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Dysbiosis of the human skin microbiome has long been associated with

changes to the pH of the skin, dermal immune function and chronic skin

conditions. Dermatological issues have been noted as the most prevalent

medical presentation in the microgravity environment of space. The change

in gravitational forces has been implicated in human immuno-suppression, also

impacted by changes in the gastrointestinal-skin axis and its impact on Vitamin

D metabolism, altered microbial gene expression in resident flora (leading

changes in biofilm formation) and increased virulence factors in potential

pathogens. There are also other stressors to the skin microbiome unique to

space travel, including increased exposure to radiation, prolonged periods of

dry washing technique, air quality and changes in microbe replication and

growth parameters. Optimal microbiome health leads to enhanced skin barrier

manufacture andmaintenance, along with improved skin immune function and

healing. In a microgravity environment expected to be experienced during long

space flights, disruptions to the skin microbiome, coupled with increased

virulence of pathological viruses and bacteria has implications for holistic

skin health, astronaut cognitive function and mental health, and is coupled

with slowed rates of wound healing. Scenario management for holistic skin

health and restoration ofmicrobiome homeostasis on long space flights require

consideration.
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Introduction

Our skin microbiome has evolved, and continues to evolve on Earth as a commensal

system, vital for the health and life of the individual. The challenges of space flight on

human health and physiology is a relatively new area of research, and as humankind’s

ambition to move towards space colonization increases, there is increased likelihood of

new disease encounters and physiological dysfunction of astronauts skin (Taylor, 1993;

Horneck et al., 2003; Horneck and Comet, 2006; Taylor, 2015). Identifying methods to

preserve the health of the commensal organisms that make up the human skin

microbiome, and thus the overall health of the skin, during long haul space flight is

of great clinical importance.

Thus far, human microgravity experience is limited to missions on the International

Space Station (ISS) and Salyut, and Skylab stations, with additional information gained
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from space shuttle data collections and isolated analog

experiments. There are numerous factors at play which affect

the skin differently to that on Earth, skinmicrobiome changes are

noted and further complicated by differences inmicrobial growth

rates in microgravity (Taylor, 2015). Clinicians have been

cognisant of medically important microorganisms populating

astronauts early in the history of space flight (Coiletti Louis et al.,

1991; Taylor, 1993; Williams, 2003a; Taylor, 2015). Changes to

the human immune system, even after short-duration space

flights, have been noted (Taylor, 1993). Physiological

processes in the skin contribute to wound heating, multi-

system health, mental health and cognitive functioning and is

a relatively neglected area of space medicine.

Microgravity, immunosupression, and
Vitamin D production

For reasons not yet ascertained, microgravity environments

affect the human immune response; this effect has been recorded

after relatively low exposure (Nefedov et al., 1971; Stowe et al.,

2001; Williams, 2003a; Mehta et al., 2014). Some of the

catalogued changes to the human immune system range from

differences in cellular genetic expression, changes to specific

classes of immune cell activation (i.e., monocytes, leukocytes),

interruptions of the gastrointestinal-skin axis, changes in cellular

response (i.e., monocyte cellular imbalance) to endotoxins

(cytokine blunting), as well as changes in the growth and

nature of common commensals, pathogenic bacteria and

viruses (Canova Sabrina et al., 2005; Kaur et al., 2005; Kaur

et al., 2008; Baqai et al., 2009; Guéguinou et al., 2009; McPhee and

Charles, 2010; Jennifer et al., 2021; Spatz et al., 2021). It is

hypothesised, but the mechanism not fully understood,

physiological changes monitored in humans may be directly

influenced by the microgravity environment of space. With a

resulting change of tertiary and quaternary molecular

conformation leading, for example, to molecular

conformational mismatch and structural stress, in turn

causing cytokine blunting, affecting the inflammatory

mediated immune response with dysregulation of signaling

and recruitment pathways (Nickerson et al., 2000; Kaur et al.,

2005; Kaur et al., 2008; Guéguinou et al., 2009; Picardo and

Monica, 2014; Jennifer et al., 2021; Spatz et al., 2021).

