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Abstract
Extracellular vesicles (EVs) are potentially useful biomarkers for disease detection
and monitoring. Development of a label-free technique for imaging and distinguish-
ing small volumes of EVs from different cell types and cell states would be of great
value. Here, we have designed a method to explore the chemical changes in EVs
associated with neuroinflammation using Time-of-Flight Secondary Ion Mass spec-
trometry (ToF-SIMS) and machine learning (ML). Mass spectral imaging was able
to identify and differentiate EVs released by microglia following lipopolysaccharide
(LPS) stimulation compared to a control group. This process requires a much smaller
sample size (1 μL) than other molecular analysis methods (up to 50 μL). Conspicu-
ously, we saw a reduction in free cysteine thiols (a marker of cellular oxidative stress
associated with neuroinflammation) in EVs from microglial cells treated with LPS,
consistent with the reduced cellular free thiol levels measured experimentally. This
validates the synergistic combination of ToF-SIMS andML as a sensitive and valuable
technique for collecting and analysing molecular data from EVs at high resolution.

KEYWORDS
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 INTRODUCTION

Extracellular vesicles (EVs) are spherical particles released from prokaryotic and eukaryotic cells into the extracellular space (El
Andaloussi et al., 2013; Spada & Galluzzi, 2020; Zaborowski et al., 2015). They are 30 nm–1 μm in size and contain nucleic acids,
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lipids, and proteins from their donor cells encased in a lipid bilayermembrane (El Andaloussi et al., 2013; Zaborowski et al., 2015).
EVs play an essential role in cell wastemanagement and cell-cell communication, acting as shuttles to deliver bioactivemolecules
to recipient cells (El Andaloussi et al., 2013; Spada & Galluzzi, 2020; Zaborowski et al., 2015). The molecular composition of
EVs depends on the state of the donor cell, making them promising candidates as disease biomarkers for disease detection and
monitoring (Kamińska et al., 2021). Neuroinflammation, a central nervous system (CNS) inflammatory response, urgently needs
robust and predictive biomarkers as it occurs in the early stages ofmany neurodegenerative conditions (Chung et al., 2021;Heneka
et al., 2015; Liu et al., 2022; Tian et al., 2022). In the CNS, microglia are the primary drivers of this response by activating multiple
processes, such as Toll-like receptors and adopting an ameboid phenotype that facilitates phagocytosis (Kumar, 2019; Parakalan
et al., 2012). In addition to cytokine release, the activated microglia alter the cargo of their EVs (Cartier et al., 2020; Parakalan
et al., 2012; Wang et al., 2015; Yang et al., 2018). Neuroinflammation, stimulated in vitro by highly inflammatory bacterial toxin
lipopolysaccharide (LPS), is also reflected within their ejected EVs (Cartier et al., 2020; de Rond et al., 2018; Kushwah et al., 2022;
Wang et al., 2019; Yang et al., 2018). LPS’s are found in the outer cell membrane of Gram-negative bacteria containing the highly
immunogenic lipid A moiety (Lai et al., 2022).

Detection and discrimination of EVs are challenging for many reasons:

(1) size—few techniques can image particles less than 500 nm in size,
(2) low light scattering—challenging to use spectroscopic techniques such as Raman and Infrared (IR) spectroscopy,
(3) heterogeneity—each cell state and type alter the chemical composition of EVs,
(4) limited prior knowledge—the chemical compositions and key markers for their donor cells are largely unknown (Beekman

et al., 2019; El Andaloussi et al., 2013; Enciso-Martinez et al., 2020; Lee et al., 2018, Kamińska et al., 2021; Zaborowski et al.,
2015).

Current analysis methods for EVs, such as Western blotting and proteomics, use bulk materials and report an average of
properties over the entire sample volume (Enciso-Martinez et al., 2020; Hill, 2017; Théry et al., 2018). They also require large
sample quantities, which can be costly and time-consuming. Raman spectroscopy also requires large sample volumes but collects
spectra from individual EVs. Principal Component analysis (PCA) (a multivariate analysis technique) is commonly used to
cluster similar spectra (Beekman et al., 2019; Enciso-Martinez et al., 2020; Lee et al., 2018). Imaging of individual EVs is currently
limited to microscopy techniques such as scanning electron microscopy (SEM), transmission electron microscopy (TEM) and
atomic forcemicroscopy (AFM) that allow assessment of size andmorphology of EVs in the sample, but do not yield any chemical
information (Beekman et al., 2019; Hill, 2017).

