
BioMed CentralPopulation Health Metrics

ss
Open AcceReview
Comparative quantification of health risks: Conceptual framework 
and methodological issues
Christopher JL Murray1, Majid Ezzati*2, Alan D Lopez3, Anthony Rodgers4 
and Stephen Vander Hoorn4

Address: 1Evidence and Information for Health Policy, World Health Organization, CH-1211 Geneva 27, Switzerland, 2Risk, Resources and 
Environmental Management Division, Resources for the Future, 1616 P Street NW, Washington DC 20036, USA, 3School of Population Health, 
University of Queensland, Herston Road, Herston Qld 4006, Australia and 4Clinical Trials Research Unit (CTRU), University of Auckland, PB 
92019, Auckland, New Zealand

Email: Christopher JL Murray - murrayc@who.ch; Majid Ezzati* - ezzati@rff.org; Alan D Lopez - a.lopez@sph.uq.edu.au; 
Anthony Rodgers - a.rodgers@ctru.auckland.ac.nz; Stephen Vander Hoorn - s.vanderhoorn@ctru.auckland.ac.nz

* Corresponding author    

Abstract
Reliable and comparable analysis of risks to health is key for preventing disease and injury. Causal
attribution of morbidity and mortality to risk factors has traditionally been conducted in the
context of methodological traditions of individual risk factors, often in a limited number of settings,
restricting comparability.

In this paper, we discuss the conceptual and methodological issues for quantifying the population
health effects of individual or groups of risk factors in various levels of causality using knowledge
from different scientific disciplines. The issues include: comparing the burden of disease due to the
observed exposure distribution in a population with the burden from a hypothetical distribution or
series of distributions, rather than a single reference level such as non-exposed; considering the
multiple stages in the causal network of interactions among risk factor(s) and disease outcome to
allow making inferences about some combinations of risk factors for which epidemiological studies
have not been conducted, including the joint effects of multiple risk factors; calculating the health
loss due to risk factor(s) as a time-indexed "stream" of disease burden due to a time-indexed
"stream" of exposure, including consideration of discounting; and the sources of uncertainty.

Introduction
Detailed description of the level (e.g. rates) and distribu-
tion of diseases and injuries, and their causes are impor-
tant inputs to strategies for improving population health.
Data on disease or injury outcomes alone, such as death
or hospitalization, tend to focus on the need for palliative
or curative services. Reliable and comparable analysis of
risks to health, on the other hand, is key for preventing
disease and injury. A substantial body of work has focused
on the quantification of causes of mortality and more re-

cently burden of disease [1,2]. Analysis of morbidity and
mortality due to risk factors, however, has frequently been
conducted in the context of methodological traditions of
individual risk factors and in a limited number of settings
[3–10]. As a result, in most such estimates:

1) Causal attribution of morbidity and mortality to risk
factors has been estimated relative to zero or some other
constant level of population exposure. This single, con-
stant baseline, although illustrating the total magnitude
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of the risk, does not provide visions of population health
under other alternative exposure distribution scenarios.

2) Intermediate stages and interactions in the causal proc-
ess have not been considered in the causal attribution cal-
culations. As a result, attributable burden could be
calculated only for those risk factor – disease combina-
tions for which epidemiological studies had been con-
ducted (often limited to individual risks).

3) Causal attribution has often taken place using exposure
and/or outcome at one point in time or over an arbitrary
period of time (for notable exceptions see the works of
Manton and colleagues [11–13] and Robins [14–19]).
Such "counting" of adverse events (such as death) has not
been able to clearly distinguish between those cases that
would not have occurred in the absence of the risk factor
and those whose occurrence would have been delayed.
More generally, this approach is unable to consider the ac-
cumulated effects of time-varying exposure to a risk factor
– in the form of years of life lost prematurely or lived with
disability.

4) The outcome has been morbidity or mortality due to
specific disease(s) without conversion to a comparable
unit, making comparison among different diseases and/or
risk factors difficult.

To allow assessing risk factors in a unified framework
while acknowledging risk-factor specific characteristics,
the Comparative Risk Assessment (CRA) module of the
global burden of disease (GBD) 2000 study is a systematic
evaluation of the changes in population health which
would result from modifying the population distribution
of exposure to a risk factor or a group of risk factors [20].
This unified framework for describing population expo-
sure to risk factors and their consequences for population
health is an important step in linking the growing interest
in the causal determinants of health across a variety of
public health disciplines from natural, physical, and med-
ical sciences to the social sciences and humanities. In par-
ticular, in the CRA framework:

1) The burden of disease due to the observed exposure dis-
tribution in a population is compared with the burden
from a hypothetical distribution or series of distributions,
rather than a single reference level such as non-exposed.

2) Multiple stages in the causal network of interactions
among risk factor(s) and disease outcome are considered
to allow making inferences about combinations of risk
factors for which epidemiological studies have not been
conducted, including the joint effects of changes in multi-
ple risk factors.

3) The health loss due to risk factor(s) is calculated as a
time-indexed "stream" of disease burden due to a time-in-
dexed "stream" of exposure.

4) The burden of disease and injury is converted into a
summary measure of population health which allows
comparing fatal and non-fatal outcomes, also taking into
account severity and duration.

It is important to emphasize that risk assessment, as de-
fined above, is distinct from intervention analysis, whose
purpose is estimating the benefits of a given intervention
or group of interventions in a specific population and
time. Rather, risk assessment aims at mapping alternative
population health scenarios with changes in distribution
of exposure to risk factors over time, irrespective of wheth-
er exposure change is achievable using existing interven-
tions. Therefore, while intervention analysis is a valuable
input into cost-effectiveness studies, risk assessment con-
tributes to assessing research and policy options for reduc-
ing disease burden by changing population exposure to
risk factors. Summary measures of population health
(SMPH) and their use in the burden of disease analysis are
discussed elsewhere [21,22]. The next three sections of
this paper discuss the conceptual basis and methodologi-
cal issues for the remaining three of the above points. We
then discuss the sources and quantification of uncertainty.

Causal Attribution of Summary Measures of 
Population Health to Risk Factors
Mathers et al. [23] described two traditions for causal at-
tribution of health determinants, outcomes, or states: cat-
egorical attribution and counterfactual analysis. In
categorical attribution, an event such as death is attributed
to a single cause (such as a disease or risk factor) or group
of causes according to a defined set of rules (hence 100%
of the event is attributed to the single cause or group of
causes). The International Classification of Disease system
(ICD) attribution of causes of death [24] and attribution
of some injuries to alcohol or occupational conditions are
examples of categorical attribution. In counterfactual
analysis, the contribution of one or a group of diseases, in-
juries, or risk factors to a summary measure of population
health (SMPH) is estimated by comparing the current or
future levels of the SMPH with the levels that would be ex-
pected under some alternative hypothetical scenario in-
cluding the absence of or reduction in the disease(s) or
risk factor(s) of interest. This hypothetical scenario is re-
ferred to as the counterfactual (see Maldonado and Green-
land [25] for a discussion of conceptual and
methodological issues in use of a counterfactuals).

