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Confidence and psychosis: a neuro-computational account of
contingency learning disruption by NMDA blockade
F Vinckier1,2,3,12, R Gaillard1,4,5,12, S Palminteri6,7, L Rigoux2,3, A Salvador1,5, A Fornito8, R Adapa9,10, MO Krebs1,5, M Pessiglione2,3,13 and
PC Fletcher4,11,13

A state of pathological uncertainty about environmental regularities might represent a key step in the pathway to psychotic illness.
Early psychosis can be investigated in healthy volunteers under ketamine, an NMDA receptor antagonist. Here, we explored the
effects of ketamine on contingency learning using a placebo-controlled, double-blind, crossover design. During functional
magnetic resonance imaging, participants performed an instrumental learning task, in which cue-outcome contingencies were
probabilistic and reversed between blocks. Bayesian model comparison indicated that in such an unstable environment,
reinforcement learning parameters are downregulated depending on confidence level, an adaptive mechanism that was
specifically disrupted by ketamine administration. Drug effects were underpinned by altered neural activity in a fronto-parietal
network, which reflected the confidence-based shift to exploitation of learned contingencies. Our findings suggest that an early
characteristic of psychosis lies in a persistent doubt that undermines the stabilization of behavioral policy resulting in a failure to
exploit regularities in the environment.
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INTRODUCTION
One of the big challenges facing psychiatry is to develop an
understanding of psychotic symptoms that goes beyond clinical
description to uncover underlying computational and neurobiolo-
gical mechanisms. A comprehensive account of the bizarre
perceptions (hallucinations) and beliefs (delusions) that charac-
terizes psychotic illness would require a mechanistic understanding
of how the brain extracts and exploits regularities in the succession
of events that occur in its environment. Reinforcement learning
theory shows promise in this regard, by offering a framework within
which we can consider causative disturbances at both the
computational and neurobiological levels.1–3 Such perspectives
might therefore give us the sort of mechanistic understanding that
can ultimately shape diagnostic and therapeutic questions.
Insights derived from reinforcement learning models have

already proven useful in developing theoretical accounts of how
psychotic experiences may arise and how they may relate to
disrupted brain processes. Previous empirical studies have focused
on how prediction error signaling may be deranged in
psychosis.4–8 Extending this several authors have suggested that
the key deficit may reside not in prediction error per se, but rather
in how prediction errors are used to update representations of the
environment.9,10 Of relevance, probabilistic learning tasks have
been widely studied in schizophrenia (see refs. 11–13 for reviews),

providing evidence for a complex pattern of deficit depending on
the precise nature of the task (for example, complexity, occurrence
and number of contingency reversals, explicit vs implicit learning)
as well as of the profile of recruited patients (for example,
predominantly positive vs negative symptoms, treated vs
untreated patients). Interestingly, it has been proposed that the
core impairment in schizophrenia might not affect learning ability
per se, but rather the flexible control required to perform complex
tasks and/or the capacity to optimize behavior in order to
maintain a high level of performance.11 In line with such
proposals, our hypothesis is that a key feature of early psychosis
is a disruption in how confidence is updated and used to drive
behavior in a dynamic environment.
In situations of low confidence (or elevated uncertainty),

individuals may seek explanations, exploring various possibilities in
an effort to identify regularities. Indeed, it has been demonstrated
that in such situations, healthy subjects tend to perceive illusory
patterns, creating regularities where there are none, and providing
superstitious or conspiratorial explanations for ambiguous sce-
narios.14 These observations resemble the early features of psychosis,
including sense of change and feeling of strangeness,15–17 search for
explanation,18,19 apophenia20 and jumping to conclusions.21,22

Here, we sought to capture this transitory state in the context of
an associative learning task implementing a dynamic environment.
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We predicted that, during learning of environmental contingencies,
lack of confidence could lead to a reduced ability to stabilize an
internal model of the world, with an ensuing, persistent sense of
surprise. This would eventually result in sub-optimal behavior,
characterized by an under-exploitation of true environmental
regularities and an accompanying tendency to over-readily update
in response to incidental violations of those regularities
Testing our predictions in a clinical setting is challenging given

that, by the time psychosis is clearly identified, the expression of
altered confidence may have been obfuscated by delusion forma-
tion and treatment effects. An established and fruitful solution is to
use pharmacological models of early psychosis in healthy volun-
teers such as ketamine, a noncompetitive N-methyl-D-aspartate
(NMDA) receptor antagonist23,24 that induces subtle dissociative
symptoms,25 perceptual learning alterations and, critically, psychosis-
like experiences (see26 for a review). Here, we examined placebo-
controlled, within-subject effects of a single dose of ketamine.
The task was adapted from previous paradigms.27,28 On each trial,