Although neuroinflammation is known to alter EV cargoes, limitations of existing analytical techniques have hampered inves-
tigations into molecular markers that change during inflammation. This led us to explore the use of highly sensitive label-free
technologies, such as high spatial resolution mass spectral surface imaging, to study neuroinflammation.
Here we report an effective bespoke method for analysing EVs using Time of Flight Secondary Ion Mass Spectrometry (ToF-

SIMS), a mass spectral imaging technique capable of capturing hyperspectral data sets in which each pixel in an image contains
a mass spectrum. High resolution spatial and spectral information can be collected using fast imaging and spectrometry modes.
Fast imaging mode captures hyperspectral images with 50–150 nm spatial resolution (Vanbellingen et al., 2015), meaning each
pixel is approximately the same size as an EV. To collect data at this spatial resolution, spectral resolution is compromised,
collecting only unit mass resolution. Using Spectrometry mode, high-resolution spectral data can be collected over a larger,
non-overlapping sample area (200 μm) and used to improve assignments of high spatial resolution data. ToF-SIMS has previ-
ously been used to examine EVs, but only using spectrometry mode and averaging mass spectra (Aybush et al., 2021; Marzec
et al., 2022). To the best of our knowledge ToF-SIMS mass spectral imaging of EVs at this spatial resolution, has not yet been
reported.
When collecting hyperspectral images, ToF-SIMS produces large, highly complex data sets. There are many useful tech-

niques available to analyse these data. We have employed the Self Organising Map with Relational Perspective Mapping
(SOM-RPM) approach, shown to be effective in prior studies. SOM-RPM is a machine learning (ML) method that visualises
complex hyperspectral data sets as intuitive 2D images, in which the colour of each pixel denotes chemical information con-
tained in its mass spectrum. This work utilises a ‘stitching’ approach (Bamford et al., 2023), that joins multiple ToF-SIMS
images in a quilt-like fashion, allowing pixels across multiple images to be directly compared within a single SOM-RPM
model.
This study successfully generated molecular and spatial information on EVs using ToF-SIMS. This surface sensitive mass

spectral data allowed us to discriminate neuroinflammatory EVs from treated microglia, while reducing the sample volumes
required for analysis by 20–100x. This showcases our ToF-SIMSmethod as a powerful tool for high resolutionmolecular analyses
of EVs.
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F IGURE  Schematic diagram indicating the analytical methods performed at each stage of sample preparation. To confirm the physiological response to
LPS, cytokine analysis was conducted on conditioned media and free cysteine thiol assay was conducted on lysate that is produced from the microglial SIM-A9
untreated control and LPS treated cells lines. EVs were then isolated from both the control and LPS treated cells. SDS-PAGE and NTA were conducted to
confirm the presence of isolated EVs. SEM, TEM, and ToF-SIMS were then performed on EVs spotted on to a silicon wafer substrate.

 MATERIALS ANDMETHODS

. Microglial cell culture

For the untreated control cells, suspension, and adherent mouse microglial (SIM-A9) cells were grown in a 1 : 1 ratio of Dul-
becco’sModified EagleMedium (DMEM) (ThermoFisher Scientific 11965118): Ham’s F-12NutrientMix (ThermoFisher Scientific
11765062) supplemented with 10% (v/v) foetal bovine serum (Sigma Aldrich F9423) and 5% (v/v) horse serum (ThermoFisher
Scientific 16050122), that were heat inactivated for 30 min at 50◦C. The cells were detached for serial passaging using a detach-
ment solution consisting of Dulbecco’s Phosphate-Buffered Saline (DPBS) (ThermoFisher Scientific) supplemented with 1 mM
EDTA, 1 mM EGTA, and 1 mg/mL glucose, into T175 flasks (ThermoFisher Scientific NUN159910) and incubated in 5% CO2 at
37◦C. For the lipopolysaccharide (LPS) treatments, SIM-A9 cells were passaged into T175 flasks containing a 1:1 ratio of serum-
free Dulbecco’s Modified Eagle Medium (DMEM) (ThermoFisher Scientific 11965118): Ham’s F-12 Nutrient Mix (ThermoFisher
Scientific 11765062) supplemented with 1%MEMNon-essential AminoAcid Solution (100×) (SigmaAldrichM7145) and 1% glu-
tamax (100X) (ThermoFisher Scientific 35050061). Lipopolysaccharides from Escherichia coli O55:B5 (1 ug/mL; Sigma Aldrich
L5418) were added to the treatment flasks prior to incubation in 5% CO2 at 37◦C for 48 h. A workflow for the treatment and
analysis of SIM A9 cells and extracted EVs is shown in Figure 1.