In theory, causal attribution of an SMPH to risk factors
can be done using both categorical and counterfactual ap-
proaches. For example, categorical attribution has been
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used in attribution of diseases and injuries to occupation-
al risk factors in occupational health registries [8] and at-
tribution of motor vehicle accidents to alcohol
consumption. In general however, categorical attribution
of SMPH to risk factors overlooks the fact that many dis-
eases have multiple causes [26]. The epidemiological liter-
ature has commonly used the counterfactual approach for
the attribution of a SMPH to a risk factor, and compared
mortality or disability under current distribution of expo-
sure to the risk factor to those expected under an alterna-
tive exposure scenario.

The dominant counterfactual exposure distribution in
these studies has been zero exposure for the whole popu-
lation (or a fixed non-zero level where zero is not possible
such as the case of blood pressure when defined as pres-
ence or absence of hypertension). The basic statistic ob-
tained in this approach is the population attributable
fraction (PAF) defined as the proportional reduction in
disease or death that would occur if exposure to the risk
factor were reduced to zero, ceteris paribus [27–35]. As dis-
cussed by Greenland and Robins [36], attributable frac-
tions without a time dimension are not able to
characterize those cases whose occurrence would have
been delayed in the absence of exposure. The authors rec-
ommend the use of etiologic fractions with a time dimen-
sion to account for this shortcoming. Time-based
measures are discussed in more detail below.

The attributable mortality, incidence, or burden of disease
due to the risk factor, AB, is then given as AB = PAF × B
where B is the total burden of disease from a specific cause
or group of causes affected by the risk factor with a relative
risk of RR.

The exposed population may itself be divided into multi-
ple categories based on level or length of exposure each
with its own relative risk. With multiple (n) exposure cat-
egories, the PAF is given by the following generalized
form:

Although choosing zero as the reference exposure may be
useful for some purposes, it is a restricting assumption for

others. The contribution of a risk factor to disease or death
can alternatively be estimated by comparing the burden
due to the observed exposure distribution in a population
with that from another distribution (rather than a single
reference level such as non-exposed) as described by the
generalized "potential impact fraction" in Equation 2
[32,37,38].

where RR(x) is the relative risk at exposure level x, P(x) is
the population distribution of exposure, P' (x) is the coun-
terfactual distribution of exposure, and m the maximum
exposure level. The first and second terms in the numera-
tor of Equation (2a) therefore represent the total expo-
sure-weighted risk of mortality or disease in the
population under current and counterfactual exposure
distributions. The corresponding relationship when expo-
sure is described as a discrete variable with n levels is given
by:

In addition to relaxing the assumption of no-exposure
group as the reference, analysis based on a broader range
of distributions has the advantage of allowing multiple
comparisons with multiple counterfactual scenarios.
Equation 2a can be further generalized to consider coun-
terfactual relative risks (i.e. relative risk may depend on
other risks, new technology, medical services, etc.). For ex-
ample the relative risk of injuries as a result of alcohol
consumption may depend on road conditions and traffic
law enforcement. Similarly, people employed in the same
occupation may have different risk of occupational inju-
ries because of different safety measures. Therefore, a
more general form of Equation 2a is given by:
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Counterfactual exposure distributions
Various criteria may determine the choice of the counter-
factual exposure distributions. Greenland [39] has dis-
cussed some of the criteria for the choice of
counterfactuals, arguing that the counterfactuals should
be limited to operationalizable actions (e.g. anti-smoking
campaigns) rather than the effects of removing the out-
comes targeted by those actions (e.g. smoking cessation)
because in practice, the implementation of counterfactu-
als for one risk factor or disease, may affect other risks. The
solution to Greenland's concern, however, is better ana-
lytical techniques for estimating joint risk factor effects,
rather than abandoning non-intervention-based counter-
factuals which, as argued by Mathers et al. [23], is a limit-
ing view. An understanding of the contributions from risk
factors and the benefits of their removal, even in the ab-
sence of known interventions, can provide visions of pop-
ulation health attributable to risk factors, and avoidable
by their removal. This knowledge of risk factor effects can
provide valuable input into public health policies and pri-
orities, as well as research and development (R&D).

Murray and Lopez [20] introduced one taxonomy of
counterfactual exposure distributions which, in addition
to identifying the size of risk, provides a mapping to poli-
cy implementation. These categories include the exposure
distributions corresponding to theoretical minimum risk,
plausible minimum risk, feasible minimum risk, and cost-ef-
fective minimum risk. Theoretical minimum risk is the ex-
posure distribution that would result in the lowest
population risk, irrespective of whether currently attaina-
ble in practice. Plausible minimum refers to a distribution
which is imaginable and feasible is one that has been ob-
served in some population. Finally, cost-effective mini-
mum considers the cost of exposure reduction (through
the set of cost-effective interventions) as an additional cri-
terion for choosing the alternative exposure scenario.

In addition to illustrating the total magnitude of disease
burden due to a risk factor, theoretical minimum risk dis-
tribution (or the current difference between theoretical
and plausible or feasible risk levels) can guide R&D re-
sources towards those risk factors for which the mecha-
nisms of reduction (i.e. interventions) are currently
underdeveloped. For example, if the reduction in the bur-
den of disease due to improved medical injection safety is
high and the methods for risk reduction are well-known
so that plausible/feasible and theoretical minima are
identical, then current policy may have to be focused on
the implementation of such methods. On the other hand,
if there are large differences between plausible/feasible
and theoretical minima risk levels for blood lipids or body
mass index (BMI) [40], then research on reduction meth-
ods and their implementation should be encouraged. For
this reason the total magnitude of the burden of disease

due to a risk factor, as illustrated by the theoretical mini-
mum, provides a tool for considering alternative visions
of population health and setting research and implemen-
tation priorities.

Biological principles as well as considerations of equity
would necessitate that, although the exposure distribu-
tion for theoretical minimum risk may depend on age and
sex, it should in general be independent of geographical
region or population. Exceptions to this are however una-
voidable. An example would be the case of alcohol con-
sumption, which in limited quantities and certain
patterns, has beneficial effects on cardiovascular mortali-
ty, but is always harmful for other diseases such as cancers
and accidents [41]. In this case, the composition of the
causes of death as well as drinking patterns in a region
would determine the theoretical minimum distribution.
In a population where cardiovascular diseases are a dom-
inant cause of mortality theoretical minimum may be
non-zero with moderate drinking patterns, whereas in a
population with binge drinking and large burden from in-
juries the theoretical minimum would be zero. Feasible
and cost-effective distributions, on the other hand, may
vary across populations based on the current distribution
of the burden of disease and the resources and institutions
available for exposure reduction.

The above categories of counterfactual exposure distribu-
tions are based on the burden of disease in the population
as a whole. Counterfactual exposure distributions may
also be considered based on other criteria. For example, a
counterfactual distributions based on equity would be
one in which the highest exposure group (or the group
with highest burden of disease) would be shifted towards
low exposure values. Further, such equitable counterfactu-
al distributions for each risk factor may themselves be cat-
egorized into theoretical (most equitable), plausible,
feasible, and cost-effective as described above. Similarly, a
counterfactual distribution which focuses on the most
sensitive groups in the population is one that gives addi-
tional weight to lowering the exposure of this group.
Therefore, by permitting comparison of disease burden
under multiple exposure distributions, based on a range
of criteria – including, but not limited to, implementation
and cost, equity, and research prioritization – relaxing the
assumption of constant exposure base-line provides an ef-
fective policy and planning tool.