participants made a decision in response to a visual cue. The two
options were always betting £1 versus betting 10p. The two options
thus differed in risk, defined as the variance of possible outcomes.
This does not imply that probability of winning was known, since it
had to be learned by trial and error. This probability was 80% given
one (positive) cue and 20% for the other (negative) cue. The optimal
policy was to select the risky option following the positive cue and
the safer option following the negative cue. To introduce instability
into the environment, contingencies were reversed three times,
such that the positive cue became the negative one and vice-versa.
This task is close to tasks previously used to examine model learning
under volatility (as in Behrens et al.29), except that transitions in
probabilistic contingencies were not smooth but rather abrupt, as
we wanted subjects to experience large variations in confidence,
from the beginning to the end of learning blocks.
The key challenge posed to participants by our task was to

notice unexpected outcomes that signaled a change in con-
tingencies while ignoring those related to the probabilistic nature
of these contingencies. Ignoring probabilistic errors requires
confidence in the estimates of experimental regularities. Thus,
we hypothesized that ketamine would prevent subjects from
ignoring probabilistic errors, leading to sub-optimal behavior at
the end of learning blocks, where subjects under placebo would
fully exploit the learned contingencies. We explored the neural
underpinnings of this ketamine-induced dysfunction, with the
prediction that activity in confidence-related brain areas would
show altered dynamics during the course of learning. Neural
responses were concurrently tracked using functional magnetic
resonance imaging (fMRI), while subjects performed the probabil-
istic contingency learning task. Each participant underwent this
procedure during both ketamine and placebo infusions.

MATERIALS AND METHODS
Subjects
Twenty-one healthy, right-handed volunteers (11 males), aged 25–37 years
(mean 28.7, s.d. 3.2), were recruited from the local community by
advertisement, and screened using an initial telephone interview and
subsequent personal interview. Exclusion criteria were: personal/familial
history of neurological or psychiatric disorders, MRI contra-indications,
illicit substance use in the last 12 months or any lifetime substance misuse
syndrome or alcoholism, history of cardiac illness or high blood pressure,
weight 410% above ideal body mass index. The study was approved by
the Cambridge Local Research Ethics Committee, Cambridge, England, and
was carried out in accordance with the Declaration of Helsinki. Written
informed consent was given by all of the subjects.

Ketamine infusion
Racemic ketamine (2mgml−1) was administered intravenously by initial
bolus and subsequent continuous target-controlled infusion using a

computerized pump (Graseby 3500; Graseby Medical, Watford, UK) to
achieve plasma concentrations of 100 ngml− 1 using the pharmacokinetic
parameters of a three-compartment model.30 One blood sample was drawn
prior to the fMRI scan. Blood sample was placed on ice, plasma obtained by
centrifugation and plasma samples stored at − 70 oC. Plasma ketamine
concentration was measured by gas chromatography-mass spectrometry.

Experimental design
A double-blind, placebo-controlled, randomized, within-subjects design
was used (see Figure 1a). At each visit, after starting the infusion of saline
or low-dose ketamine, subjects underwent a clinical rating of positive
psychotic symptoms as assessed by the Rating Scale for Psychotic
Symptoms.31 Seven key items on the Brief Psychiatric Rating Scale32

representing symptoms of the psychosis prodrome (somatic concerns,

Figure 1. Experimental design. (a) A double-blind, placebo-con-
trolled, randomized, within-subject design was used. The order of
drug and placebo visits was counterbalanced across subjects and
spaced by at least 1 week. (b) A typical trial and possible outcomes
for a positive cue. Probabilistic contingencies (80 and 20%) would be
swapped for a negative cue. (c) Percentage of risky responses as a
function of trial number (both placebo and ketamine sessions were
pooled). The green (respectively, blue) curve represents the choices
following the cue that was positive (respectively, negative) in the
first block. Bold lines represent means; color-delimited areas repre-
sent inter-subject s.e.m (corrected for the variance across subject:
the grand mean of each subject was removed from its data before
computing sem). Vertical dashed lines indicate reversals.
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anxiety-depression, elevated mood, grandiosity, hallucination and unusual
thought content) were also assessed. Dissociative symptoms were
assessed by the Clinician Administered Dissociative States Scale.33 Subjects
then performed the probabilistic learning task in the fMRI scanner.
Subjects also performed two other cognitive tasks while in the fMRI
scanner. These were perceptual tasks not related to the current task and
will not be reported here. Resting state data were also acquired.34

Behavioral task
The task (see Figure 1) required participants, on each trial, to make a choice
between a more and less risky option, indicating their choice by pressing a
key or not. Risk taking was orthogonalized with respect to the motor
dimension, so that pressing the key was assigned to the risky response only
for half of participants and to the less risky response for the other half.
The risky (‘risk’ being defined as the variance of the outcome) choice

would lead to either the gain or the loss of £1, while the less risky option
would lead to either the gain or loss of 10 pence. There were two
contextual cues. One was associated with 80% chance of winning £1 (and a
corresponding 20% chance of losing £1) following the risky choice and with
80% chance of winning 10 pence (and a 20% chance of losing 10 pence)
following the less risky choice. For the other cue the contingencies were the
opposite, that is, the risky choice would lead to an 80% chance of losing £1,
while the less risky choice gave an 80% chance of losing 10 pence.
An unannounced contingency reversal occurred after each block of 60

trials (for a total of three reversals across the 240 trials). Reversal means
that the positive cue (for which the risky choice was optimal) became the
negative one and vice-versa. Therefore participants encountered the same
contingency set only twice during the experiment.
Two abstract cues randomly taken among 24 letters from the