. Proinflammatory cytokine analysis

Small aliquots of cell culture conditioned media were collected for the determination of proinflammatory cytokines using
AlphaLISAs for IL1β (AL503C; Perkin Elmer), TNF (AL505C; Perkin Elmer), and IL6 (AL504C; Perkin Elmer). Unknown
sample values of released cytokines were determined from standard curves constructed according to the manufacturer’s
instructions.
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F IGURE  ToF-SIMS data analysis workflow. Hyperspectral ToF-SIMS images are exported into an unfolded data array and examined individually or
stitched into a larger image for comparative analysis. A SOMmodel is then created by comparing the similarity of each pixel within the data array and
assigning it to a neuron. RPM colouring is applied to each neuron in the toroidal model. Pixels are then replotted into a 2D image and tagged with the colour of
its corresponding neuron, using colour to reflect chemical similarity.

. Free cysteine thiol assay

Free cysteine thiol concentrations were determined in treated cell lysates using a commercially available thiol detection assay
(Cat no: 700340, Cayman Chemical, Ann Arbor, MI, USA) according to the manufacturer’s instructions. Free cysteine thiols
were quantified using a cysteine standard curve, and results were expressed as nM/μg protein. Protein levels were determined
with the Pierce Bicinchoninic acid (BCA) Protein assay according to themanufacturer’s instructions using bovine serum albumin
(BSA) as a standard.

. Small EV isolation

Cell culture supernatant collected from the LPS treated and untreated SIM-A9 cells underwent centrifugation at 2000×g for
10 min at 4◦C. The supernatant was transferred to 70 mL Polycarbonate tubes (Beckman Coulter 355622) in a 45 Ti rotor (Beck-
man Coulter 15U5085) and underwent ultracentrifugation at 10,000 × g for 30 min at 4◦C, followed by a further supernatant
ultracentrifugation at 100,000 × g for 70 min at 4◦C. The pellet, now containing EVs, was resuspended in 6 mL of DPBS before
being overlaid on a triple sucrose cushion consisting of Fraction 4 (F4); 1 mL of 2.5 M sucrose, Fraction 3 (F3); 1.2 mL of 1.3 M
sucrose, and Fraction 2 (F2); 1.2 mL of 0.6 M sucrose, in an Ultra-Clear thin wall 13.2 mL tube (Beckman Coulter 344059). The
gradient was centrifuged at 200,000 × g at 4◦C for 180 min in a SW41 rotor (Beckman Coulter 15U12301). The fractions were
subsequently collected and resuspended in ice cold DPBS prior to centrifugation at 128,000 × g at 4◦C for 70 min in polycarbon-
ate centrifuge bottles (Beckman Coulter 355618) in a Type 70 Ti rotor (Beckman Coulter 15U6647). The pellets were collected
and resuspended in 100 μL of DPBS prior to storage at −30◦C.
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F IGURE  Validation of neuroinflammation and characterisation of microglial EVs. (a) Cytokine analysis indicates a highly significant
neuroinflammatory phenotype following lipopolysaccharide (LPS) treatment within the complete media. (b) Cells treated with LPS also displayed significantly
reduced levels of cysteine thiols compared to controls. EVs isolated from LPS treated and control microglial cells exhibit characteristics consistent with that of
small EVs. (c) Nanoparticle tracking analysis of the vesicles analysed by the ZetaView© Quatt PMX-420 showed nanoparticles with an average of 135.9 nm, a
size consistent with that of small EVs. This result is from the first control microglial EV sample and is representative of all EV samples. (d) The isolated vesicles
expressed small EV enriched markers tsg101, CD9, and actin, and the low expression of small EV non-enriched markers; calnexin and GM130. (e) Transmission
electron microscopy (TEM) and scanning electron microscopy (SEM) images show a population of vesicles 100–200 nm in diameter with depressed cup-like
structures consistent with that of small EVs. Enlargements in Figure S2.