Exposure distribution for theoretical minimum risk
In one taxonomy, risk factors such as those in the GBD
project [42] can be broadly classified into categories of
physiological, behavioral, environmental, and socio-eco-
nomic. Some general principles that guide the choice of
theoretical minimum distribution for each category are:
Page 4 of 20
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1) Physiological risk factors: This group includes those fac-
tors that are physiological attributes of humans, such as
blood pressure or blood lipids, and at some levels result
in increased risk. Since these factors are necessary to sus-
tain life, their "exposure-response" relationship is J-
shaped or U-shaped, and the theoretical minimum is non-
zero. For such risk factors, the choice of the theoretical
minimum needs to be based on empirical evidence from
different scientific disciplines. For example, epidemiolog-
ical research on blood pressure and cholesterol have illus-
trated a monotonically increasing dose-response
relationship for mortality even at low levels of these risk
factors [43–46]. But, given the role of these factors in sus-
taining life, this relationship must flatten and reverse at
some level. In the blood pressure and cholesterol assess-
ment, a theoretical minimum distribution with a mean of
115 mmHg for systolic blood pressure and 3.8 mmol/l for
total cholesterol (each with a small standard deviation)
were used [42]. This distribution corresponds to the low-
est levels at which the dose-response relationship has
been characterized in meta-analyses of cohort studies
[43–46]. Further, these levels of blood pressure and cho-
lesterol are consistent with levels seen in populations
which have low cardiovascular disease, such as the
Yanomamo Indians [47] and rural populations in China
[48,49], Papua New Guinea [47,50], and Africa [51]. Al-
though, meta-analyses of randomized clinical trials have
indicated that blood pressure and cholesterol levels may
be lowered substantially with no adverse effects [52,53], it
is difficult to justify a theoretical minimum lower than
those measured in population-based studies, since lower
levels in individuals may be caused by factors such as pre-
existing diseases. Inferences from evolutionary biology
would also support the lower bound on the choice of op-
timal distribution based on historical survival of popula-
tions who are not substantially exposed to factors that
raise blood pressure or cholesterol.

2) Behavioral risk factors: the exposure-response relation-
ship for this group of risk factors may be monotonically
increasing or J-shaped. For risk factors with a monotonic
exposure-response relationship, such as smoking, the the-
oretical minimum would be zero unless there are physical
constraints that make zero risk unattainable. For example
in the case of blood transfusion, there may be a lower
bound on safety of blood supply process even using the
best monitoring technology. With a J-shaped or U-shaped
exposure-response relationship, the theoretical minimum
would be the turning point of the exposure-response
curve. An example of this is alcohol consumption in adult
populations with high cardiovascular disease rates, since
moderate consumption may result in reduction in coro-
nary heart disease in some age groups [54]. With a J-
shaped exposure-response curve, similar to physiological

risk factors, empirical evidence would have to be used to
determine the theoretical minimum.

Finally, some behavioral risks are expressed as the absence
of protective factors such as physical inactivity or low fruit
and vegetable intake. In such cases, optimal exposure
would be the level at which the benefits of these factors
would no longer continue. With a monotonic exposure-
response relationship or without detailed knowledge
about a possible turning point, the theoretical minimum
risk level would have to be chosen based on empirical ev-
idence on the highest theoretically sustainable levels of in-
take or exposure (for example a purely vegetarian diet or a
very active life style).

3) Environmental risk factors: The toxicity of most of the en-
vironmental risk factors are monotonically increasing
functions of exposure (potentially with some threshold).
Therefore, the theoretical minimum for this group would
be the lowest physically achievable level of exposure, such
as background particulate matter concentration due to
dust.

4) Socioeconomic "risk factors": Socioeconomic status and
factors – such as income (including levels and distribu-
tion) and associated levels of poverty and inequality, edu-
cation, the existence of social support networks, etc. – are
important determinants of health, often through their ef-
fects on other risk factors. The effects of each of these fac-
tors on health are, however, highly dependent on other
socioeconomic variables as well as the policy context, in-
cluding accessibility and effectiveness of health and wel-
fare systems. For this reason, the theoretical minimum
exposure distribution, even if meaningfully defined, is
likely to change over time and space depending on a large
number of other factors. With this heterogeneity of effects,
the effects of socioeconomic variables are best assessed
relative to counterfactual distributions defined based on
policy and intervention options in specific times and set-
tings, as discussed by Greenland [39].

Risk Quantification Models
Prediction implicitly assumes the use of a conceptual
model which infers the value of the variable of interest in
a point in time or space based on knowledge from another
setting, a different time or another location. Predictive
models can be divided along a continuum between aggre-
gate and structural categories. A completely aggregate mod-
el uses the previous trend of the variable of interest as the
basis for predicting its future value. A structural model, on
the other hand, identifies the components – and the rela-
tionships among them – of the "system" that determines
the variable of interest. It then uses the knowledge of the
system for predicting the value of the variable of interest.
Most predictive models lie between the two extremes and
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use a combination of aggregate and structural modeling.
At the extreme, a structural model would attempt to use
chemical or physical principles as the unit of analysis and
modeling. This would of course be currently impossible in
studying any system that involves population health.

Consider for example predicting the future population of
a city or the future ambient concentration of a pollutant.
An aggregate model would extrapolate the historical levels
to predict future values. Even in this case the model may
include some structural elements. For example, the model
may use a specific functional form – linear, exponential,
quadratic, or logarithmic – for extrapolation which in-
volves an assumption about the underlying system. A
structural model in the case of population prediction
would consider the age structure of the population, fertil-
ity (which itself may be modeled using data on education
and family planning programs), public health variables,
and rural-urban migration (which itself can be modeled
using economic variables). In the case of air pollution, a
structural model may consider demographic variables
(themselves modeled as above), the structure of the econ-
omy (manufacturing, agriculture, or service), the current
manufacturing and transportation technology and effects
of R&D on new technology, the demand for private vehi-
cles, the price of energy, and the atmospheric chemistry of
pollution. Once again, in both examples the models may
include some aggregation of variables by using the histor-
ical trends to predict the future values of individual varia-
bles in the system, such as funding for family planning or
technology R&D.

The comparative advantage of structural and aggregate
models lies in the balance between theoretical precision
and data requirement. Structural models offer the poten-
tial for more robust predictions, especially when the un-
derlying system is complex and highly sensitive to one or
more of its components. In such cases, a shift in some of
the system variables can introduce large changes in the
outcome which may be missed by extrapolation (such as
the discovery of antibiotics and infectious disease trends
or the change in tuberculosis mortality after the HIV epi-
demic). Aggregate models, on the other hand, require
considerably less knowledge of the system components
and the relationships among them. These models can
therefore provide more reliable estimates when such in-
formation is not available, especially when the system is
not very sensitive to its inputs in time intervals that are in
the order of the prediction time.