Consideration should also be given to the formation of lymph

and its propulsion within the human lymph system in

microgravity environments. Lymph contributes to fluid

homeostasis of the interstitial and serosal cavities, but also

acts as an “immune cell highway” propelling classes of

immune cells to sites of immune responses as part of the

immune reaction (Canova Sabrina et al., 2005; Kaur et al.,

2005; Kaur et al., 2008; Baqai et al., 2009; Guéguinou et al.,

2009; McPhee and Charles, 2010; Jennifer et al., 2021; Solari et al.,

2021; Spatz et al., 2021). It is noted ISS astronauts experience

gross disturbance of this system (evidenced by pseudo-sinusitis

and “puffy faces,” which do not respond to traditional diuretics)

in microgravity (Solari et al., 2021).

Recent enclosed analog research has been focussed on the

biological translocation of bacteria within closed environments/

habitats, potential bacterial-derived toxicity, as well as

exploration of tissue-derived toxins (involving the lymph

system). However the contributing impact of microgravity on

the lymphatic system has not been extensively explored (Zwart

et al., 2011; SanMiguel and Grice, 2015; Cabalín et al., 2021; Tang

et al., 2021). Solari et.al. (2021) note that there is little data on the

modulation of gut lymphatic drainage and movement in disease

management, and attention to lymph drainage remains the

domain of specific areas of cancer management (i.e., breast

cancer lymphoedema) (Smith et al., 1999; Zwart et al., 2011;

SanMiguel and Grice, 2015; Lund et al., 2016; Schwager and

Detmar, 2019; Cabalín et al., 2021; Solari et al., 2021). Limited

research has reviewed the impact of artificially imposed lymph

flow perhaps improving the composition of gut microbiome,

which may in turn impact or reduce future gut-microbiome

imbalance associated illnesses and nutritional deficiencies. A

secondary effect may be the improved immunosurveillance

and delivery of immune cells. (Smith et al., 2005; Scott et al.,

2021; Smith et al., 2021; Solari et al., 2021; Tang et al., 2021).

Nutrient studies demonstrate that lipid transport is

associated closely with the gut microenvironment; changes to

this environment can affect the absorption of dietary lipids and

their associated lipid soluble nutrients. In turn, changed gut

microenvironments impact on the effective immunosurveillance

between the villi interstitial space and mesenteric lymph nodes

(Solari et al., 2021). It is appreciated that there are widespread

associations: reduced lipid transport into the blood impacts

immunosurveillance and increases risk tissue oedema (an

independent risk factor for infection); and reduced dietary

lipid transport affects uptake of vital nutrients and mineral

co-enzymes ultimately affecting the gastrointestinal-skin axis.

(Sonnenfield and Shearer, 2002; Smith et al., 2005; Zwart et al.,

2011; Zwart et al., 2013; Carlson, 2014; Shen et al., 2014;

SanMiguel and Grice, 2015; Anna et al., 2016; Scott et al.,

2021; Smith et al., 2021; Solari et al., 2021; Tang et al., 2021).

More recently noted effects also attributed to microgravity

affects include altered T cell activation, decreased sensitivity and

activation of molecular signalling pathways (leading to reduced

functionality of protein co-activators) by mechanisms yet to be

fully elucidated (Nickerson et al., 2000; Sonnenfield and Shearer,

2002; Kaur et al., 2008; Zwart et al., 2011; Zwart et al., 2013;

Carlson, 2014; Picardo and Monica, 2014; Shen et al., 2014;

SanMiguel and Grice, 2015; Anna et al., 2016) A recent study

confirmed the ability of T cells to influence the bacterial

microbiome of the skin (Shen et al., 2014). An example, the

reactivation of latent viral infections, due in part to the de-

activation or down regulation of some parts of the human

immune system, has been observed (Stowe et al., 2001; Baqai
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et al., 2009; Zwart et al., 2013; Carlson, 2014; Taylor, 2015).

Further studies with regards to primary immuno-deficiencies

show increased microbial permissiveness and growth in

opportunistic pathogens (SanMiguel and Grice, 2015).

Vitamin D plays a cardinal role regulating the human skin’s

immune response and contributes to the healing potential of the

skin. Low Vitamin D status leads to increased risk of topical

infections and systemic and multi-organ changes (i.e.

osteoporosis, pulmonary fibrosis); also noted is decreased skin

immune responses with disordered wound healing (Smith et al.,

1999; Zwart et al., 2011; Schwager and Detmar, 2019; Cabalín

et al., 2021; Smith et al., 2021; Tang et al., 2021). The

immunological mechanisms required for the production of

Vitamin D via the 7-DHC pathway can be clinically

interrupted in enclosed space environments. The regulation of

keratinocyte differentiation is dependent on Vitamin D, creating

a nexus between the body’s Vitamin D stocks, regulation and

differentiation of keratinocytes and their co-activators (Cabalín

et al., 2021; Smith et al., 2021). Which in turn helps with growth

regulation of keratinocytes in the human body (Lund et al., 2016;

