substitutions,

transpositions). Repetitions are not counted as errors. The
test administration is discontinued after five consecutive scores
of zero.

2.1.4. Data Scoring and Processing
During automated testing, examiners wrote down the child’s
response to the prompt. The audio recordings from the iPad
application were later transcribed by research assistants, resulting
in two transcripts for each audio response. We note that the
content of these two transcripts often diverges. The response
transcribed by the examiner in real time typically consists only
of the word, phrase, or sentence to be scored, excluding any
other commentary the child might provide. We refer to these
transcripts as clean transcripts. The transcripts generated by the
research assistants included all speech produced by the child that
was recorded by the iPad, including comments and prefatory
content. We refer to these transcripts as verbatim transcripts.
When presented in the expressive vocabulary task with a picture
of a pirate, a child might respond “I think that one’s a pirate.”
The verbatim transcript would include the entire utterance,
while the clean transcript would include only the single target
word “pirate.”

Responses were scored from the clean transcripts according
to conventional scoring rules outlined briefly above in 2.1.3 and
in detail in Semel et al. (2003). These rules include different
stopping points (i.e., ceilings) for certain subtests and various
rules for allowing partial credit on certain items. Further score
calibration on each subtest then took place in consultation with
a licensed SLP to increase scoring consistency and accuracy.
Normative scores were calculated using the participants’ ages at
their first visit if they entered a new age bracket on the normative
table during their participation. Study data were collected and
managed using REDCap (Research Electronic Data Capture)
(Harris et al., 2009), a secure, web-based application designed
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to support data capture for research studies. Clean data was
processed through double-blind data entry, then evaluated for
discrepancies utilizing REDCap electronic data capture tools.
The process for one subtest, RS, differed in that clean transcripts
were not available, so verbatim transcripts were manually
reviewed (albeit without double-blind data entry) and edited
to remove initial utterances (e.g., “um, I think it was. . . ”) and
repeated words, which are not counted as errors.

For each of the subtests, item scores are summed to create
a raw score. These raw scores are then converted to norm-
referenced scaled scores based on age and using a conventional
look-up table. The scaled scores have an average of 10 with a
standard deviation of three. Three of the subtests’ scaled scores
are summed (FS, RS, and WS), and using another look-up
table, an Expressive Language Index (ELI) composite score is
generated. This is a standard score with a mean of 100 and a
standard deviation of 15. Please note that since the scaled scores
and composite score are computed using the normative tables for
the original CELF-4 test, these two score tiers must be recognized
as approximations, but we include them to give a more clinically
meaningful perspective to our scoring system.

2.2. Computational Models
2.2.1. System Architecture
Leveraging deep learning approaches, we develop a
computational model that includes a modular, cohesive scoring
system capable of producing item-level test scores directly
from raw transcripts. The entire transcript (response word,
phrase, or sentence) is tokenized and encoded into a variable-
length vector, which is fed into a BERT (Bidirectional Encoder
Representations from Transformers). BERT is a DNN-based
language representation model that has achieved state-of-
the-art performance in numerous downstream tasks such as
sentiment analysis (Xie et al., 2020) and question-answering
systems (Qu et al., 2019). Recent studies, including Chen et al.
(2020) and our previous work on the FS subtest (Wang et al.,
2020), have reported the superiority of such models in clinical
tasks. The model has been fine-tuned to our task as described
in section 2.2.2, and item-level scores are predicted for each
subtest. Next, the model summarizes predicted item-level scores
according to the scoring rules described in section 2.1.4 and
sequentially computes raw score, scaled score, and ELI composite
score across four subtests. A visual walk-through of the scoring
system architecture is presented in Figure 1.

2.2.2. Fine-Tuned BERT Classifier
The BERT model was originally trained on pairs of sentences to
predict whether one sentence immediately followed the other in
its original context, a task known as next sentence prediction,
as well as a masked language modeling task in which the
model uses the surrounding context to predict a word that
has been removed from a sentence. Trained on a large corpus
of unlabeled sentences—3.3 billion words from the English
Wikipedia combined with BooksCorpus (Zhu et al., 2015)—
language representations produced by BERT have been shown
to be effective in capturing both syntactic and semantic aspect
of the language (Ettinger, 2020; Rogers et al., 2020). Similar

to the original BERT model, our task also involves pairs of
“sentences”: prompts and responses. We form our input pairs
to include the target word, phrase, or sentences alongside each
response to provide themodel with the same information a scorer
would use, annotated with special BERT tokens to indicate breaks
between prompt and response1. Given the prompt-response pairs
along with manual scores (which serve as the gold standard), we
develop four separatemodels to classify each stimulus response to
EV, FS, RS, andWS subtest into scores of {0,1,2}, {0,1,2}, {0,1,2,3},
and {0,1}, respectively2.