Models for estimation of risk factor outcomes
Using the above aggregate – structural taxonomy, it is also
possible to classify models that are used to predict chang-
es in death or disease as a result of changes in exposure to
underlying risk factor(s). Murray and Lopez [20] de-

scribed a "causal-web" which includes the various distal
(such as socioeconomic), proximal (behavioral or envi-
ronmental), and physiological and patho-physiological
causes of disease, in a structural model shown in Figure 1.
While different disciplinary traditions, from social scienc-
es and humanities, to physical, natural, and biomedical
sciences have focused on individual components or stages
of these relationships, in a single multi-layer causal model
with interactions the term "risk factor" can be used for any
of the causal determinants of health [23,55]. For example,
poverty, location of housing, access to clean water and
sanitation, and the existence of a specific parasite in water
can all be considered the causes of diarrheal diseases, pro-
viding a more complete framework for assessment of in-
terventions and policy options. Similarly, education and
occupation, diet, smoking, air pollution, and physical ac-
tivity, and BMI and blood pressure are some of the risk
factors at various levels of causality for cardiovascular
diseases.

Compared to a causal-web, Equations 1 and 2 which use
relative risk estimates from epidemiological methods
such as Cox proportional hazard or other regression mod-
els lie further towards aggregate modeling. In general, in
such methods, relative risks are estimated so that they

Figure 1
A causal-web illustrating various levels of disease causality. 
Feedbacks from outcomes to preceding layers may also exist. 
For example, individuals or societies may modify their risk 
behavior based on health outcomes. The "driving force, pres-
sure, state, exposure, effect" (DPSEE) model of Corvalan et 
al. [56] does consider the multiple layers of causality. These 
layers however focus the risk evolution process which is less 
suitable for multi-risk factor interaction within and between 
layers. More complete discussions of causality and multiple 
causes are provided by Yerushalmy and Palmer [55], Evans 
[57,58], and Rothman and Greenland [26,59].
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incorporate the aggregation of the various underlying re-
lationship (ideally, but not always, controlling for the ap-
propriate confounding variables) without considering
intermediate relationships as separate causal stages (the
exception is those risk factors whose effects occur through
intermediate variables which are themselves a risk factor
considered in the study, such as the relationships between
CHD and physical inactivity or obesity which are mediat-
ed through blood pressure or cholesterol. In such cases,
controlling for the intermediate risk factor would result in
a bias (towards the null) in the estimation of total hazard
when the distal factor is considered alone [60]). On the
other hand, if specified and estimated correctly, consider-
ing the complete causal pathways which include multiple
risk factors will allow making inferences about combina-
tions of risk factors and risk factor levels for which direct
epidemiological studies may not be available.

As discussed earlier, the appropriateness of the two ap-
proaches to estimation of attributable burden depends on
the specific risk factor(s), outcome, and available data.
The relationship between smoking and lung cancer has
been shown to be highly dependent on smoking patterns
and duration which, with appropriate indicators of past
smoking [3], can be readily estimated using the relative

risk approach of Equations 1 and 2. Consider, on the oth-
er hand, the relationship among age, socioeconomic sta-
tus and occupation, behavioral risk factors (such as
smoking, alcohol consumption, diet, physical activity),
physiological variables (such as blood pressure and
cholesterol level), and coronary heart disease (CHD)
shown in the causal diagram of Figure 2.

Given the multiple complex interactions, CHD risk may
be best predicted using a structural (causal-web) ap-
proach, especially when some risk factors vary simultane-
ously, such as smoking, alcohol, and diet, requiring joint
counterfactual distributions. Using a multi-risk model
would also allow considering situations for which direct
epidemiological studies may not have been conducted
such as the effects of physical activity on those people who
have diets different from the study group or those who use
medicine to lower blood pressure.

The health effects of global climate change provide anoth-
er example where a structural approach to risk assessment
may be appropriate. Economic activity (including manu-
facturing, agriculture and forest use, transportation, and
domestic energy use) affect the emissions of greenhouse
gases (GHG). Changes in precipitation, temperature or
rainfall, and other meteorological variables due to atmos-
pheric GHG accumulation alter regional ecology which in
turn results in changes in agricultural productivity, quan-
tity and quality of water, dynamics of disease vectors, and
other determinants of disease. All these effects are in turn
modulated by local economic activities, land-use patterns,
and income [61–63]. A model based on the atmospheric
physics/chemistry of GHG emissions and accumulation,
climate models, plant and vector ecology, and human
activity can provide a basis for the prediction of the health
effects of climate change (there are no past studies on "cli-
mate change" as it is expected to take place in the future.
For this reason, the relationship between climate change
and health would always be based on a model which re-
lates climate change to meteorological variables (e.g. tem-
perature or rainfall). The relationship between these
variables, disease vectors and disease, could then be esti-
mated from past data and vector biology [62,64,65]).

Specifying the causal-web
Assuming for the moment no temporal dimension in the
relationship between the different variables in the causal
system (temporal aspects are discussed below), each layer
of a causal-web may be characterized by the equation:

Xn = ƒ(B(Xn-1, Xn), Xn-1)  (3a)

where Xn is the vector of the variables in the nth layer of the
causal-web (which can be causal or output such as D, P,
PA, or O using the notation of Figure 1); ƒ is the

Figure 2
A possible causal diagram based on established relationships 
for estimating the incidence of coronary heart disease 
(CHD). Other interactions may also be possible.
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functional form connecting the (n - 1)th layer to the nth

layer; B is a matrix of coefficients for ƒ which itself may be
dependent on the variables in the (n - 1)th and nth layers
(Xn-1 and Xn) (in this case when some of the variables af-
fect not only the other variables in the causal system but
also the relationship(s) between variables, they are equiv-
alent to "effect modification" in epidemiological litera-
ture [26]. Graphically, in Figure 1 they would be
represented as links (arrows) not between two variables
but as links from one of the variables (the effect modifier)
to another link in the system), as well as time as we dis-
cuss below.

If the variables in the nth layer of the causal-web are affect-
ed directly by those in the (n-2)th layer in addition to the
(n-1)th layer, or by variables within the nth layer itself (see
Figure 2 for an example), Equation 3a can be expanded to
include these links as well:

Xn = ƒ(B0(Xn), Xn; B1 (Xn-1, Xn), Xn-1; B2(Xn-2, Xn), Xn-2)
 (3b)

This can be extended to interactions across multiple caus-
al layers, and in general any variable in the system can be
affected by any other one as the concept of causal layer be-
comes more flexible.

The attributable fraction of disease or mortality due to a
single risk factor in the causal-web is then obtained by in-
tegrating the outcome (O) over the current (P(x)) and
counterfactual (P' (x)) population distributions of expo-
sure, as was done in Equation 2.