. SDS-PAGE gel electrophoresis

Isolated vesicles were lysed (5 M NaCl, 1 M Tris, Triton X-100, 1% (w/v) sodium deoxycholate, 1× cOmplete ULTRA protease
inhibitor) and incubated at 4◦C for 20 min prior to centrifugation at 2500×g at room temperature for 5 min. The supernatant
protein concentration was determined using the Pierce bicinchoninic acid (BCA) protein assay (ThermoFisher Scientific 23225)
according to the manufacturer’s instructions. The samples were then combined with LDS Sample Buffer (4X) (ThermoFisher
Scientific NP0007) and incubated at 70◦C for 10 min. Electrophoresis was performed on a 4%–12% Bis-Tris Plus Gel (NuPAGE
or Bolt; Invitrogen) with 1X MES SDS running buffer (NuPAGE; Invitrogen). Proteins were transferred to a PVDF membrane
and probed with the following antibodies (Actin, Cell Signalling 8H10D10; Tsg101, Abcam ab83; CD9, Abcam ab92726; Calnexin,
Abcam ab22595, GM130, BD Bioscience 610822) in 2.5% skim milk in DPBS-T (0.05% Tween-20). The membranes were then
washed in DPBS-T and probed with either a mouse IgG HRP (BioStrategy NA931) or rabbit IgG HRP (BioStrategy NA934)
secondary antibody. Themembranes were then developed using the Clarity ECL reagent (Bio-Rad) and imaged with the Chemi-
Doc Touch imaging system (Bio-Rad) as per the manufacturer’s recommendations prior to image analysis using Image Lab 5.2.1
(Bio-Rad).
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F IGURE  ToF-SIMS image of control type EVs in positive ion mode. (a) Complete image with inlaid neural map (3D toroidal projection shown left). (b)
Selected background pixels and associated inlaid neuron map. (c) Selected sample pixels and inlaid neural map. 20 μm field of view.

. Nanoparticle tracking analysis

Nanoparticle Tracking Analysis (NTA) was implemented to determine the size and concentration of the isolated vesicles. The
samples were diluted one in 1000 in filtered and degassed DPBS prior to infusion through a 1 mL syringe into the ZetaView©
Quatt PMX-420 (Particle Metrix). Eleven positions within the instrument cell were scanned, with each position capturing 30
frames using the following parameters: Maximum particle size: 1000, Minimum particle size 10, Minimum Brightness 25, Focus:
autofocus, Sensitivity: 80.0, Shutter: 100, and Cell temperature: 25◦C. The in-built ZetaView Software 8.05.14-SP7 was utilized to
determine the size and concentration of the vesicles.

. Transmission electron microscopy

Transmission Electron Microscopy (TEM) was used to observe the size and morphology of the isolated vesicles. A formvar-
copper coated grid (ProSciTech) was glow discharge treated for 60 s prior to addition of 6 μL of sample and incubated at room
temperature for 30 s. Excess sample was blotted off and 5 μL of Uranyl acetate (Agar Scientific) was applied to the grid for 10 s,
twice. The grid was then imaged using the JEM-2100 Transmission Electron Microscope (Jeol).

. EV surface preparation and scanning electron microscopy

Isolated EVs were prepared for ToF-SIMS surface analysis on 15 mm × 15 mm silicon wafers by spotting a 1 μL aliquot of con-
centrated EVs centrally and dispersing these with the further addition of 9 μL of DPBS to generate a one in 10 sample dilution.
Samples were dried overnight and then washed with a graded series of ethanol prepared in ultrapure water (50%, 70%, 90%, 95%,
and 100%) to remove contaminating salts. Dehydrated samples were immediately placed under vacuum for ToF-SIMS imaging.
A subset of samples were prepared in the same way for scanning electron microscopy to confirm the presence of EVs following
the dehydration procedure. The prepared siliconwafers were placed under vacuum in aHitachi SU7000 Field Emission Scanning
Electron Microscope and images were collected.