Agathodaimon font were used. After fixation delay and cue display, the
response interval was indicated on the computer screen by a question
mark. The interval was fixed to 3 s and the response was taken at the end:
this response was categorized as ‘risky’or ‘less risky’ and was written on the
screen as soon as the delay had elapsed. Monetary outcome was then
displayed for 2 s. Participants were explicitly told that they would not
receive the virtual money earned during the task. Instead, they were paid a
fix amount that compensated for their time and their expenses associated
with taking part in the study.
Before performing the task in the scanner, participants were familiarized

with the task structure and with the notion that cue-outcome relationships
were not necessarily constant. However, they were not warned that
contingencies could be reversed.

Model-free behavioral analysis
The overall percentage of risky response and button presses were
compared between sessions in order to assess drug effects on choice
and motor impulsivity, respectively. To assess drug effects on learning, the
percentage of optimal responses (risky choice for the positive cue, less
risky choice for the negative cue) were collapsed across the two cues and
averaged within six bins of 10 consecutive trials. These data were then
submitted to repeated-measure analysis of variance with three experi-
mental factors (bin*block*session) and subjects as random factor. Post-hoc
comparisons were performed to characterize the learning deficit observed
under ketamine.

Model-based behavioral analysis
The whole model space consisted of 27 models (see SOM): three variants of
the reinforcement learning level without any confidence monitoring plus 24
variants of the hierarchical model (three reinforcement learning models ×
two ways to compute confidence× four ways to modulate low-level
parameters) (see Figure 3 for a more detailed description of model space).
All models were inverted using a variational Bayes approach under the

Laplace approximation,35–37 http://sites.google.com/site/jeandaunizeaus
website/). This algorithm not only inverts nonlinear models but also
estimates their evidence, which represents a trade-off between accuracy
(goodness of fit) and complexity (degrees of freedom). The log-evidences
estimated for each participant and model were submitted to a group-level
random-effect analysis separately for placebo and ketamine sessions. To
complete model selection, we also performed family analyses.37

fMRI data analysis
fMRI data were preprocessed and statistically analyzed using SPM5 toolbox
(Wellcome Department of Cognitive Neurology, London, UK) running on
Matlab (Mathworks). T1-weighted structural images were coregistered with
the mean functional image, segmented, and normalized to a standard T1
template and averaged across all subjects to allow group-level anatomical
localization. The first five volumes of each session were discarded to allow
for T1 equilibration effects. Preprocessing consisted of spatial realignment,
normalization using the same transformation as structural images, and
spatial smoothing using a Gaussian kernel with a full-width at half-
maximum of 8mm.
We devised two general linear models (GLM) to account for individual

time series. The first GLM included separate categorical regressors for cue
and outcome onsets, respectively, modulated by the computational
variables, βm and αm. As parametric modulators were applied to different
categorical regressors, they were not orthogonalized to each other. Note,
however, that their correlation was quite low (R2 = 0.1) In the second GLM,
outcome onsets were modulated by two computational variables,
outcome category (confirmatory vs contradictory) and αm, that were
serially orthogonalized, following on SPM default procedure. This second
GLM was exclusively used for the region of interest (ROI) analysis. These
variables were computed using subject-specific free parameters of the best
fitting computational model (see computational results) and were then z-
scored. All regressors of interest were convolved with a canonical
hemodynamic response function. To correct for motion artifacts, subject-
specific realignment parameters were modeled as covariates of no interest.
Linear contrasts of regression coefficients were computed at the subject
level and then taken to group-level random effect analyses.
Neural correlates of choice temperature and learning rate were

identified in placebo sessions using a whole-brain one-sample t-test
(cluster generating threshold Po0.001 uncorrected, cluster level threshold
Po0.05 family-wise error corrected). The impact of ketamine on these
networks was assessed using a paired t-test between ketamine and
placebo sessions (cluster generating threshold Po0.01 uncorrected,
cluster level threshold Po0.05 family-wise error corrected). In order to
maximize sensitivity and to ensure that drug effects were only assessed
within task-relevant networks, this analysis was masked by the parametric
modulations (by choice temperature or learning rate) obtained when
pooling placebo and ketamine sessions.
For ROI analyses, we extracted the regression estimates (betas) from

spheres of 8mm in diameter (corresponding to the full-width at half-
maximum of the Gaussian kernel used for spatial smoothing), centered on
group-level activation peaks. The ventromedial prefrontal cortex (vmPFC)
ROI, that was used to perform a comparison between placebo and
ketamine session, was defined from the second-level analysis pooling both
placebo and ketamine sessions in order to avoid biasing this comparison in
favor of placebo sessions.
Additional GLMs were computed for illustrative purpose only. In these

GLMs, trials were sorted in six bins of confidence (as defined in the best
computational model) or trial number in a block (as in the model-free analysis:
the first ten trials of each block, the following ten and so on). These GLMs
were used to plot the hemodynamic response at cue and outcome onsets.