Claudel et al., 2019a). Autoflora sharing in the gastrointestinal

tract affects individual gastrointestinal-skin axis, and in turn may

indirectly affect the metabolism and availability of vitamins, such

as Vitamin D, leading to changes the skin microbiome (Cogoli

et al., 1984; Bikle et al., 2003; SanMiguel and Grice, 2015; Zwart

and ScottSmith, 2020).

There is mounting evidence that some autoimmune

pathologies are associated with low Vitamin D status,

including the development of disordered skin growth (vitiligo

and scleroderma) as well as heart disease, increased topical and

systemic infection and diabetes development (Cogoli et al., 1984;

Bikle, 2004; Bikle et al., 2004; DeLuca, 2004; Smith et al., 2009;

Matheson et al., 2010; Hu et al., 2014; Zwart and ScottSmith,

2020). On a cellular level, lowered levels can affect murine and

human plasmacytoid dendritic cellular function, creating a

responsive-suppressive effect on cancer genesis and immune

cell behavior (Zwart et al., 2013; Shen et al., 2014; Scott et al.,

2021). Nasal colonisation by methicillin-resistant Staphylococcus

aureus, MRSA, in individuals with low Vitamin D is recorded,

demonstrating that commensals may out-compete other bacteria

in a low Vitamin D environment (Penna, 2000; DeLuca, 2004; De

Haes et al., 2005; Kostner et al., 2009; Smith et al., 2009;

Matheson et al., 2010; Malodobra-Mazur et al., 2012; Karthaus

et al., 2014; SanMiguel and Grice, 2015).

Future multi-generational long haul space flights may

provide multiple mental health challenges, where mood

management, cognitive stability and cooperative individuals

will be needed for success. Vitamin D receptors are found in

the brain, and a deficiency of Vitamin D can lead to decreases or

alterations in cognitive functioning (Penna, 2000; Searing and

Leung, 2010; Slominski et al., 2011; Pludowski et al., 2013; Saleh

et al., 2013; Thill et al., 2015; Wierzbicka et al., 2015; Smith et al.,

2021). Changes in the gastrointestinal-skin axis secondary to

astronaut autoflora exchange may in turn impact Vitamin D

production and the vitamin’s wider availability to the human

immune system (Cogoli et al., 1984; Coiletti Louis et al., 1991;

Taylor, 1993;Williams, 2003a; Bikle et al., 2003; Bikle, 2004; Bikle

et al., 2004; Horneck and Comet, 2006; Kaur et al., 2008;

Guéguinou et al., 2009; Carlson, 2014; Hu et al., 2014; Taylor,

2015; Zwart and ScottSmith, 2020; Spatz et al., 2021). Though

supplementation guidelines are readily available, they may not be

applicable in microgravity environments due to the

acknowledged change in gastrointestinal microbiome and

autoflora phenomena, creating dysfunction with the

gastrointestinal-skin axis, complicated further by molecular

structural stress (Adorini and Penna, 2008; Slominski et al.,

2013d; Jennifer et al., 2021; Spatz et al., 2021). Oral

supplementation presents itself as an obvious solution, but

may also create challenges on longer haul space flights with

regards to adequate supply (dosage for the protective and healthy

immune response the human body requires) and changed

gastrointestinal microbiome may lead to inadequate dosage

uptake for individual needs (Taylor, 1974; Peterson et al.,

2013; SanMiguel and Grice, 2015; NASA, 2021; Sole and

Santamaria, 2021). UV supplementation is another avenue to

explore, however Australian studies have shown that UV sun-

damaged skin becomes compromised, falling behind on the

production of Vitamin D utilized by other physiological

systems in the body (Holick, 2004; Eckberg et al., 2005; Eyles

et al., 2005; Heath and Elovic, 2006; Hawker et al., 2007; O’Hara

and Shanahan, 2007; Garcia et al., 2011; Haussler et al., 2011;

Duygu Gezen et al., 2012; Hu et al., 2014).