. ToF-SIMS analysis

Hyperspectral images of a control and treated EVs were collected using an IONTOF ToF-SIMS 5 instrument. A 30 keV Bi3+
primary ion source was used to collect images at one frame per patch and one shot per frame for 20 scans. Both spectrometry
and fast imaging modes were used to collect highly resolved spectral information over a 200 μm × 200 μm area and highly
resolved spatial information over a 20 μm × 20 μm area, respectively, and were collected from a different sample area to avoid
any influence from sample damage due to the fast-imaging acquisition. Positive and negative ion images were acquired in both
imagemodes for each sample by rastering in randommode across 256× 256 pixels, with amaximumm/z of 1500. As the primary
ion dose (9 × 107 total dose) affected the delicate structure of the EVs, each image was collected in a new sample area. Data were
collected and analysed using Surface Lab 7.2. The images collected using fast imaging mode were used to create SOM-RPM
models, in which mode only unit mass resolution was possible. The high mass resolution data collected in spectrometry mode
was used to assign the mass peaks found to be significant within the SOM-RPM model. For co-localisation analysis, extracted
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F IGURE  Comparison of Control and LPS treated EVs, positive ion mode presented on the left and negative ion mode on the right. (a) SOM-RPM
model of stitched data set with three technical replicates, LPS treated as the top row and Control EVs on the bottom row. (b) Stitched data set where that
background has been selected and removed. (c) Secondary model run on background removed data set.

images were analysed using Image J software (Version 1.51j8), utilising the colocalization plugin (ImageJ.net. Colocalization
Analysis. 2022).

. ToF-SIMS data analysis

Peaks were identified using the SurfaceLab 7.2 peak search function with a minimum threshold of 100 counts. Each high spatial
resolution image was exported from SurfaceLab 7.2 using the .bif6 file format, imported into MATLAB, and normalized to total
ion count per pixel. Using an in-house MATLAB script, the data were unfolded into an n ×mmatrix, where n is the number of
pixels andm is the number of mass peaks or features.

Data were stitched together to directly compare SOM-RPM outputs from various images, using a process outlined in our
previous work (Bamford et al., 2023;Madiona et al., 2018). Briefly, a universal peak list for each polarity was created, ensuring that
a standard number of total features were examined across all stitched images. Individual n ×m data matrices were concatenated
vertically, creating a larger ns ×m data matrix (where ns is equal to nmultiplied by the number of stitched images). The trained
RPM model was visualised by refolding the concatenated data via mapping each pixel (row) to the correct position within the
stitched, quilt-like image. A workflow of this process in shown in Figure 2.

The SOM-RPM workflow, previously reported by this group (Gardner et al., 2019, 2020) was used to create unsupervised
machine learning models for each (stitched) data set, utilising the Kohonen and CP-ANN toolbox developed for MATLAB
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F IGURE  Regions of interest selected from Figure 5(c) for spatial and spectral analysis. (a) LPS treated positive ion mode. (b) Control type EVs positive
ion mode. (c) LPS treated in negative ion mode. (d) Control type EVs in negative ion mode.

(MATLAB R2019b, v9.7) (Ballabio et al., 2009; Ballabio & Vasighi, 2012). The models were trained using a toroidal topology
and with 36 hexagonal neurons, using an eigenvalue (PCA) based initialisation (Ballabio et al., 2009; Ballabio & Vasighi, 2012).
As in our previous work, a plateau or increase in the quantization error is used to indicate SOM convergence and in-house
MATLAB scripts were used to apply the RPM algorithm to the calculated SOM models (Gardner et al., 2019, 2020). All SOM-
RPM calculations were computed using a Dell Precision 3650 Tower workstation incorporating Intel Xeon W-1390P processor,
128 GB RAM, and an NVIDIA Quadro RTX 5000 GPU.