Joint risk factor changes
The attributable fraction relationships described in Equa-
tions 1 and 2 are based on individual risk factors. Disease
and mortality are however often affected by multiple, and
at times correlated, risk factors [26,38]. Estimating the
joint effects of multiple distal and proximal risks is partic-
ularly important because many factors act through other,
intermediate, factors [20,55], or in combination with oth-
er factors. It is therefore important to consider how the
burden of disease may change with simultaneous varia-
tions in multiple risk factors. Considering joint risk factor
changes implicitly indicates that the disease causation
mechanism involves multiple factors, and is therefore
suited to a causal-web framework, with P(x) and P' (x) in
Equation 4 being the joint distributions of the vector of

risk factors, x. Alternatively, when using Equations 1 or 2,
knowledge of the distribution of all relevant risk factors
and the relative risk for each risk factor, estimated at the ap-
propriate level of the remaining risk factors is required (in
other words the RR(x) in Equations (2a) and (2b) are
functions of the other covariates, which we referred to as
effect modification earlier. Epidemiological studies that
stratify relative risks based on covariates other than age
and sex are however very rare). Therefore, in Equation 2a,
RR and P may represent joint risks and exposure distribu-
tions for multiple risk factors [32]. In this case, the esti-
mates from Equations 2a and 4 may in theory be
identical.

Additivity of attributable fraction
Many users of risk assessment desire information charac-
terized by additive decomposition. In other words, they
would like to be able to answer what fraction of the dis-
ease burden is related to any risk factor or group of risk
factors, independent of the changes in other risk factors.
As discussed by Mathers et al. [23], additive decomposi-
tion is a property of categorical attribution and, in general,
not of counterfactual attribution because many diseases
are caused by the interaction of multiple risk factors acting
simultaneously and therefore can be avoided by eliminat-
ing any of these factors [26,55,59]. Consider for example
infant and child mortality due to acute respiratory infec-
tions (ARI), which is especially high among malnourished
children, as a result of exposure to indoor smoke from sol-
id fuels [66,67]. In this case, removal of either risk factor
will reduce mortality, some of which can therefore be at-
tributed to both factors. Similarly the risk of mortality due
to cardiovascular diseases among some of those who are
affected by smoking, low physical activity, and poor diet
may be reduced by elimination of any combination of
these risk factors. Therefore, counterfactual causal attribu-
tion of disease and injury to individual risk factors, does
not normally allow additive decomposition and the sum
of attributable fractions or burdens for a single disease
due to multiple risk factors is theoretically unbounded.

Although epidemiologically unavoidable and conceptual-
ly acceptable, the lack of additivity presents additional
policy complexity and implies great caution when com-
municating and interpreting the estimates of attributable
fraction and burden. With multiple attribution, the reduc-
tion of one risk factor would seem to make other, equally
important risk factors, potentially irrelevant from a per-
spective with limited scope on quantification. At the same
time multi-causality offers opportunities to tailor preven-
tion based on availability and cost of interventions. It also
necessitates the development of methods to quantify the
effects of joint counterfactual distributions for multiple
risk factors.
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Temporal Dimensions of Risk Factor – Disease 
Relationship
Both exposure to a risk factor and the health outcomes
due to exposure include a time dimension. This can be de-
scribed by a modified version of Equation 3 in which ex-
posure and outcome as well as the model parameters (B)
are dependent on time. In the following two sections we
consider the temporal characteristics of exposure and
health outcomes.

Temporal characteristics of exposure
With the exception of acute hazards (e.g. injury risk fac-
tors) exposure to a risk factor affects disease over a time
period. As a result, the distributional transition between
any two exposure distributions includes a temporal di-
mension as illustrated schematically in Figure 3. The tran-
sition path is of little importance if exposure changes over

a short time interval, especially relative to the time re-
quired for the effect of exposure on disease. Over long
time periods, however, there is sufficient time for contri-
butions from the intermediate exposure values and the ac-
tual path of transition may be as important as the initial
and final distributions in determining the disease burden
associated with change in exposure. For example, the ef-
fects of reducing the prevalence of smoking or exposure to
an occupational carcinogen by half in a population,
would be markedly different if the change takes place im-
mediately, gradually over a twenty-year period, or after
twenty years. Therefore, the health effects of exposure to
many risk factors depend on the complete profile of expo-
sure over time, and may be further accompanied by a
time-lag from the period of exposure. Also, for some risk
factors there may be complete or partial reversibility, with
the role of past exposure gradually declining.

Figure 3
A (three-dimensional) representation of a time-indexed distributional transition of population exposure to a risk factor, with a 
decreasing central tendency.

Exposure

%
 P

op
ul

at
io

n

Time
Page 9 of 20
(page number not for citation purposes)



Population Health Metrics 2003, 1 http://www.pophealthmetrics.com/content/1/1/1
To capture the effects of exposure profiles over time, we
begin the analysis by considering the role of temporal di-
mensions of exposure at the level of individuals (or
groups of individuals with similar exposure) before ex-
tending the analysis to the whole population. Suppose
that at time T the relative risk of a disease, RR, for individ-
uals exposed to a risk factor (compared to the non-ex-
posed group) depends on the complete profile or stream of
exposure between time T0 and T, denoted by x(t), with
some lag, L, between exposure and effect. Then, there is
some function, ƒ(x), which can be used to describe the
contribution of exposure at any point in time between T0
and T to the relative risk. In mathematical notation:

(The notation  denotes "estimated between T0 and

T").

The quantity  is an equivalent exposure be-

tween T0 and T and is dependent on: 1) the profile of ex-
posure (i.e. level of exposure at any point in time)
described by x(t); and 2) the contribution of previous ex-
posure to current hazard characterized by ƒ(x), an accumu-
lative risk function. Note that equivalent exposure is an
analytical concept and need not be physically realizable.
In fact for many risk factors such as carcinogens where the
effects are from life-long exposure, the equivalent expo-
sure would be so high that its occurrence at a single in-
stant would be impossible. Further, if there is threshold,
M, below which exposure has no effect:

where

This framework can be easily modified to include cases
where exposure has different effects below and above
threshold by using TRUE(x(t) ≥ M) for the effect above the
threshold and TRUE(x(t) <M) for the effect below the
threshold. Some potential forms for the accumulative risk
function, ƒ(x), are given in Table 1.

The above framework can be extended from individuals to
populations, by indexing the exposure profile (x(t)) to in-
dividuals (i.e. representing the exposure of the ith individ-
ual as xi(t)) and considering how the distribution of
exposure in the population evolves over time (in this
manner, the evolution of the exposure distribution is
analytically similar to a "random process" in which a
probability density function (PDF) describes a random
variable which is a function of time. Exposure to a risk fac-
tor is not a random variable in the strict sense. But since a
time-dependent exposure distribution has an accumulat-
ed distribution of 1.0, it has the same representation as a
random process). This in turn provides the population
distributions of equivalent exposure (current or expected
future and counterfactual) which form the basis of calcu-
lating attributable fraction (i.e. the terms in the numerator
or Equations (2a), (2b), or (4a)).