We fine-tuned a variant of the original BERT model known
as DistilBERT (Sanh et al., 2019) in our experiments. DistilBERT
was specifically designed to reduce the number of parameters
in the BERT model (66 vs. 110 M). Fewer parameters decreases
the footprint of the model, and increases computation speed;
more importantly, though, it decreases the risk of overfitting
to the training data. We additionally added a L2 regularization
term to further avoid overfitting3. A portion of the training
data amounting to 10% of the entire data set was held out for
validation. We fine-tuned the weights to the training data, and
for every iteration over the entire training set (“epoch”), we also
calculated the loss on the validation set4. When the validation
loss failed to improve for four consecutive epochs, training was
stopped, and the model was restored to the state with the best
validation loss.

2.2.3. Baseline Models
As a baseline for EV and WS scoring models, we developed
support vector machine (SVM) classifiers trained on 300-
dimensional vectors representing the mean semantic encoding
of all the words in the response5. For the RS baseline model, we
trained a SVM classifier on hand-crafted features that represent
the correctness of a response. Inspired by our previous work
(Gale et al., 2020), we trained an SVM classifier with correctness
features extracted using Levenshtein edit distance to compute
the frequency of errors (insertions, deletions, substitutions), as
well as the number of correct words. In a variation of our
previous work on the FS task (Wang et al., 2020), we developed a
Multilayer Perceptron (MLP) classifier as baseline for FS using a
sentence-level BERT embedding for each response. In contrast
to our new models, this baseline model does not fine-tune
the weights within BERT. Instead, only the MLP classifier is
trained using the static embedding calculated by the pre-trained
BERT model.

1For example, if an EV prompt was a picture of a spatula, and the child responded

“pancake turner,” the sequence would be provided to the model as “[CLS] spatula

[SEP] pancake turner [SEP]”.
2We replaced the original output layer of BERT (a binary classifier) with a single

softmax layer of k nodes, predicting one likelihood for each item-level score of

0–k).
3L2 regularization was performed with the constant weight of 0.001.
4We trained the model with the learning rate of 0.00001 on batches of 16 response

sequences at a time, targeting a categorical cross-entropy loss.
5Word vectors were computed using the pre-trained spacY word2vec (Mikolov

et al., 2013; Honnibal et al., 2020) model “en_core_web_lg,” an embedding model

trained on a large corpus of web-based English text.
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FIGURE 1 | Diagram of the scoring system architecture.

2.2.4. Evaluation Metrics
To evaluate the performance of item-level classifiers, we
computed the precision6, recall7, and classification accuracy8 for
the item-level scores for each subtest. We further evaluated the
predicted raw and scaled scores across sub-tests, in addition to
the predicted composite score, using mean absolute error (MAE)
between predicted and true scores. Each comprehensive scoring

6Precision = TP
TP+FP , where TP and FP are true positives and false positives,

respectively. We present precision as a weighted average of each class’s score.
7Recall = TP

TP+FN , where TP and FN are true positives and false negatives,

respectively. Note that is the same measure as sensitivity but without the

assumption that we are limited to two classes. We present recall as a weighted

average of each class’s score.
8Accuracy = TP+TN

A , where TP, TN, and A are true positives, true negatives, and

the entire population, respectively.

evaluation was performed using 5-fold cross-validation, shuffling
the entire data set 20 times; we scored each repetition and present
the average of the 20 scores9.

3. RESULTS

For the evaluation, we compared the performance of our
proposed models to baseline models using the evaluation metrics
described in section 2.2.4. To explore the effect of extraneous

9To validate results and establish their independence from our specific data sets,

and also to reduce the overfitting problem, we used cross-validation techniques in

which the training, development, and test sets are rotated over the entire data set.

With this approach, the optimal parameters of the models were learned only from

the training examples and never from the examples used to test the model.
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TABLE 2 | Mean (and standard deviation) of accuracy, precision, and recall measures for item-level scores.