RESULTS
Clinical assessments
The mean blood plasma concentration of ketamine during
infusion was 96.01 ± 19.11 ngml− 1. Paired t-tests indicated that
ketamine caused a significant increase in positive psychotic
symptoms as measured by the Rating Scale for Psychotic
Symptoms (t(20) = 5.43, Po0.001) and the Brief Psychiatric Rating
Scale (t(20) = 2.8, P= 0.011), as well as in dissociative symptoms as
measured by the Clinician Administered Dissociative States Scale
(t(20) = 3.72, P= 0.0013).

Behavioral results
Choice and motor impulsivity did not differ between drug
conditions (risky choice: 48.2% vs 47.8%, t(20) = 0.29, P=0.8; button
press: 53.0% vs 51.7%, t(20) = 1.05, P=0.3). There was a main effect
of learning, with optimal choices increasing across bins (F
(5,100)= 66.77, Po0.001), a main effect of block (F(3,60) = 4.57,
Po0.01) with more optimal choices during the first (pre-reversal)
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block (80%) compared with others (74%). There was no other main
effect and no interaction between factors (all P40.1). Post-hoc
analysis showed a significant effect of drug status in the last trial
bin (see Figure 2a), with higher performance under placebo
(F(1,20) = 5.641, P=0.028) without main effect nor interaction with
block (both P40.1). Indeed, during ketamine infusion, participants
apportioned their responses in a way that matched or slightly
exceeded the 80% probability of positive reinforcement (81.1%, t
(20) = 0.37, P=0.7 in comparison with 80%). In contrast, they
optimized their behavior under placebo (87.2%, t(20) = 2.52, P=0.02
compared to 80%). In summary, this preliminary behavioral analysis
suggests that ketamine reduced the ability to go beyond
probability matching, that is, to stabilize behavior in the face of
probabilistic (misleading) unexpected outcomes. This hypothesis
was formally assessed by using computational modeling.

Computational modeling results
To explore a comprehensive set of possible strategies, we fitted
qualitatively different models to the observed choices (see SOM
for details). All models estimate the trial-wise values attached to
the two cues, and use these values to predict choices, through a
softmax function.

A first series of models were designed to account for low-level
reinforcement learning. Following a standard ‘delta’ rule,38 these
models update after each trial the current cue value in proportion
to prediction error, defined as the outcome value minus the
expected value.
In a basic version, the outcome was simply the monetary

amount (+£1, +0.1£, − 0.1£ or -1£). In a second version, we
integrated some understanding of the task structure by including
the possibility that cue values were coded at a more abstract level,
as if subjects figured out that all the information needed was the
outcome valence (+ or − ). In a third version the two cue values
were updated after every outcome, to model the possibility that
subjects realized that they always had an opposite valence, that is,
information about the status of one cue also gave information
about the status of the other.
Reinforcement learning models have constant parameters

(learning rate α and choice stochasticity β). This limits the capacity
to optimize the behavioral policy around the end of learning
blocks, once subjects believe themselves to have a reasonably
good estimation of contingencies. At this point, prediction errors
should be tempered, and choices tuned to a more deterministic
exploitation of learned contingencies.29,39,40 Conversely, when
contingencies suddenly change after reversals, prediction errors
should be given more weight, and choices should be more
exploratory. This can be implemented in an optimal way using a
hierarchical Bayesian architecture.29,40 Some evidence has been
found that human behavior can be accounted for by hierarchical
Bayesian models.41,42 However, Bayesian updates of probability
distributions may become computationally cumbersome, and
human subjects sometimes follow simpler heuristics, particularly
when they are uncertain about the task structure.43,44 Another
way to optimize behavior is to subordinate the reinforcement
learning parameters to a higher level of control that monitors
performance. This idea has been proposed and formalized in the
so-called meta-learning theoretical framework,45 which addresses
the question of how machines can learn how to learn. This
principle has been implemented for instance to adjust the
exploration rate during the course of learning, and provides a
good fit of nearly optimal primate behavior.46,47

A second series of models followed this latter principle: they
included a meta-cognitive level consisting in updating confidence
(the belief that current representations are correct) so as to
downregulate contingency learning and choice stochasticity.
These hierarchical models allowed us to determine more precisely
which level of learning was altered by ketamine infusion.
Confidence was monitored using a delta rule in all the following
models, which differed in the way outcomes were used to assess
performance. A first variant used the absolute value of the
prediction error generated in the lower reinforcement learning
level, implementing the intuition that subjects should be more
confident when prediction errors are reduced.48,49 A second
variant (following Khamassi et al.47) coded the outcome in terms
of optimality: 0 for non-optimal outcomes (losing £1 or winning
only 10p) and 1 for optimal outcomes (winning £1 or losing only
10p). In both variants, confidence could be used to modulate
learning rate (αm), choice temperature (βm) or both, with different
or identical weight. Optimizing choice temperature means
favoring exploitation when confidence increases. Optimizing
learning rate means increasing sensitivity to confirmatory out-
comes and decreasing sensitivity to contradictory outcomes when
confidence increases. Confirmatory means that the valence of the
outcome is the same as the valence estimated by the model. Thus,
when confidence was close to 0, the learning rate was similar for
confirmatory and contradictory outcomes, but as confidence
increased, it got closer to 1 for confirmatory outcomes and to 0 for
contradictory outcomes.
Bayesian model selection was performed separately for placebo