Extrapolating from bacteria and conformational molecular

changes in microgravity, the warping of functional three

dimensional (3D) structures (immunomolecular molecular

structures) causes molecular structural stress, leading to

further down regulation or dysfunctionality of keratinocyte

co-activator contribution to kertinocyte growth and

differentiation, creating an environment for mircobiome

dysbiosis (Nickerson et al., 2000; Kaur et al., 2005; Kaur et al.,

2008; Carlson, 2014; Picardo and Monica, 2014; Taylor, 2015;

Schwager and Detmar, 2019; Jennifer et al., 2021; Spatz et al.,

2021) In effect, along with compromised human immune

functioning and wound healing, this can lead to longer and

more infectious microorganism profiles (Schwager and Detmar,

2019; Cueto, 2022). Down-regulation of the human immune

system in microgravity is competing with a range of pathogenic

insults, including risk of encountering novel diseases in space,

causing questions to be asked if humans could biologically

survive in space (Nefedov et al., 1971; Guéguinou et al., 2009;

Schwager and Detmar, 2019). It is becoming evident that general

human health and well being is highly dependent on resident

Vitamin D status (Smith et al., 1999; Holick, 2004; Wang et al.,

2004; Eckberg et al., 2005; Eyles et al., 2005; Heath and Elovic,

2006; Hawker et al., 2007; Holick, 2007; O’Hara and Shanahan,

2007; Kaur et al., 2008; Misra et al., 2008; Garcia et al., 2011;
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Haussler et al., 2011; Zwart et al., 2011; Bikle, 2012; Duygu Gezen

et al., 2012; Slominski et al., 2013d; Hossein-nezhad and Holick,

2013; Zwart et al., 2013; Carlson, 2014; Zwart and ScottSmith,

2020; Scott et al., 2021; Smith et al., 2021; Cueto, 2022).

Microbiological and viral behaviour
and pharmacological resistance in
microgravity

Many potential pathogens inhabit and colonise the human

body, and apart from a possible direct pathogenic threat,

gastrointestinal commensal balance can also affect the

absorption and activation of much needed vitamins and

nutrients to maintain a healthy functioning immune system

(Canova Sabrina et al., 2005; Carlson, 2014; Wierzbicka et al.,

2014). Space flights have been demonstrated to cause changes to

the gastrointestinal and gastrointestinal-skin axis and nasal

colonisation with resident respiratory bacterial flora (Taylor,

1993; Stowe et al., 2001; Du et al., 2002; Baqai et al., 2009;

Guéguinou et al., 2009; Du et al., 2011; Taylor, 2015; Smith et al.,

2021; Sole and Santamaria, 2021; Spatz et al., 2021; Tang et al.,

2021). Maintaining a healthy microbiome is challenged by a two-

fold antagonistic process: the rapid growth of potential

pathological organisms (up to four times Earth-bound growth

rates), coupled with the noted lack of medication stability and

effectiveness in space (often discussed as increased resistance)

(Du et al., 2002; Malodobra-Mazur et al., 2012; Taylor et al., 2012;

Wierzbicka et al., 2014; Taylor, 2015; Jennifer et al., 2021; Spatz

et al., 2021). Anaerobic and aerobic organisms experience

decreased generational replication times, perhaps not allowing

uptake of systemic antibiotic agents at the correct replication

phase for effectiveness, potentially rendering antibiotic

treatments minimally effective.

Additionally, changes in the nature and type of cytoskeleton

expression appear to provide some species of bacteria a competitive

advantage. Salmonella typhimurium, Staphylococcus epidermis (a

normal skin commensal) have demonstrated predatory behavior

with these changes, effectively out-completing other commensals

(Nefedov et al., 1971; Coiletti Louis et al., 1991; Nickerson et al.,

2000; Du et al., 2002; Picardo andMonica, 2014; Taylor, 2015; Lund

et al., 2016; Jennifer et al., 2021). Further research is investigating

the effects of radiation and microbiological organisms genetic

response (Wang et al., 2004). Genetic mutations have been

noted in Saccharomyces cerevisiae after longer space flights, and

changed Escherichia coli gene expression is noted. These changes,

coupled with host human epigenetic ageing (in response to

radiation, stress, and microgravity environment) provide a

compromised course for the senescence immune

response (Sonnenfield and Taylor, 1991; Klaus et al., 1997;

Fukuda et al., 2000; Wang et al., 2004; Karthaus et al., 2014;

Nickerson et al., 2016; Zea et al., 2017; Nwanaji-Enwerem Jamaji

et al., 2020).