Accuracy Precision Recall

Subtest Transcripts Baseline BERT Baseline BERT Baseline BERT

EV
Clean 0.980 (0.001) 0.986 (0.002) 0.980 (0.001) 0.986 (0.002) 0.980 (0.001) 0.986 (0.002)

Verbatim 0.939 (0.001) 0.967 (0.002) 0.941 (0.001) 0.967 (0.002) 0.939 (0.001) 0.967 (0.002)

FS
Clean 0.824 (0.019) 0.856 (0.004) 0.793 (0.015) 0.842 (0.005) 0.824 (0.019) 0.856 (0.004)

Verbatim 0.801 (0.015) 0.834 (0.006) 0.759 (0.021) 0.819 (0.005) 0.801 (0.015) 0.834 (0.006)

RS
Clean 0.858 (0.001) 0.872 (0.005) 0.870 (0.001) 0.873 (0.005) 0.858 (0.001) 0.872 (0.005)

Verbatim 0.846 (0.001) 0.866 (0.005) 0.854 (0.002) 0.867 (0.005) 0.846 (0.001) 0.866 (0.005)

WS
Clean 0.968 (0.001) 0.984 (0.002) 0.968 (0.001) 0.984 (0.002) 0.968 (0.001) 0.984 (0.002)

Verbatim 0.940 (0.002) 0.959 (0.002) 0.939 (0.002) 0.959 (0.002) 0.940 (0.002) 0.959 (0.002)

Mean values are the average over 20 repeats. Bold values in the tables were used to indicate the row’s better score for each score type.

TABLE 3 | Distinguishing item-level scoring between typically developing (TD) and non-typically developing (non-TD).

Accuracy Precision Recall

Subtest Transcripts TD Non-TD TD Non-TD TD Non-TD

EV
Clean 0.990 (0.002) 0.982 (0.003) 0.990 (0.002) 0.983 (0.003) 0.990 (0.002) 0.982 (0.003)

Verbatim 0.976 (0.003) 0.960 (0.003) 0.976 (0.003) 0.960 (0.003) 0.976 (0.003) 0.960 (0.003)

FS
Clean 0.869 (0.005) 0.846 (0.006) 0.854 (0.005) 0.834 (0.006) 0.869 (0.005) 0.846 (0.006)

Verbatim 0.852 (0.006) 0.820 (0.006) 0.837 (0.004) 0.805 (0.007) 0.852 (0.006) 0.820 (0.006)

RS
Clean 0.886 (0.006) 0.862 (0.007) 0.887 (0.006) 0.862 (0.007) 0.886 (0.006) 0.862 (0.007)

Verbatim 0.881 (0.006) 0.855 (0.006) 0.883 (0.007) 0.855 (0.006) 0.881 (0.006) 0.855 (0.006)

WS
Clean 0.993 (0.001) 0.978 (0.003) 0.993 (0.001) 0.978 (0.003) 0.993 (0.001) 0.978 (0.003)

Verbatim 0.980 (0.002) 0.944 (0.003) 0.980 (0.002) 0.943 (0.003) 0.980 (0.002) 0.944 (0.003)

Mean (and standard deviation) of accuracy, precision, and recall measures for item-level scores. Mean values are the average over 20 repeats. Bold values in the tables were used to

indicate the row’s better score for each score type.

words in transcripts, we examined our scoring models using
our two input formats from section 2.1.4: clean (the scored
response as annotated by trained examiners) and verbatim
(which includes examiner speech and other superfluous chatter).
Table 4 reports the accuracy of the baseline classifiers and our
proposed BERT-based classifiers on each of the four subtests,
separately trained and tested on clean and verbatim transcripts.
Results, in the form of macro averages of 20 repetitions, indicate
that the fine-tuned BERT models outperform baselines in terms
of classification accuracy, precision, and recall across all four
subtests. As expected, the clean transcripts are more reliably
scored than the verbatim transcripts.

The fine-tuned BERT EV and WS models were the most
accurate overall: EV had a 97% accuracy on verbatim transcripts,
and both EV andWS had over 98% accuracy on clean transcripts.
The FS scoring model showed the weakest performance, with
the verbatim transcripts yielding 80% and 83% accuracy for
the baseline and fine-tuned BERT models, respectively. This
is not entirely surprising: FS responses are known to be
difficult to manually score reliably, while the WS task is
scored essentially on whether the child gives exactly the correct

response. Full item-level classification results are shown in
Table 2. We also present classification results for the BERTmodel
as distinguished by diagnosis—typically developing (TD) vs.
non-typically developing (non-TD)—in Table 3. The automatic
scoring system scores the TD group more easily, with all
measures consistently a few percent higher than the non-
TD group.