and ketamine sessions (see Figure 3 and Figure 4). The best model

Figure 2. Characterization of the behavioral deficit induced by
ketamine (a) Learning curves. Curves show percentage of correct
response average across blocks, cues and bins of 10 consecutive
trials, for the placebo (blue) and ketamine (red) sessions, separately.
There was a significant effect of drug status in the last trial bin,
with higher performance with placebo. Bold lines represent means;
color-delimited areas represent inter-subject s.e.m (corrected for
the variance across subject: the grand mean of each subject was
removed from its data before computing s.e.m.). (b) Parameter
estimates for the best computational model. The only parameter
that significantly differed between sessions (placebo in blue versus
ketamine in red) was κ, the weight that confidence had on learning
rate and choice temperature. α0: learning rate value when
confidence= 0; β0: choice temperature value when confidence= 0;
C0: initial confidence value; γ: confidence learning rate. Bars
represent means; error bars represent inter-subject s.e.m (corrected
for the variance across subject: the grand mean of each subject was
removed from its data before computing s.e.m.); *Po0.05, two-
tailed paired t-test.
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was the same in both sessions but the evidence was higher for
placebo (xp= 0.96; Supplementary Table S1) than for ketamine
(xp= 0.45; Supplementary Table S2). At the low level, this best
model implemented an informed reinforcement learning rule,
using the outcome valence (+ or − ) to update the two cue values.

At the high level, confidence was updated using the outcome
optimality, and impacted both learning rate and choice tempera-
ture, with identical weights. Family model comparison37 confirmed
that the best model was the same in both sessions though in
ketamine sessions there was less clear evidence for the necessity of
a meta-cognitive level that monitors confidence and allows
confidence to modulate low-level parameters (see SOM for details).
We next compared the free parameters of this best model

between placebo and ketamine sessions, with paired-tests
(Figure 2b, Supplementary Table S3). The parameter that signifi-
cantly differed between sessions was the weight that confidence
had on learning rate and choice temperature (t(20) = 2.3, P=0.027).
Thus, ketamine reduced the impact of confidence on low-level
parameters. This attenuation could therefore explain the deleterious
effect of the drug on ability to optimize behavior when confidence
increases, towards the end of learning blocks.

Neuroimaging results
The computational analysis demonstrated that the behavioral
effects of ketamine were underpinned by a shift in the dynamics
of choice temperature and learning rate (βm and αm), which were
insufficiently tuned by the confidence increases within learning
blocks. To identify the underlying neural effects, we therefore
focused on the neural representation of βm and αm, which, in
principle, should be used to make choices at cue onsets and to
update values at outcome onsets respectively. For each time point
(cue and outcome onsets), we first analyzed the placebo session
to identify the neural representation of βm or αm in the normal
brain. We then directly compared placebo and ketamine sessions.

At choice onset. Under placebo, βm was correlated with activity
in a large fronto-parietal network, including dorsomedial pre-
frontal cortex (dmPFC), frontopolar cortex and bilateral lateral

Figure 3. Model evidence (variational Bayesian approximation to marginal likelihood). The structure of the model space can be divided as
follows. (i) Which RL variant? In variant 1, the reinforcer was the monetary amount; in variant 2, the reinforcer was the sign of the outcome; in
variant 3, the reinforcer was the sign of the outcome and the two cue values were updated after every outcome. (ii) How to compute
confidence? In a first variant, it was based on the absolute value of the prediction error. In a second variant, it was based on the optimality of
the outcome, that is, 0 for non-optimal outcomes (losing £1 or winning only 10p) or 1 for optimal outcomes (winning £1 or losing only 10p).
(iii) How to use confidence? Confidence was used to modulate the learning, choice temperature or both (with same or different weight). The
arrow indicates the best model. Note that even the difference between the two rightmost bars is410, which is considered to be a very strong
difference in model evidence.

Figure 4. Description of the best model. The best model was
selected using a group-level random-effect analysis. It included
the third variant of RL (as if subjects figured out that only the
outcome valence, and not the monetary amount, was informative
about cue value, and that the two cues always had opposite valence
such that they could both be updated after every outcome).
Confidence was based on outcome optimality and used to modulate
both the learning rate and choice temperature, with a same
weight. Q is cue value; C is confidence; Op is outcome optimality
(1 for winning £1 or losing 10p, -1 otherwise); Val is outcome valence
(1 if positive, − 1 otherwise); P risky/A is the probability of choosing
the risky option when cue A is on screen. γ is confidence learning
rate; α0 is learning rate value when confidence= 0; β0 is choice
temperature value when confidence= 0; κ is the weight of
confidence on learning rate and choice temperature.