Some microorganisms have demonstrated persistent resident

populations in microgravity, surviving successive space flights

(Aunins Thomas et al., 2018; Singh et al., 2018; More et al., 2019;

Mortazavi, 2019). These include those indicated as a biosafety

level 2 microorganism: Acinetobacter baumannii, Haemophilus

influenzae, Klebsiella pneumoniae, Salmonella enterica, Shigella

sonnei, Staphylococcus aureus, Yersinia frederiksenii, and

Aspergillus lentulus (Aunins Thomas et al., 2018). Of the

persistent space flight bacteria, Staphylococcus aureus and

Yersinia frederiksenii are known skin pathogens, and

Aspergillus lentulus, Haemophilus influenzae, and Klebsiella

pneumoniae are more routinely encountered clinically in the

human respiratory system. Whilst Salmonella enterica and

Shigella sonnei are mainly considered gastrointestinal

pathogens, Acinetobacter baumannii has demonstrated its

pathological capabilities, particularly with indwelling urinary

catheters in the immunocompromised individuals

experiencing prolonged hospitalization (Bijlani et al., 2021).

Although the conditions in space habitats and microgravity

environments are selective, they do not alter the micro-

biological affect on human health and the same disease profile

can be expected with a predicted quicker timeline (Singh et al.,

2018; More et al., 2019; Mortazavi, 2019).

Resistance per se may not be the correct conceptual

terminology to describe the ineffectiveness of antibiotics, for

example resistance may be due to faster generational/replication

time, affecting antibiotics and antiretrovirals introduction into

the organisms at the “right moment”to disrupt their replication

pathways. Given the expected change in gut flora due to autoflora

colonisation in astronauts, storage and antibiotic resistance

concerns, the bio-availability of therapeutics in long space

flight will need to be considered (Taylor, 1974; Teize and

Putcha, 1994; Du et al., 2002; Canova Sabrina et al., 2005; Du

et al., 2011; Putcha et al., 2011; Taylor et al., 2012; Turroni et al.,

2020). Medication storage in microgravity and the effect of

increased radiation (over periods of time) coupled with other

(as yet) unquantifiable factors, may well impact on medication

integrity (Nefedov et al., 1971; Coiletti Louis et al., 1991; Smith

et al., 1999; Nickerson et al., 2000; Stowe et al., 2001; Du et al.,

2002; Williams, 2003a; Canova Sabrina et al., 2005; Kaur et al.,

2005; Kaur et al., 2008; Baqai et al., 2009; Guéguinou et al., 2009;

McPhee and Charles, 2010; Du et al., 2011; Zwart et al., 2011;

Zwart et al., 2013; Carlson, 2014; Mehta et al., 2014; Picardo and

Monica, 2014; SanMiguel and Grice, 2015; Schwager and

Detmar, 2019; Cabalín et al., 2021; Jennifer et al., 2021; Solari

et al., 2021; Spatz et al., 2021). As treatment options become

compromised, and antibiotics lose a level of their effectiveness,

resistance will inevitably increase, particularly with rapid

generational rates (Taylor et al., 2012). It is evident the nature

of long haul space flight will create the conditions conducive to

dysbiosis of the skin microbiome, autoflora changes will impact

Vitamin D production, which in turn affects skin barrier growth

and function, encouraging barrier dysfunction (Du et al., 2011).
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The effects of autoflora exchange and
skin changed pH

Each individual provides an ecosystem of variable habitats,

with bacterial, viral and fungal commensals demonstrating

preferential environments. Colonization and autoflora

exchange in closed environments is a known effect of both

simulated and actual space environments; individual

physiology dictates how a population of flora will inhabit

different individuals. Gastrointestinal autoflora exchange has

been quite well documented (Zea et al., 2017; Aunins Thomas

et al., 2018; Singh et al., 2018; Mortazavi, 2019). Conversely, the

mechanisms behind skin autoflora exchange and microbiological

persistence in space flight vehicles and analogs is not well

understood (Taylor and Sommer, 2005; Maloney et al., 2014;

Aunins Thomas et al., 2018; Turroni et al., 2020; Yu et al., 2020).