The fine-tuned BERT models outperformed baseline models
in all cases, though as the scores were summed and normalized
for raw and scaled scores, the difference in average MAE between
models narrowed. Again, clean transcripts were more easily
scored than their verbatim counterparts with the exception of
the baseline RS model. Full score MAE results are shown in
Table 4. Figure 2 shows the distribution of item score MAE on
the verbatim transcripts for each subtest over 20 repetitions.

Aggregating the FS, RS, and WS scores to approximate ELI
composite scores, the baseline was substantially outperformed by
the fine-tuned BERT model when using clean transcripts, with
an MAE of 3.405 and 3.166 points, respectively (on a scale of
45–155). Performance of the two models was more comparable
when using verbatim transcripts, with anMAE of 4.266 and 3.709
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TABLE 4 | Mean (and standard deviation) of mean absolute error (MAE) for score estimation at the item score, raw score, and scaled score tiers.

Item score MAE (std) Raw score MAE (std) Scaled score MAE (std)

Baseline BERT Scale Baseline BERT Scale Baseline BERT Scale

EV
Clean 0.029 (0.001) 0.020 (0.003)

0–2
0.684 (0.041) 0.500 (0.070)

0–54
0.232 (0.019) 0.144 (0.023)

1–19
Verbatim 0.095 (0.002) 0.047 (0.004) 1.807 (0.070) 0.926 (0.093) 0.647 (0.033) 0.308 (0.033)

FS
Clean 0.262 (0.038) 0.192 (0.007)

0–2
3.747 (1.123) 3.041 (0.258)

0–48
1.421 (0.400) 1.147 (0.099)

1–19
Verbatim 0.306 (0.029) 0.228 (0.008) 4.203 (0.877) 3.339 (0.194) 1.561 (0.303) 1.254 (0.071)

RS
Clean 0.162 (0.002) 0.140 (0.006)

0–3
3.318 (0.078) 2.225 (0.167)

0–96
0.718 (0.031) 0.488 (0.042)

1–19
Verbatim 0.172 (0.002) 0.147 (0.006) 2.575 (0.104) 2.456 (0.208) 0.562 (0.034) 0.543 (0.058)

WS
Clean 0.032 (0.001) 0.016 (0.002)

0–1
0.817 (0.036) 0.411 (0.059)

0–32
0.508 (0.025) 0.232 (0.040)

1–19
Verbatim 0.060 (0.002) 0.041 (0.002) 1.411 (0.063) 0.926 (0.082) 0.910 (0.046) 0.574 (0.055)

Results are presented for the baseline models from our previous work against the fine-tuned BERT models. Each of the EV, FS, RS, and WS subtests was scored automatically using

clean and verbatim transcripts. Mean was calculated as a macro average over 20 repeats. Bold values in the tables were used to indicate the row’s better score for each score type.

FIGURE 2 | Mean (and standard deviation) of MAE results over 20 repeat experiments for item scores produced by baseline and fine-tuned BERT model. Results are

shown using verbatim transcripts for each subtest (EV, FS, RS, and WS).

points for the baseline and fine-tuned BERTmodels, respectively.
These results are presented in Table 5, with the distribution over
20 repetitions also illustrated in Figure 2.

Lastly, we present Spearman’s correlations for predicted vs.
true scores inTable 6. The fine-tuned BERTmodel outperformed
the baseline in nearly all configurations. Raw scores for EV,
RS, and WS were among the highest at about 99%. The
lowest correlation was in FS item scores: the baseline showed
73.0% and 67.6%, while the fine-tuned BERT model had
80.4% and 76.3% for clean and verbose transcripts, respectively.
Overall, ELI composite scores correlated highly. The fine-tuned
BERT model had correlations of 98.0% and 96.9% for clean
and verbose transcripts, respectively. In the RS subtest, the
baseline model’s raw and scaled score correlations were higher
than the BERT model, though the difference was negligible.
In Figure 3 we illustrate correlations between predicted and

true ELI composites, distinguishing between TD and non-
TD participants.