. Statistical analysis and data availability

Quantitative cytokine and thiol data were analysed using GraphPad Prism (Version 8.2.1; GraphPad Software Inc, San Diego,
CA, USA). A two-way ANOVA was used to compare cytokine levels from control and LPS-treated groups and a Student’s t-test
was used to compare thiol levels. All data were expressed as the mean ± standard error of the mean (SEM) and p < 0.05 was
considered statistically significant.

 RESULTS ANDDISCUSSION

. EV characterisation

This study uses ToF-SIMS to provide high resolution molecular data for analysing EVs released during neuroinflammation. A
neuroinflammation model system, stimulation of the microglial SIM-A9 cell line by LPS’s derived from E. Coli O55:B5, was
used to generate relevant EVs and compare them to EVs from untreated control cells. The LPS consists of a lipid A moiety
linked to an antigenic O-polysaccharide. We determined levels of the proinflammatory cytokines, IL1β, TNF-α, and IL6 released
by the microglial cells to confirm the neuroinflammatory model was producing the expected results (Dave et al., 2020). These
cytokines were substantially elevated following LPS treatment, consistent with a proinflammatory phenotype (Figure 3a).We also
investigated the levels of free cysteine thiols, a well-known indicator of oxidative stress and simple protein side chainmodification
during neuroinflammation. Levels of free cysteine thiols were substantially reduced following LPS treatment (Figure 3b).

Figure 3(c) shows a representative size distribution profile of SIM-A9 EVs (545 particles), indicating that the peak size
ranges from 50 to 250 nm, which is typical of small EVs. Figure 3(d) shows western blots for known EV markers described
in the minimal information for studies of extracellular vesicles 2018 (MISEV2018) guidelines (Théry et al., 2018). Analysis
showed enrichment of positive EV markers (CD9, Tsg101, Actin) with low levels of contaminating vesicles from other sub-
cellular sources (Calnexin, GM130). Raw western blot images are presented as Figure S1 in the Supporting Information (SI).
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F IGURE  Spectral analysis of positive Control sample highlighting the differences between technical replicates. Left—Purple ROI, pixels of interest and
associated average pixel intensity and weights. Right-Yellow ROI, pixels of interest and associated average pixel intensity and weights.

We also confirmed that these vesicles displayed typical morphologies using TEM, and that they were present on the sili-
con substrate following the washing/dehydration preparation procedures described using SEM (Figure 3e) (Hausjell et al.,
2023; Jung & Mun, 2018). SEM images illustrate that EVs are intact, after ethanol washing and under ultra-high vacuum
conditions, identical to those experienced during ToF-SIMS treatment. Enlarged TEM and SEM images are presented in
Figure S2.

. ToF-SIMS and SOM-RPM analysis

ToF-SIMS captures a mass spectrum at every pixel within an image, creating a large three-dimensional data cube. Each pixel
can then be treated as a sample and compared to other pixels within the data set. Figure 4(a) presents a ToF-SIMS hyperspectral
image of the control EVs as a two-dimensional similarity map.
The SOM-RPM algorithms assigns each pixel a colour based on its mass spectrum, such that colour similarity represents

pixel similarity. Specifically, each pixel within an image was assigned to a neuron on the toroidal map (inlaid image is a 2D
representation of toroid) based on the embodied mass spectrum. Pixels were defined as chemically similar if assigned to the
same neuron. Chemically related neurons are clustered together on the neural map. The neurons (and their associated pixels) are
then assigned a colour using RPM. This colour indicates the similarity of the pixel weights corresponding to each neuron, that
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is, two neighbouring neurons which are given a similar shade of blue are more chemically similar, than neighbouring neurons
with highly contrasting colours. Remapping the pixels to their original position with the SOM-RPM colour label creates a 2D
visualisation of chemical similarity that reflects the entire hyperspectral mass spectral data set.
Figure 4(b, c) show manual pixel selections, identifying substrate and sample pixels, respectively. The colour selection is