The microbiome of the gut and skin is now understood to be

shared between participants who are housed in closed quarters

(Williams, 2003b; Kostner et al., 2009; Karthaus et al., 2014;

Mann et al., 2019). Skin commensal exchange, even when aseptic

techniques and sterility is maintained, is a little more difficult to

catalog. One presumes that the hygiene is strong in space vehicles

and analog environments (Naik et al., 2012; Voorhies and

Lorenzi, 2016; Tan et al., 2017; Ehrhardt, 2018; Rainer

Barbara et al., 2020; NASA, 2021). The persistence and

increased virulence of some microbiological organisms in

space vehicles would suggest a more subtle transference vector

(Zea et al., 2017; Aunins Thomas et al., 2018; Surber et al., 2018b;

Mann et al., 2019).

As outlined, multivariate factors impact on skin health, and

the relatively recent understanding of these factors working

together to create a healthy skin environment has highlighted

the fragility of the system once outside the Earthly environment

(Horneck and Comet, 2006; Peterson et al., 2013). It is recognised

that skin immunity is contributed to by resident commensals,

and skin health can be affected by a change in the population

dynamics of the resident commensals, and a change in the surface

pH (NASA, 2021; Sole and Santamaria, 2021). Earth-bound

studies have shown that pathological conditions such as

rosacea and acne can be communicable, with individuals

demonstrating a genetic propensity for these diseases which

thrive in an alkaline pH environment [(Naik et al., 2012; Hu

et al., 2014; Voorhies and Lorenzi, 2016; Tan et al., 2017; Surber

et al., 2018a; Ehrhardt, 2018; Rainer Barbara et al., 2020), 135].

Changes in pH can greatly affect the habitat and composition

of skin microbiome (Wheatcroft, 1989; Naik et al., 2012;

Angelova-Fischer et al., 2018; Kahraman et al., 2019; Farkas

and Farkas, 2021). This in turn, when coupled with human

immune system dysfunction, could be expect to lead to

disease proliferation, i.e., latent common viral diseases

reactivating in microgravity environments, and novel and

persistent habitat infiltration (Taylor and Sommer, 2005;

Maloney et al., 2014; Turroni et al., 2020; Yu et al., 2020).

Novel technical solutions for maintaining or repopulation of a

healthy microbiome may include autoflora generalisation

(generic autoflora distribution across individuals in a closed

environment before long-haul space flight) of gastrointestinal

and skin microbiome flora to maximise vitamin and nutrient

absorption (Williams, 2003a).

Skin health, wound healing, and
optimal pH

A survey of reported medical issues during space flights has

demonstrated that dermatological issues appear as the most

regular complaint (Stowe et al., 2001; Horneck and Comet,

2006; Mehta et al., 2014). Skin complaints after space travel

have included dryness, eczema, itch, acne and other infections,

thinning skin, and erythemous or mastoidcyotic reactions to

stimuli, suggesting changes to the barrier functioning of the skin

and creation of dybiosis (Wheatcroft, 1989; Naik et al., 2012;

Youn et al., 2013; Angelova-Fischer et al., 2018; Surber et al.,

2018b; Kahraman et al., 2019; Farkas and Farkas, 2021). These

factors can profoundly impact astronaut health, well-being and

comfort in microgravity. Skin dysbiosis can act as a medical

distraction, and should be a cardinal consideration on long haul

space flights (Williams, 2003a). It is further appreciated

that both short and long duration space flight have the

potential to severely disrupt the skin microbiome, which will

also be prone to currently unquantifiable radiation influences

(Taylor, 1974; Penna, 2000; DeLuca, 2004; De Haes et al., 2005;

O’Hara and Shanahan, 2007; Adorini and Penna, 2008; Kostner

et al., 2009; Smith et al., 2009; Matheson et al., 2010; Searing and

Leung, 2010; Slominski et al., 2011; Malodobra-Mazur et al.,

2012; Slominski et al., 2013d; Peterson et al., 2013; Pludowski

et al., 2013; Saleh et al., 2013; Hu et al., 2014; Karthaus et al., 2014;

Thill et al., 2015; Wierzbicka et al., 2015; NASA, 2021; Sole and

Santamaria, 2021).

Optimal skin health occurs within a range of pH value.