Confidence and psychosis
F Vinckier et al

950

Molecular Psychiatry (2016), 946 – 955 © 2016 Macmillan Publishers Limited



Figure 5. Model-based analysis of ketamine-induced changes in brain activity (a) Brain regions reflecting confidence-modulated choice
temperature (βm). (b) Brain regions reflecting confidence-modulated learning rate (αm). Colored clusters show significant correlation in the
placebo session (positive in dark blue, negative in light blue) and significant difference between placebo and ketamine sessions (in orange).
All clusters survived a statistical threshold of Po0.05 after family wise error correction for multiple comparisons. Coordinates of anatomical
slices are given in Montreal Neurological Institute space. (c) Hemodynamic response to cue onset in the dmPFC as a function of confidence
bins or as a function of time (trial number, pooled across blocks) (for illustrative purpose). (d) Hemodynamic response to outcome onset in
the ventromedial prefrontal cortex as a function of confidence bins or as a function of time (trial number, pooled across blocks) (for illustrative
purpose), shown separately for confirmatory and contradictory outcomes. Placebo data are in blue, ketamine data are in red, pooled data are
in violet. Bold lines represent means; color-delimited areas represent inter-subject s.e.m (corrected for the variance across subject: the grand
mean of each subject was removed from its data before computing s.e.m.).
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prefrontal cortex. Other correlations were observed in the anterior
insula, in addition to subcortical regions encompassing bilateral
caudate nucleus, thalamus and cerebellum (Figure 5, Table 1). Put
simply, elevated temperature was associated with enhanced
activity in these regions. Conversely, βm was negatively correlated
with activity in a bilateral network including cuneus, precuneus,
posterior cingulate and medial temporal lobe.
In the ketamine session, the positive correlation with βm was

significantly reduced compared to placebo in a bilateral fronto-
parietal network, including the dmPFC, bilateral frontopolar
cortex, bilateral lateral prefrontal cortex and left parietal cortex,
as well as the anterior insula (Figure 5, Table 1). Thus, trial-to-trial
variations in temperature expressed in the fronto-parietal network

were diminished under ketamine. There was no significant
difference between sessions for the negative correlation with βm.

At outcome onset. Under placebo, we observed a positive
correlation with αm in the vmPFC and bilateral posterior insula
extending to the superior temporal cortex (Figure 5, Table 2). These
regions therefore increased their responses to confirmatory out-
comes, and decreased their responses to contradictory outcomes,
as confidence accumulated within learning blocks. Conversely,
there was a negative correlation in the right anterior insula.
There was no significant difference in the correlation with αm

between placebo and ketamine sessions at the whole-brain level,
nor in a ROI analysis focusing on the vmPFC (P40.1). Correlation
with αm corresponds to an interaction between confidence and
outcome category (confirmatory or contradictory). We verified
that the correlation was not reducible to the main effect of
outcome category: when this was regressed out, the correlation
with αm was still significant in our vmPFC ROI under placebo (t
(20) = 2.79; P= 0.01) but not under ketamine (t(20) = 1.41; P= 0.18),
though the direct comparison was not significant (P40.1). In
short, under placebo but not ketamine, the difference between
confirmatory and contradictory outcomes was amplified following
the trial-wise increase in confidence within learning blocks.

DISCUSSION
Our working hypothesis was that early psychosis is characterized
by a state in which the ability to acquire a robust and confident
model of the world is lost. We tested this hypothesis at both the
computational and neural levels, by combining a pharmacological
model of early psychosis through NMDA blockade with model-
based analysis of behavioral choices and fMRI data. The effects of
NMDA blockade manifested in two ways:1 a decreased ability to
optimize contingency learning in conditions of high confidence,2 a
concurrent alteration in the regulation of brain systems reflecting
choice stochasticity, notably in a bilateral fronto-parietal network
including the dmPFC. Through use of a low dose of ketamine
(rather than a higher one which would cause global cognitive
difficulties), we have been able to identify a subtle and
interpretable effect. Our findings have implications both for our
understanding of contingency learning mechanisms and for
theoretical perspectives on the emergence of psychosis. Because
our experiment was carried out in a limited number of
participants, as is common to pharmaco-MRI studies for obvious
ethical reasons, we consider the implications below as primarily
theoretical suggestions that will guide further investigations.