reflected within the inlaid coloured SOM. The sample morphology identified by ToF-SIMS and SOM-RPM (Figure 4c) is similar
to the expected morphology (clumps of EVs ranging in size from 4 μm to sub micrometre) revealed by SEM (Figure 3e).
Each ToF-SIMS image was captured by collecting 256 × 256 pixels over a 20 μm × 20 μm area, indicating a corresponding

pixel width/height of ∼78 nm. This is oversampled as the instrument spot size is 70–120 nm and the resolution in Fast Imaging
mode is closer to 150 nm. As illustrated in Figure 3(c), most EVs are in the 100–200 nm size range, suggesting that ToF-SIMS is
capable of imaging individual EVs as single pixels. We can further confirm that the SOM-RPMmodel can distinguish individual
EVs from the background signal by examining the selected pixels in Figure 4(c) and their mass spectra depicted in Figure S3 of
the SI.
The SOM-RPM output provides a colouring unique to each model. We can directly compare ToF-SIMS images from the

Control, and LPS treated EVs, by first stitching the images to evaluate them using the same model. Figure 5 illustrates three
ToF-SIMS images (technical replicates) from the Control and LPS sample groups stitched into a single image. Figure 5(a) shows
that EVs (frommicron sized aggregates through to single pixel sized across both control treated and LPS treated) are visible and
distinguished from the background. Technical replicates are indistinguishable across sample pixels, with minute variations in
the background, in both positive and negative ion mode. Also visible is the edge effect, where the edge of each stitched image
presents as a different colour to the centre of the image. This is an instrumental artefact and indicates that the ion yield at the
edge of the field of view is somewhat diminished. Despite this issue, EVs in this region have still been correctly classified into
their correct types.
The background of Figure 5(a) was manually selected and removed from the data set, resulting in Figure 5(b) (Gardner et al.,

2020). The colouring provided by the RPM algorithm shows a clear distinction in surface chemistry between control treated and
LPS treated EVs, in both positive and negative ion mode. Within a single sample type, that is, Positive LPS treated, aggregates
of all sizes are given the same colouring, suggesting that there is no change in chemical composition with regard to sample size.
Differences in aggregation between control treated and LPS treated EVs is clear. The control EVs represent the parental cells
unstimulated state, whilst the LPS treated EVs capture morphological changes observed in their parental cells. LPS activates an
inflammatory phenotype in microglia (parental cells) which changes their expression of surface proteins (Cartier et al., 2020;
Dave et al., 2020; Parakalan et al., 2012; Yang et al., 2018). This is manifested in the released vesicles by them being less prone to
aggregation due to a change in cell adhesion and surface markers when compared to vesicles released from unstimulated cells
(Parakalan et al., 2012).
As ∼90% of the neurons in the initial model were dedicated to identifying variations in the sample background, a secondary

SOM was calculated using only the identified sample pixels, as indicated in Figure 5(c) (Gardner et al., 2020). This provides a
higher dynamic range in our classification and provides insights not visible in the initial model.
Figure 6 outlines four regions of interest, selected from the Figure 5(c) model and explores the differences between the LPS

treated and control treated samples in positive and negative ion mode. In positive ion mode, the control treated EVs (Figure 6b)
show more chemical diversity, as indicated by the central, coloured SOMs. In negative ion mode, the chemical diversity is more
balanced between the two types, as the SOM is split almost in half. By examining the ratio of peak weights, we can deter-
mine how much each peak contributes to the LPS treated ROI, the Control treated ROI, or if it is common to both regions.
Notably, the positive ion mode has a similar number of peaks contributing to LPS and Control regions whereas in negative
ion mode, there are twice as many peaks contributing to the Control ROI as there are to the LPS ROI. This is outlined in
Figure S4.
Interestingly, in all four neuron selections (Figure 6a–d), pixels are present within all six stitched ToF-SIMS images, regardless

of sample type. This clearest in Figure 6(a), where a significant number of pixels from the bottom row are highlighted. A small
percentage of control treated EVsmay present in an LPS treated sample as some cells will be undergoingmitosis and are unable to
respond to the LPS simulation. Likewise, LPS treated EVsmay be present in the control treated sample because, in this cell line, a
small proportion of cells spontaneously become activated even in the absence of a pro-inflammatory stimulant. The intensity and
weights spectra for the control and LPS treated sample in positive and negative ionmode are given in Figure S5. The assignments
of the top 20 weighted peaks are listed in Tables S1 and S2.