Depending on the location/site of the human body, a number

of factors affect skin pH: age, anatomical site, genetic and ethic

inheritance, sebum, sweat and skin moisture (Wheatcroft, 1989;

Naik et al., 2012; Angelova-Fischer et al., 2018; Kahraman et al.,

2019; Farkas and Farkas, 2021). As an example of ethic

inheritance affecting skin behaviour, with darkly pigmented

skin demonstrates a lower pH and far superior barrier

integrity than lighter skin (Naik et al., 2012; Farkas and

Farkas, 2021). The pH tends to attract and help stabilise the

human microbiome ecosystem within the realms of its symbiotic

relationship, and the microbiome is greatly affected by pH and

changes in pH (Wheatcroft, 1989). Newly hypothesized dysbiosis

causative agents, such as Staphylococcus epidermidis, persist in

the microgravity environment (Wheatcroft, 1989; Naik et al.,

2012; Youn et al., 2013; Surber et al., 2018b; Farkas and Farkas,

2021).
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Bacteria that comprise the microbiome contribute growth

factors and peptides to the skin, stimulating skin repair.

Staphylococcus aureus is one of the mainstays of this

contribution, but may be outcompeted by Staphylococcus

epidermidis, having an additional deleterious effect on wound

healing (Youn et al., 2013; Surber et al., 2018a; Surber et al.,

2018b). Common pathogenic bacteria such as Staphylococcus

aureus show optimal growth at pH of 7.5, whilst

Propionibacterium acnes has optimal growth at pH 6.3, and

the newer organism contributing to acne, the bacteria

Staphylococcus epidermidis is persistent in space flight, also

preferring a more alkaline pH (Jürgen et al., 2011; Voorhies

and Lorenzi, 2016; Tan et al., 2017; Surber et al., 2018a; Ehrhardt,

2018; Nanna, 2018; Claudel et al., 2019b; Kahraman et al., 2019;

Lynde et al., 2019; Mortazavi, 2019; Cueto, 2022). The

hydrophobic character and lipid distribution of the stratum

corneum requires the organisation of lipids into a series of

lamellar layers, and the synthesis of ceramides greatly

improves with a lowered pH (Naik et al., 2012). It has been

demonstrated that a lowered pH improves barrier functioning

and integrity by creating an environment whereby ceramides can

be generated by maximal enzymatic reaction of critical

components of the permeability barrier of the skin. Two

important enzymes, β-glucocerebrosidase and acidic

sphingomyelinase, work at specific pH of 5.6 and

4.5 respectively (Naik et al., 2012; Angelova-Fischer et al.,

2018; Kahraman et al., 2019). The change to sebum

composition, which occurs under hormonal influences,

reduces fatty acids presence and increases squalene and pH.

The basic principles for management of skin microbiome

should include correcting pH, a balanced level of fatty acids

present (secreted by the resident flora), and avoiding substances

that damage or disrupt the microbiome. Treatment of elderly

skin, which suffers from much of the same complaints as those

astronauts who have experienced space flight, also suggest

appropriate lowering of the pH in skincare products (Youn

et al., 2013; Claudel et al., 2019b). Impaired wound healing

has been documented in the space environment. Factors such

as 3D molecular structural stress, changes in pH and barrier

function, may lead to compromised functioning and contributing

to noted skin atrophy and poor skin health of returning

astronauts (Youn et al., 2013; Schreml et al., 2014; Neutelings

et al., 2015; Braun et al., 2019; Lynde et al., 2019; Afshinnekoo

et al., 2020; Cubo-Mateo and Gelinsky, 2021). Newer techniques,

being developed on Earth (stem cell culture, bio-mechanical

printing, placental growth factor harvesting, patches to deliver

growth factors and progenitor wound healing molecules), may

not have the availability or same behavior in the microgravity

environment to be of value in space flight (Skardal et al., 2012;

Neutelings et al., 2015; Widgerow et al., 2016; Dyer and Miller,

2018; Braun et al., 2019; Tottoli et al., 2020). Medications and

treatments for infection, skin health maintenance and

pH balance will face manufacturing, medication stability, and

storage challenges in the remote and potentially hostile

environment of spacecraft designed for long-duration space

flight. A lowered skin pH would increase the wound healing

capabilities of the skin, and could be as simple as using slightly

acidic wipes for washing (without removal), to promote an acidic

environment, perhaps three times a week whilst in the

microgravity environment.

Discussion

In the overall concext of space travel, it is becoming obvious

that the area of medicine and astronaut health which may

become cardinal to ensuring successful missions is

maintenance of a healthy skin microbiome within the

microgravity environment (Horneck and Comet, 2006; Stewart

et al., 2007; Taddeo et al., 2008; Skardal et al., 2012; Saba, 2013;

Tottoli et al., 2020; Paul et al., 2021). It is now appreciated that

space flight contributes to skin dysbiosis, including, but not

limited to, dryness, acne, topical infections, (with recorded

increased virulence/reactivation of a herpetic/viral infections)

and slowed wound healing.