Contingency learning mechanisms in an unstable environment
Our benchmark computational model was a standard Q-learning
algorithm, which has been shown to provide a good account of
instrumental learning in a variety of situations.50 However, the task
was expressly designed such that Q-learning would not be
optimal. This is because Q-learning gives a constant weight to

Table 1. Brain regions reflecting confidence-modulated choice
temperature (βm)

Structure MNI coordinates (x, y, z) Z-score

Positive Dorsomedial
prefrontal cortex

− 4, 24, 48 4.83

48, 20, 52 4.78
Dorsolateral
prefrontal cortex

48, 28, 42 5

36, 52, 24 4.31
− 28, 56, 26 4.18
− 46, 14, 44 4.26
− 38, 30, 42 4.24
36, 54, − 4 3.91

Frontopolar cortex 14, 60, − 10 4.66
− 42, 48, − 4 4.05
− 22, 58, − 6 4.49
50, − 52, 46 4.01

(Inferior) parietal
cortex

− 42, − 52, 42 4.73

34, 22, − 12 4.09
Anterior insula 38, 22, 6 3.99

− 36, 18, − 6 3.96
40, − 66, − 50 3.74

Cerebellum − 28, − 74, − 36 4.72
16, 2, 14 4.6

Caudate nucleus 10, − 12, 0 4.17
Thalamus − 8, − 14, 0 4.35

Negative Precuneus − 12, − 48, 12 4.31
Posterior cingulate 22, − 52, 20 4.25

− 12, − 58, 22 3.93
Cuneus 22, − 88, 26 3.41
Medial temporal
lobe

36, − 38, − 2 4.55

− 40, − 36, − 6 3.53
Post-central gyrus 24, − 48, 66 3.49

Placebo vs
ketamine

Insula 48, 12, 8 3.77

36, 20, 8 2.82
Cerebellum 38, − 66, − 46 3.87

− 10, − 82, − 24 3.15
Middle frontal gyrus 30, 18, 38 3.6

− 42, 16, 42 3.27
Dorsomedial
prefrontal cortex

6, 26, 60 3.07

12, 26, 52 3.03
− 4, 26, 58 2.96

Dorsolateral
prefrontal cortex

40, 56, 20 2.81

46, 30, 38 2.62
− 42, 16, 42 3.27
− 36, 12, 52 2.79

(Inferior) parietal
cortex

− 54, − 44, 42 3.26

frontopolar cortex − 36, 54, 12 3.1
42, 58, − 4 2.67

Table 2. Brain regions reflecting confidence-modulated learning rate
(αm)

Structure MNI coordinates
(x, y, z)

Z-score

Positive Posterior insula 58, − 8, − 2 4.52
40, − 18, − 2 3.69
− 36, − 18, − 2 3.68

Ventromedial prefrontal
cortex

6, 36, − 10 4.09

Negative Anterior insula 38, 26, − 6 3.7
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outcomes in value updating, and a constant weight to value
estimates in decision making. Yet it is adaptive to adjust these
weights in unstable environments, where contingencies are
stochastic and susceptible to sudden reversals, depending on
the confidence in value estimates. Behavioral data suggested that
participants did modulate choice and learning parameters as a
function of confidence. To analyze this we developed a
hierarchical model with a meta-cognitive level that monitors
confidence and modulates first-level Q-learning parameters, an
approach that has been formalized in the meta-learning
framework.45,46,51 At the meta-cognitive level, Bayesian model
selection indicated that an independent delta rule on outcome
optimality (similar to that used in Khamassi et al.47) provided a
better fit than a direct accumulation of unsigned prediction errors
(as implemented in 48). Our construct of confidence can therefore
be considered as surface monitoring, since it remains blind to
the computations driving choices. In the model that best captured
the behavioral data, both choice temperature and learning rate
were dynamically adjusted as a function of confidence. Moreover,
confidence had a differential impact on confirmatory outcomes
(whose weight was amplified) and contradictory outcomes (whose
weight was reduced). Together, these confidence-based adjust-
ments enabled stabilizing internal representations of environ-
mental contingencies (cue value estimates) and optimizing
behavioral policy (exploitation of cue values).
Our concept of confidence can be linked to several recent

theoretical propositions, in which higher level representations
control lower-level processes. For example, it has been suggested
that uncertainty, which quantifies ignorance about true values,
drives the trade-off between exploitation and exploration.52 In the
predictive coding framework, the precision of (or confidence in)
beliefs determines the weight that prediction errors have in belief
updating. Indeed, aberrant encoding of precision has been recently
proposed to account for various aspects of psychosis.10 Some
implementations of hierarchical Bayesian modeling can also be
seen as very close to our approach, particularly when both the
learning and decision rules are modulated by precision estimates.42

Note however that a new and important feature of our model is the
differential impact of confidence on learning depending on the
nature of the outcome (confirmatory or not), which allows neglect
of contradictory information. We acknowledge that the concept of
confidence is used for convenience, and corresponds in fact to a
running estimate of performance. Whether this measure matches
what participants would report as a feeling of confidence remains
to be demonstrated.
Neuroimaging data provided additional support for our