The inconsistency of the SOM -RPM colouring within the positive Control treated technical replicates suggests several unique
chemistries. The variations occur both within an individual ToF-SIMS images and across multiple images. Figure 7 indicates the
spectral differences between the ‘Yellow’ and ‘Purple’ ROI selected from the positive Control EV data. The left image contains
pink aggregates, the central image indicates yellow aggregates, and the right image has split of yellow and purple. Upon spectral
analysis, Na+ has a higher intensity in the purple ROI and K+ has a higher concentration in the yellow ROI. Phosphate peaks,
C9H11NO2

+ (165.08m/z) andC23H36O4
+ (376.4m/z) are also key ion peaks for distinguishing the yellow and pink regions. Some

of these differences may be due to incomplete washing of buffers from the EV aggregates, others require more investigation to
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F IGURE  Spectral analysis of negative LPS treated samples, highlighting the differences within technical replicates. Blue and pink ROIs with average
intensity (zoomed in inlay) and weights.

determine the source of the fragments. Both aggregate colours have unique edge colours, indicating that the bulk and the edges
of aggregate types are chemically distinct.
The negative LPS treated samples are consistent across replicates, where each ToF-SIMS image shows two distinct EV popula-

tions. Figure 8 explores the spectral differences, between the pink and blue subgroups. Spectral analysis indicates small changes
across hundreds of peaks, the most significant being an increase in O−, OH− and C4H6NO− in the blue sub-group, and CNO−

and CH3SO2
− having higher intensity in the pink ROI. The origin of each of these populations is unclear, however, both sub-

groups have been clearly distinguished from the Control sample showing that none of the selected EVs have come from control
type cells.

. Spectral analysis

Finally, to investigate if physiological changes observed in cells were replicated in EVs, we extracted imaging data for the amino
acid cysteine and the specific sulphur-bound hydrogen (hydrosulphide) as an indicator of thiols in EVs. Figure 9(a, b) show
cysteine and hydrosulphide presence in a representative EV sample. Using colocalization analysis, Figure 9(c, d) highlight the
high degree of overlap in cysteine and hydrosulphide, indicative of the functional side chain of cysteine. Lastly, when we compare
levels of hydrosulphide fromLPS-treated EVs, we see lower levels than controls, consistent with the quantitative assays performed
in cell lysates (Figure 3b vs. 9e). This highlights that oxidative stress, through reduction in thiol content, is carried over into
EVs. Mechanistically, this may represent a way that different cell types can communicate oxidative stress in the brain during
neuroinflammation.

 CONCLUSIONS

We have demonstrated amethod for the preparation of EVs for ToF-SIMS imaging, which presents low volumes of intact EVs for
analysis. We have illustrated the synergistic use of ToF-SIMS and ML as a powerful tool for molecular analysis of EVs involved
in the neuroinflammation process. This surface imaging modality provides mass spectral data and uses a tiny fraction of the
sample required for other typical molecular methodologies. Using the SOM-RPM algorithm, we could identify EVs at single
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F IGURE  Analysis of physiological markers from extracted EV imaging data. (a) Cysteine (C3H7SNO2
−) and (b) sulfur-bound hydrogen (HS−)

imaging data were exported using Fast-Imaging mode and pseudo-colored red and green, respectively. (c) Co-localisation analysis overlays each image and
recolours colocalised pixels white. (d) Co-localised pixels with background removed. (e) HS− peak collected in Spectrometry mode. Hydrosulphide levels were
lower in EVs isolated from LPS-treated microglial cells (a–e) with a 20 field of view.

pixel resolution and differentiate a subclass of EVs released by microglia following LPS stimulation. Moreover, a reduction in
free cysteine thiols (a marker of cellular oxidative stress synonymous with neuroinflammation) were also observed in EVs from
microglial cells treated with LPS. This strongly suggests that EVs are dynamically regulated under neuroinflammatory conditions
and validates ToF-SIMS with SOM-RPM as a robust and sensitive method for investigating the molecular composition of EVs at
high spatial resolution.
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