It is reasonable to assume that if the exposure of one indi-
vidual is greater than that of another over the whole expo-
sure period (i.e. tracking) [68], the equivalent exposure of
the former is also greater than the latter. In other words,
the accumulative risk function, ƒ(x), has the following
property:

With this property, if the ordering of individuals in the ex-
posure distribution remains unchanged over time (i.e. the
rank-order correlation of individual exposures equals 1
between different points in time), the equivalent exposure
will also have a distribution with the same ordering of
individuals.

The method used by Peto et al. [3] for estimating mortality
due to accumulated hazards of smoking implicitly uses
such as framework. It is well-known that the accumulated
hazards of smoking depend on a number of variables
including the age at which smoking began, number of cig-
arettes smoked per day, and cigarette type. Such data how-
ever are extremely rare. To overcome this problem, Peto et
al. [3] used smoking impact ratio, SIR, (which uses popu-
lation lung cancer rates as a marker for accumulated haz-
ard of smoking) to estimate the relative risk for the
accumulated smoking exposure in the population. In the
above notation:

The temporal profile of exposure for some risk factors may
be more easily available than the range of indicators that
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are needed to estimate the accumulated hazards of smok-
ing. For example, exposure to indoor smoke from solid fu-
els is likely to remain unchanged as long as household
fuel and housing conditions remain the same. Therefore,
estimating the effects of long-term exposure may require
only knowledge of household fuel, housing, and partici-
pation in cooking. Similarly, in the case of blood pressure,
it is known that blood pressure follows a predictable age-
pattern [69,70], unless severely affected by a changes in
social (stress), behavioral (diet or smoking), or medical
circumstances. In this case, the usual blood pressure of an
individual reflects the history of the person's exposure. On
the other hand, the patterns of fruit and vegetable con-
sumption, smoking, or exposure to ambient air pollution
may change rapidly in countries with high rates of eco-
nomic growth and urbanization, requiring more detailed
data.

The above discussion is based on two implicit
assumptions:

1) It considers the effects of exposure to a single risk factor
over time. This approach may be appropriate for some risk
factor – disease relationships (e.g. the effects of accumu-
lated exposure to carcinogens with site-specific effects).
But the single equivalent exposure cannot characterize
other risk factor – disease relationships where risk factor
interactions are important over time (e.g. physical activity,
BMI, smoking and cardiovascular diseases). Extending

this temporal dimension to multiple risk factors requires
considering the accumulated effects of the vector of risk
factors as well as their interactions. In that case, Equation
5 would be expressed in terms the vector of risk factors of
interest. Few epidemiological studies, however, have gath-
ered the data needed for assessing accumulated interactive
effects.

2) It considers exposure to each risk factor as an exoge-
nous variable (i.e. intermediate exposure at any time, x(t),
is not affected by disease or other risk factors) whose accu-
mulated effect can be captured in single value using the
risk accumulation function. For some risk factors, this as-
sumption may not be valid since exposure to behavioral
as well as environmental risk factors may be affected by
knowledge of their current effects. Individuals may
change their diet or activity levels based on knowledge of
their weight or blood pressure and governments may in-
troduce regulations based on the level of various contam-
inants in air or water. Robins [18] discusses this issue in
the case of estimating the effects of a dynamic treatment
regime whose dose is dependent on symptoms.

Manton et al. [12,71] have relaxed these assumptions us-
ing a diffusion model for forecasting cardiovascular dis-
ease mortality in the US. In this model, it is the change in
the outcome in any time, t, that is modeled as a function
of all the other variables in the system (i.e. other risk fac-

Table 1: Examples of accumulative risk functions

Accumulative Risk Function, ƒ(x) Interpretation Relative Risk, RR Example

Relative risk depends only on 
current exposure, with no con-
tribution from past exposure.

Instantaneous poisoning as a result 
of exposure to high levels of toxic 
chemicals; injuries or death in acci-
dents due to binge drinking; infec-
tion with Hepatitis B or C as a 
result of an infected injection

ƒ(x) = 1 Relative risk depends on the 
accumulated exposure (or aver-
age exposure if normalized with 
respect to exposure time), with-
out any effects from the tempo-
ral distribution of exposure.

Cancer risk from life-time expo-
sure to carcinogens which have no 
threshold level

Relative risk depends on current 
and past exposures. But the role 
of past exposure lasts for a lim-
ited time, K, and decline as a lin-
ear function of time.

ƒ(x) = ea(t-T) Relative risk depends on current 
and past exposures. But the role 
of past exposure decays as an 
exponential function of time.

For simplicity of notation, in all these cases we assume that: 1) L = 0. Including a lag is straightforward and can be done by replacing t with (t - L) in 
the corresponding formulas; and 2) there is no threshold for exposure. Including the threshold level is also straightforward using the TRUE (x (t) ≥ 
X) function. In scenarios 1, 3, and 4, where the effects of past exposure declines over time, risk reversibility can take place if exposure is reduced or 
removed. In 1 there is immediate risk reversibility; in 3, there is full reversibility after time K; in 4, risk reversibility asymptotically reaches 100%. In 
scenario 2 there is no risk reversibility and the effects of past exposure remain for an indefinite period.
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tors as well as outcomes) and their interactions. Using the
notation of Equation 3:

dX(t) = u(X(t), t) dt  (7)

where u(X(t), t) is a drift term whose value depends on the
current value of all the variables in the system as well as
their interactions (and can be described by a functional
form similar to that in Equation 3) (the diffusion model
also includes a stochastic component to account for those
interactive effects not described by the drift term). Meth-
ods for estimation of such models using longitudinal data
are discussed by Robins [19,72].

Temporal characteristics of health outcomes
If the outcome variable used in causal attribution of dis-
ease and mortality to a risk factor only involves counting
of adverse events (such as disease incidence or death), it is
not possible to characterize those cases whose occurrence
would have been delayed in the absence of the risk factor
[16,36,73]. Therefore, this approach is unable to consider
the accumulated effects of exposure – in the form of years
of life lost prematurely or lived with disability.
Parameterizing the above relationships by age (or birth
cohort) would allow estimating the effects of exposure to
a risk factor not as an event without time dimension but
as an event at a certain age and time. More broadly con-
sidering the time-indexed stream of health losses due to a
risk factor requires using a time-based (and not event-
based) SMPH.

Murray and Lopez [20] have provided an additional tem-
poral distinction for the burden of disease due to a risk
factor by introducing the concepts of "attributable" and
"avoidable" burden. Attributable burden is defined as the
reduction in the current or future burden of disease if the
past exposure to a risk factor had been equal to some coun-
terfactual distribution. Avoidable burden is the reduction
in the future burden of disease if the current or future expo-
sure to a risk factor are reduced to a counterfactual distri-
bution. Attributable and avoidable burden are shown
graphically in Figure 3. While attributable burden is easier
to measure and more certain, avoidable burden is more
useful for policy purposes. The distinction between attrib-
utable and avoidable burden becomes less significant as
the time between exposure to risk factor and effects on dis-
ease burden decreases, which also makes attributable bur-
den a better predictor of avoidable.