4. DISCUSSION

In this paper, we describe a set of highly accurate computational
models developed for scoring responses to several expressive
language tasks for children. The models were combined
into a comprehensive, multi-level scoring system based on
conventional scoring methods. We automatically produced an
item score for each subtest prompt, as well as a raw total score and
a norm-referenced scaled score for each subtest. Three of the four
subtests contribute to a composite score called the Expressive
Language Index, which we also computed. The very high levels of
accuracy of our results on several dimensions point to the utility

Frontiers in Psychology | www.frontiersin.org 7 July 2021 | Volume 12 | Article 668401

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychology#articles


Gale et al. Automated Scoring of Language Tests

TABLE 5 | Mean absolute error (MAE) and standard deviation for expressive language index (ELI) composite score with lookup table applied to scaled score estimation.

ELI composite MAE ELI composite MAE ELI composite MAE

TD and Non-TD Non-TD TD

Subtests Transcripts Scale Baseline BERT Baseline BERT Baseline BERT

FS, RS, WS
Clean

45–155
3.405 (0.703) 3.166 (0.235) 3.863 (0.906) 3.507 (0.304) 2.809 (0.471) 2.723 (0.206)

Verbatim 4.266 (0.601) 3.709 (0.231) 5.030 (0.704) 4.144 (0.351) 3.273 (0.514) 3.144 (0.184)

Results are split out for typically developing (TD) and non-typically developing (non-TD) participants, as well as the combined population. Bold values in the tables were used to indicate

the row’s better score for each score type.

TABLE 6 | Average Spearman’s correlation results over 20 repeats (with standard deviations) for Item, Raw, and Scaled Score estimation.

Item ρ Raw ρ Scaled ρ ELI ρ

Subtest Transcript Baseline BERT Baseline BERT Baseline BERT Baseline BERT

EV
Clean 0.971 (0.002) 0.981 (0.003) 0.987 (0.002) 0.990 (0.003) 0.980 (0.002) 0.989 (0.003)

Verbatim 0.894 (0.003) 0.952 (0.005) 0.939 (0.005) 0.978 (0.004) 0.916 (0.007) 0.971 (0.006)

FS
Clean 0.730 (0.045) 0.804 (0.007) 0.857 (0.122) 0.924 (0.012) 0.815 (0.122) 0.886 (0.017)















































Verbatim 0.676 (0.035) 0.763 (0.010) 0.831 (0.102) 0.913 (0.015) 0.769 (0.097) 0.854 (0.019)

RS
Clean 0.943 (0.001) 0.951 (0.002) 0.987 (0.001) 0.986 (0.001) 0.978 (0.002) 0.977 (0.002) 0.969 (0.020) 0.980 (0.002)

Verbatim 0.937 (0.001) 0.948 (0.002) 0.987 (0.001) 0.986 (0.001) 0.978 (0.002) 0.976 (0.003) 0.956 (0.018) 0.969 (0.003)

WS
Clean 0.888 (0.004) 0.946 (0.006) 0.975 (0.002) 0.992 (0.002) 0.953 (0.004) 0.988 (0.003)

Verbatim 0.786 (0.006) 0.860 (0.009) 0.940 (0.006) 0.970 (0.004) 0.907 (0.010) 0.965 (0.005)

For all values, p < 00.001. Bold values in the tables were used to indicate the row’s better score for each score type.

FIGURE 3 | Correlations of actual vs. automatically predicted Expressive

Language Index (ELI) composite scores. Distributions are shown for

participants with and without developmental language disorder (DLD). Each

point represents the average scores for one participant.

and potential of automated computationally-driven methods of
both administering and scoring expressive language tasks for
pediatric developmental language evaluation.