This admix of poor barrier function, compromised immune

response, the impact of changed individual autoflora, and

disruptions of the gastrointestinal-skin axis (i.e. impaired

Vitamin D metabolism and deficiency), together with poor

wound healing, has the potential to lead to skin dysbiosis. The

collective storm of decreased/altered human immune response,

decreased wound healing, changes to microbiome, coupled with

biologically demonstrated increased microbe replication and

infective states (with reduced antibiotic and antiretroviral

effectiveness), will inevitably lead to increased dysbiosis and

risk of infections. Microgravity-induced 3D molecular stress,

leading to molecular dysfunctionality of co-enzymes and

interruptions of signalling/immune cellular recruitment

pathways, cannot be ignored in planning for long-duration

space flight. Consideration of innate pharmaceutical failure

(packaging, longevity of medications, radiation damage), and

ability to manufacture specifically designed medications, coupled

with packaging and preservation, it is essential to give good “shelf

life” for vital medicinal, food and personal care products during

long-duration spaceflights. By definition, in normal use, sealed

packaging is designed to prevent microbial growth, and thus is a

limiting factor for microbiome-restorative medicaments.

Ensuring optimal functioning of the skin microbiome is

paramount, but what are some practical measures to ensure

this happens? The sebum consists of fatty acids, which are

liberated by the microbiome, and are one of the mechanisms

by which the skin remains acidic. It is acknowledged that an

acidic pH is vitally important to the microbiome health, and in

turn the biomechanics of the underlying human tissue (Naik

et al., 2012; Youn et al., 2013; Angelova-Fischer et al., 2018;

Kahraman et al., 2019; Lynde et al., 2019). A logical scenario
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would be to replicate the environment in which we know the

microbiome exists optimally, bar the effects of microgravity.

Whilst still in its infancy, there is enough data to piece

together evidence-based strategies on such a concept. It is

now known that in higher or more alkaline pH the microflora

of the skin changes its composition and certain bacterial and viral

species become more virulent (Jürgen et al., 2011; Nanna, 2018;

Kahraman et al., 2019; Rainer Barbara et al., 2020; Farkas and

Farkas, 2021). New data suggests that a lower than expected

pH would create a healthier environment for skin’s microflora

(Stewart et al., 2007; Taddeo et al., 2008; Saba, 2013; Youn et al.,

2013; Eshelby, 2021; Paul et al., 2021; Cueto, 2022). One aspect of

skin health in the changed immunological environment of

microgravity, the pH, could be a simple, but effective, way to

increase skin health, decrease topical infection rate, increase skin

immune responses, and maintain a healthy biome (Youn et al.,

2013; Lynde et al., 2019).

The authors suggest consistently maintaining a lowered skin

pH in the microgravity environment as a direct methodology for

maintaining astronaut skin barrier health whilst reducing the risk

of infection. This approach would result in the maintenance of

the skin barrier, reduce dryness, and slow disease development

and topical infections (such as acne and rosacea), whilst helping

at the same time to maintain the skin’s microbiome (Jürgen et al.,

2011; Youn et al., 2013; Nanna, 2018; Lynde et al., 2019). A

lowered pH would lead to increased skin wound healing

capabilities.

Conclusion

International space agencies are planning for long-duration

human spaceflight. However at our current level of technology,

they present several medical challenges for human health. Good

health and wellbeing for spacefarers has become a complex

immunological, nutritional and medical issue, whereby new

technology and solutions for expected and novel diseases and

infections require careful thought and deployment of resources.

Keeping crews fit and healthy (accounting for age-related disease

profiles) require consideration of the biological, physiological,

and pathogenic changes stemming from both potential

pathogens, changes to skin microbiome, gastrointestinal

autoflora, and the gastrointestinal-skin axis. It is also

important to account for the molecular structural stress

experienced in microgravity environment, and the effect of

this on the human immune system.

Reducing skin pH, adequate Vitamin D supplementation,

maintenance of the gastrointestinal-skin axis, and protection and

monitoring of the skin microbiome, may provide a novel

prophylactic and treatment course to help maintain a healthy

individual skin microbiome. Improving and maintaining skin

microbiome quality will reduce the risk of skin dysbiosis and

infections during long-haul space flights.
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