Figure 4 also illustrates a conceptual complexity in defin-
ing and estimating avoidable burden. Attributable burden
is defined based on the difference between (accumulated)
current exposure and a counterfactual. Measuring current
exposure, while difficult and uncertain, is conceptually
well-defined. Avoidable burden, on the other hand, de-

pends on the expectation of future exposure and counter-
factual, with the former being analogous to current
exposure. Consider for example a population exposed to
rising air pollution or obesity. In this setting, interven-
tions that would maintain pollutant concentrations or
body mass index (BMI) at their current levels would result
in avoiding disease and mortality; they reduce exposure
compared to what it would be in their absence. Therefore,
avoidable burden (i.e. how much of future burden can be
prevented) by definition requires estimates of future expo-
sure (i.e. how much of future burden there is). Projecting
future exposure in turn raises the need to provide a projec-
tion framework. To provide visions of public health under
various intervention and policy scenarios we suggest the
future exposure, with respect to which avoidable burden
is estimated, to be the expectation of exposure if the cur-
rent policy and technological context continued, referred
to as "business-as-usual" (BAU) exposure trend. Therefore
avoidable burden is the burden of disease averted due to
reduction in exposure to a risk factor beyond its expected
trends. We emphasize that with this definition, avoidable
burden is the difference between two exposure scenarios:
the expectation of future trends (BAU) and a reduction
with respect to this trend towards theoretical minimum.

Cumulative versus snap-shot estimates of attributable and avoidable 
burden
Although analytically inconsequential, the starting point
and the duration of the time interval over which attribut-
able or avoidable burden is reported has important policy
implications because reductions in various risk factors
may provide health benefits that occur after short or long
delays and last for different durations. Consider for exam-
ple the health benefits of reductions in binge alcohol con-
sumption, smoking, and green house gas (GHG)
emissions. Reducing binge drinking would result in im-
mediate health benefits from a drop in alcohol related ac-
cidents and injuries (as well as medium and long term
benefits from reduction in other diseases). Lowering
smoking will have some short and medium-term benefits
from reduction of acute respiratory diseases and cardio-
vascular disease as well as longer term benefits from low-
ering cancers and chronic obstructive pulmonary disease
(COPD). Finally, the benefits of policies that reduce cli-
mate change as a result of GHG emissions are likely to be
heavily concentrated in the future.

As examples of the duration of health benefits, consider
the distribution of a drug that lowers blood pressure or
food aid to reduce malnutrition on the one hand, and
programs that promote and sustain increased physical ac-
tivity, the introduction of a new agricultural technology
which results in higher food yields, or automotive
technology which eliminates the use of leaded gasoline.
While the benefits of all interventions may be equally
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Figure 4
Attributable and avoidable burden. a = disease burden at T0 attributable to prior exposure. The burden not attributable to risk 
factor of interest (light area) may be decreasing, constant, or increasing over time. The middle case is shown in the figure. b = 
disease burden at T0 not attributable to the risk factor of interest (caused by other factors only). Dashed arrows represent the 
path of burden after a reduction at T0. c = disease burden avoidable at Tx with a 50% exposure reduction at T0. d = remaining 
disease burden at Tx after a 50% reduction in risk factor.
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large and important for the current cohort, the former pol-
icies have one-time health benefits (unless repeated)
while those of the latter are likely to last indefinitely.

The above discussion would motivate reporting the esti-
mates of avoidable burden in multiple ways including
both snap-shots (for example annual) and cumulative es-
timates as well as over short and long time frames. The is-
sue of future estimates and their policy relevance is further
complicated by the growing uncertainty in estimates with
increasing the length of the estimation interval. Therefore,
while it is ideal to increase the prediction horizon, it is im-
portant to emphasize that long-term predictions are in-
herently more uncertain.

Discounting future risk and health effects
Individuals may discount consumption or welfare within
their own life span and exhibit a preference for benefits to-
day over future. The theoretical and empirical arguments
for and against individual discounting with specific em-
phasis on health, including the possibility of negative dis-
count rates, are summarized by Murray and Acharya
[21,74] and are directly incorporated in calculating a sum-
mary measure of population health. In addition to indi-
vidual discounting and discount rates, policies dealing
with risk confront the issue of addressing benefits to dif-
ferent populations across time. As a result these policies
must address ethical and analytical dilemmas related to
the valuation of current and future health and welfare, in
the form of social discount rates [75]. Discounting future
risks, benefits, and welfare has been a subject of great de-
bate [76–80], motivating some economists to conclude
that "maybe the idea of a unitary decision-maker – like an
optimizing individual or a wise and impartial adviser – is
not very helpful when it comes to the choice of policies
that will have distant-future effects about which one can
now know hardly anything. Serious policy choice may
then be a different animal, quite unlike individual saving
and investment decisions. ... "Responsibility" suggests
something less personal" [81].

The arguments for and against discounting of future
health and welfare and their validity have been discussed
in detail elsewhere [74,82–84]. According to one specific
argument, "the disease eradication and health research
paradox", not discounting future health would imply in-
vesting all of society's health resources in research pro-
grams or programs for diseases eradication, which result
in an infinite stream of benefits, rather than any programs
that improve the health of the current generation. Such an
excessive intergenerational "sacrifice" is a particularly
powerful argument for discounting of future health (or
more precisely for something that resembles discounting
as we discuss shortly) [82]. It is important to emphasize
that this argument does not claim that future welfare or

health is less valuable than current, but rather uses dis-
counting as a tool to avoid excessive sacrifice to the cur-
rent generation, to the point of investing all resources in
an infinite stream of future health. For this reason, Parfit
[82] argues that the issue of intergenerational distribution
should be considered as an independent criterion, rather
than in the form of discounting of future benefits.

Koopmans [85], Dasgupta and Mäler [86], and Dasgupta
et al. [87], however, have shown that any preference-or-
dering defined over the set of well-being paths over time
can be represented by a numerical function with an appar-
ently utilitarian form and therefore includes what resembles
positive discounting of future well-being (the functional

form is  where 0 < α < 1 in [85] and 

where δ > 0 in [86,87] α and δ are the social rate of dis-
count). We emphasize that this notion is simply a conse-
quence of considering the paths of well-being (or
temporal distributions), rather than a statement on the
value of current or future welfare. With this formulation,
Dasgupta and Mäler [86] and Dasgupta et al. [87] consider
the implications of the choice of discount rate as a "de-
rived notion", as opposed to a value judgment. Dasgupta
and Heal [88] and Solow [89] have shown that if well-be-
ing is a result of consumption of an exhaustible resource,
zero discount rate would imply investing all available re-
sources for the benefit of future generations, and hence no
current consumption. This is because each unit sacrificed
by the first generation would yield a finite loss to this gen-
eration, but an infinite stream of benefits to future gener-
ations [90] which, without discounting, would always be
larger than the one-time sacrifice. Although the first gen-
eration cannot sacrifice everything (the last unit of
sacrifice will have an infinite marginal utility therefore
matching the future infinite stream of benefits), the logi-
cal conclusion of this situation would be that "given any
investment [for future benefits], short of the entire in-
come, a still greater investment would be preferred," [90]
or a potentially excessive intergenerational sacrifice [21].