4.1. Clinical Significance
While we would like to remind the reader that our scaled
scores and composite score are approximations (as discussed in

section 2.1.4), we believe these results in particular show promise
for clinical applications. Our approach relies on a fine-tuned
BERT modeling system which produced improved scores in all
configurations. Even in the FS task, the most challenging subtest
to score, the MAE of the scaled score, which ranges from 1 to
19, with a mean of 10 and standard deviation of 3, is just over
1 point. The CELF-4 manual considers a subtest scaled score
below 7 points to be suggestive of clinical concern. An automated
system that can produce scaled scores within about a point of
the expert-derived score is likely to be clinically valuable. The
system’s best accuracy for scaled score prediction was for the
EV subtest, a confrontation naming task. Our new model has an
MAE of well under half a point on verbatim transcripts, which
demonstrates the potential of fully automated scoring of the EV
task. Accuracy for this type of testing is particularly encouraging,
as there are long used standalone language assessments with this
focus (e.g. Kaplan et al., 1983; Martin and Brownell, 2011; Roth,
2011). Automation of this type of language assessment could
have great clinical relevance. Lastly, the ELI composite score is
predicted within 4 points on the standard score scale of 45–155,
generally well within the score’s confidence interval.

4.2. Comparison With Prior Work
The baseline models represent our previous best efforts in
scoring each of the four subtests. The fine-tuned BERT methods
presented here provide many natural advantages. Some of these
advantages might explain the improvements over the baselines
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that we observe here, while others may hold promise for future
advances in scoring, as well as deeper insight.

Our baseline RS model relied on explicitly engineered
features and inherently discarded valuable information. For
example, the Levenshtein method of error detection is unable to
distinguish between an insertion and the superfluous chatter that
distinguished our verbatim transcripts from the clean ones. The
Lenvenshtein approach to scoring would be unable to distinguish
between a common developmental error from a misrecognition
in transcripts generated via automatic speech recognition. In
addition, there may be latent clinically relevant information in
responses that can be captured using contextualized language
representation models like BERT but that would not easily
be captured via rule-based scoring. The structure of BERT
models extends well to introspective analysis, with techniques
and tools for word-relationship heat maps and other such
visualizations (Hanselowski and Gurevych, 2019; Kovaleva et al.,
2019; Wu et al., 2020).

For the EV and WS models, we used word2vec embedding
models, which do not effectively capture contextual information
and typically rely on sums or averages of individual word vectors.
In addition, the pre-trained word2vec model we used in our
baselines and the fixed DistilBERT model used with FS were
both trained on texts written by adults and were not fine-tuned
to our domain of child language. Fine-tuning the weights of
the DistilBERT model allows us to take advantage of the broad
representation abilities of a pre-trained language model while
adapting it to the idiosyncratic language of our scoring task.

Another motivation for using the fine-tuned BERTmodel was
the prospect of a unified approach to scoring different subtests.
Although the content and scoring rules differ across the four
subtests, our new system relies on a single architecture and differs
only in terms of the data used to train the models. As a result, we
benefit from a single pipeline for data preparation and feature
engineering, and any improvements we make to the pipeline and
architecture are more likely to apply to all subtests.

4.3. Future Work
Our vision for a fully automated scoring system starts with
a spoken response. We intend to bring automatic speech
recognition (ASR) into our system pipeline to automatically
convert a participant’s recorded voice into written transcripts.
The results presented here demonstrate how our fine-tuned
BERT model adapts to the extraneous information present
in verbatim transcripts. ASR transcripts contain the same
extraneous information, and we expect a 10–20% word error rate
on top of that (Gale et al., 2019; Wu et al., 2019). Our previous
experiments with the RS subtest (Gale et al., 2020) demonstrate
the resilience of automated scoring when challenged with ASR
transcripts, and we expect that our improvedmodels may be even
better equipped to adapt to ASR transcripts.

Our models could benefit from more (and more varied)
training samples, but the time and effort required for test
administration, transcription, and scoring makes it difficult to
procure more data. Our previous work inWang et al. (2020) used
machine translation technology to “translate” correct responses
into partial- and no-credit responses, which was used as artificial

data during training. That work showed how augmenting
the training data with the artificial responses improved the
performance of scoring models. We intend to incorporate this
data augmentation technique into our new FS model, as well as
adapt the technique to the other three subtests.

4.4. Conclusions
Even before the pandemic, many communities lacked regular
access to clinicians and practitioners trained in assessing child
language. The restrictions on travel and facility capacity that
most of the world is now experiencing have further exacerbated
this inequitable access to patient care. Methods of computerized
administration and automatic scoring of language assessment
instruments have the potential to reach underserved populations
and to enable speech-language pathologists to devote more
time to developing and applying interventions and treatments.
Although it is certainly not the case that an automated system
will ever be an adequate or comparable replacement for an expert
clinician, technologies like the one proposed here can provide
crucial support for these experts and for the schools and families
that they serve.
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