hierarchical model. At the time of cues, trial-wise variation in
choice temperature was reflected in activation of a fronto-parietal
network that has been previously implicated in cognitive
control.53–57 This does not imply that all these regions have the
function of representing choice temperature. Their activity might
represent an indirect correlate of variations in this computational
variable. In particular, regions such as the dmPFC has been
involved in monitoring errors,58,59 detecting conflicts60,61 and
making decisions under uncertainty.59,62,63 This region might
signal the necessity of additional control, or even implement this
necessary control, in periods of doubt regarding which choice is
the best.64,65 At the time of outcomes, trial-wise variation in
learning rate was positively reflected in regions such as the
vmPFC, which has been implicated in encoding the subjective
value of stimuli.66,67 Here, this region increased its response to
confirmatory outcomes, and decreased its response to contra-
dictory outcomes, from the beginning to the end of learning
blocks. This finding extends a previous report that the vmPFC
integrates option value and choice confidence68 by showing that
this integration also applies to outcomes. Interestingly, the reverse
pattern of activity was observed in the anterior insula, a region
involved in signaling aversive values.69,70 Thus, these two regions

appeared to mediate the influence of meta-cognitive control on
proximal reactions to gains and losses, such that they align to the
distal goal of optimizing performance.

Emergence of psychosis through NMDA blockade
Model-based analysis of the behavior suggested that NMDA
blockade was associated with a reduced capacity to stabilize an
internal model in order to capitalize on environmental regularities.
This was evidenced by a reduced weight of confidence on choice
temperature and learning rate. The performance deficit induced
by ketamine infusion was therefore observed at the end of
learning blocks, when confidence should be high enough to
stabilize cue value estimation and exploitation policy. Our findings
thus show that ketamine was associated with diminished ability to
stabilize cue value estimates in the presence of probabilistic errors,
as if a persistent doubt undermined optimization of behavior and
made them more vulnerable to the effects of ‘noise’ trials.
In a very simple environment as in our task (two cues with

opposite values), such an impairment has limited impact and
could hardly induce strange beliefs. In a more complex environ-
ment, where multiple internal explanatory models can be held at
the same time, we would expect this impairment to forge strange
beliefs, by combination of existing models or through the
emergence of unexpected explanations. Our results therefore
extend previous accounts of early psychosis, in which altered
prediction errors lead to a sense of strangeness and to
abnormalities in belief updating.9,15,26 Our findings suggest that
it is important to take into account not just how prediction errors
are used in low-level associative learning, but in how outcome
optimality is integrated to modulate low-level parameters, via
confidence monitoring.
We note that changes in key behavioral parameters did not

correlate with the subtle psychopathology induced by this low dose
of ketamine. This is perhaps unsurprising given the lack of statistical
power—our experiment was devised with a view to identifying
differences between ketamine and placebo rather than across-
subject correlations. We see two other reasons that could account
for this limitation. First, the neuro-cognitive perturbations that we
demonstrated here might have different kinetics from those of
psychotic symptoms (the former preceding the latter). Therefore,
these two dimensions might remain uncorrelated at a given time.
Second, if we assume that psychotic-like symptoms yield from more
elementary cognitive dysfunctions, this link could be modulated
(and hence blurred) by several factors, such as the existence of
baseline (pre-ketamine) bizarre ideas, or the ability to introspect and
conscious access to these dysfunctions and therefore to report
psychotic-like symptoms.
In line with the behavioral analysis, the fMRI data showed that

the confidence-based modulation of Q-learning parameters was
significantly altered during ketamine infusion. Specifically, brain
activity reflecting choice temperature was significantly less
modulated by confidence under ketamine than placebo. This
difference was observed in a bilateral fronto-parietal network,
including the dmPFC. A detrimental effect of ketamine on dmPFC
activation is in line with repeated observations of dorsal cingulate
cortex impairment in patients with schizophrenia.71 Critically, here
we offer a computational account of this effect, suggesting that
that dmPFC impairment might play a key role in early symptoms
of psychosis by compromising belief updating and policy
adjustment in unstable environments. This dmPFC dysfunction
could either alter confidence level or perturb the impact of
confidence on behavioral policy.
The effect of ketamine on fronto-parietal regions might also relate

to the well-established changes in consciousness produced by
higher doses of ketamine,72 since the global workspace theory.73,74

implicates these regions in conscious access by Interestingly,
modulation of choice temperature by confidence was initially
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proposed to regulate the activity of workspace neurons whose role is
to determine the degree of effort invested in decision making46,47 in
keeping with the concept of vigilance.73 One may speculate that the
meta-cognitive component of our model, notably confidence
monitoring and down-regulation of choice temperature, requires
conscious processing. Thus, dysfunction of this part could be linked
to both alteration of consciousness with higher doses of ketamine
and to dysfunction of conscious processing in schizophrenic
patients,75,76 who would perform contingency learning in a more
implicit way. Evidence for such a speculation would require further
experiments manipulating consciousness levels.
The earliest stages of psychotic illness present an intriguing and

puzzling set of cognitive changes. Computational psychiatry1,3

offers new and rich frameworks for considering these changes and
linking them to underlying neural alterations. Here we have
shown that pharmacological fMRI, employing a well-established
drug model of psychosis, presents a powerful tool in developing
such frameworks, offering an opportunity to determine how
controlled perturbations in glutamate function relate to altered
balance in the dynamic control of optimal learning and behavior.
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