On the other hand, a positive discount rate would imply
that in the long run consumption of resources should be-
come zero. In this case, however, the additional require-
ment that well-being should never fall below a certain
threshold would in turn require downward adjustment of
the discount rate [91]. The stricter requirement of non-de-
clining consumption and well-being would require a dis-
count rate lower than the productivity of capital [86]
(these two additional constraints are external to the eco-
nomic efficiency arguments as defined by maximizing
aggregate welfare. In fact, these additional constrains of
minimum acceptable or non-declining welfare result in
an "inefficient" outcome in order to achieve better distri-
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bution across generations [92]; see Weitzman [93] for an-
other argument for the choice of lower discount rates).
Based on these arguments, we suggest discounting of fu-
ture attributable or avoidable disease burden due to risk
factors, but with a low discount rate, to include the wel-
fares of both current and future generations as described
above.

Uncertainty
Quantitative risk assessment is always affected by uncer-
tainty about the existence, magnitude, and distribution of
risk [94]. Quantitative analysis of uncertainty greatly adds
to the applicability of the results because it shows not only
the "best-estimate" magnitude and distribution of expo-
sure to a risk factor and resulting burden of disease but
also the range of potential outcomes.

Sources of uncertainty in attributable fractions
Population distribution of exposure
Due to complexity and cost, for most risk factors, expo-
sure is measured only in small samples and in a limited
number of settings. As we discussed earlier, because a risk
factor can be represented in different layers of causality,
variables for which data are more readily available can be
used as exposure proxies. The use of exposure proxies is
sometimes also necessary because epidemiological stud-
ies have used such proxies in estimating hazard size. For
example, anthropometric variables such as height-for-age
or weight-for-age are used as indicators of childhood nu-
tritional status, the presence of clean water sources or san-
itary latrines as indicators of faecal-oral transmission of
pathogens, concentration of particulate matter as the
measure of exposure to the various pollutants in ambient
air, and so on. In addition to reduced data requirements,
the use of such indirect indicators of exposure (or expo-
sure scenarios [95]) may provide direct mapping to exist-
ing interventions. At the same time, these indicators,
which are often more distal than actual exposure, do not
capture the variability of exposure within each scenario,
unless combined with other indicators which affect this
variability [96]. For example people using the same water
source may experience different levels of faecal-oral trans-
mission of pathogens due to different storage behaviors.
Therefore, the use of indirect exposure proxies results in
additional uncertainty in exposure characterization.

Even with the choice of exposure proxies, extrapolation of
exposure between different populations or age groups is
often necessary. Such extrapolation (or spatial prediction)
can be based on models as simple as using the average of
populations with data for a whole geographical region or
more complex prediction models. For example, urban air
quality monitoring systems provide data on particulate
matter concentrations in some but not all cities in each re-
gion. Models to predict ambient concentration based on

energy consumption, number of vehicles, and level of in-
dustrialization can be used to predict ambient air pollu-
tion levels for the cities where data are not available.
Similarly, the level of physical (in)activity in a population
may be predicted from a model that uses rural-urban pop-
ulation distribution, income, education, distribution in
occupational categories, and available transportation
modes in each geographical region. Each such extrapola-
tion adds to the uncertainty of exposure distributions.

Finally, as we discussed earlier, for many risk factors, haz-
ards are associated with accumulated effects of sustained
exposure. Indicators of accumulated hazard for those risk
factors with changing exposure such as smoking, ambient
urban air pollution, or body mass index, are needed but
not always available. Further, few epidemiological studies
have consider the role of temporal profile of exposure on
disease (see Peto [97] for an example of an exception).
Therefore even if longitudinal data on exposure preva-
lence were available, they could not always be used to-
gether with epidemiological studies that consider a single
exposure variable, at the beginning or end of the follow-
up period for example. At the same time, if the ordering of
individuals in the exposure distribution remains un-
changed over time (see above), risk estimates from epide-
miological studies with similar ordering may be
applicable, but results in an additional source of
uncertainty. If exposure is sustained for a longer time in
the risk assessment population than in the study popula-
tion and if the whole exposure period contributes to haz-
ards, this would result in an underestimation of risk (and
vice versa). For example, in many cohorts in current epi-
demiological studies, BMI increased when the subjects
were in their twenties or thirties. There is however increas-
ing child and adolescent overweight or obesity in many
regions of the world. If this continues into adult life, the
hazards may be higher than those subjects in the current
study cohorts.

Risk factor – disease relationship
At the most fundamental level, quantifying the hazards
associated with exposure to a risk factor requires identify-
ing the diseases and injuries that are caused by a risk fac-
tor. The criteria for establishing disease causality have
been the subject of interest and debate for over a century
[55,57,58,98,99]. Epidemiological studies have success-
fully provided the basis for establishing causality between
some risk factor – disease pairs. For other risk factor – dis-
ease combinations, where the measurement of exposure
or disease has been difficult or the delay between exposure
and health effect is very long, observational or experimen-
tal epidemiology has had less success in establishing
causality [18,57]. For this reason, epidemiological
evidence must often be complemented with inferences
from other disciplines such as toxicology, physiology, Par-
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asitology, and increasingly biophysics in establishing dis-
ease causation.

Even when causality is established, the magnitude of the
hazard due to a risk factor needs to be quantified. Al-
though the statistical issues around establishing causality
and estimating the effect size are similar (lack of causality
is equivalent to zero excess risk) [18,100], in practice with
knowledge from multiple disciplines in establishing cau-
sality, it is often the latter that is the source of increased
uncertainty in risk assessment. For example, the
collectivity of scientific knowledge from disciplines such
as economics and behavioral sciences, vector biology,
physiology and bio-mechanics, and epidemiology would
confirm the possibility that climate change or inequality
would increase disease, or whether the relationships be-
tween occupational factors or physical inactivity and low-
er back pain are causal. At the same time, risk assessment
would require estimating the hazard magnitude for each
of these relationships. Therefore, the complexity of the
causal relationship or lack of detailed data would shift the
debate from causality to hazard size.

Epidemiological studies that quantify hazards are often
conducted in a limited number of settings, with emphasis
on estimating the average effect size in the whole study
group. While the robustness of relative measures risk has
been confirmed for more proximal factors in studies
across populations [45,101], their extrapolation is an im-
portant source of uncertainty for more distal risks (e.g.
childhood sexual abuse) or those whose effects are heter-
ogeneous (e.g. alcohol and injuries versus alcohol and
cancer) and has received less attention in epidemiological
literature [102]. At least for some risk factors, it is likely
that the magnitude of hazard may depend on the levels of
other variables (i.e. effect modifiers). Therefore in extrap-
olating the results of individual epidemiological studies
or meta-analyses, the very strength of the original study –
applicability to the average person – would be the source
of uncertainty if the population to whom the effect size is
extrapolated has characteristics which would result in ef-
fect modification [103–106]. The role of alcohol drinking
patterns on cardiovascular disease risk estimates [41,107]
are an example of the importance of considering the mod-
ulating effects in risk extrapolation.

Risk factor and disease correlations
Because multiple risks and disease are correlated (e.g.
higher malnutrition, unsafe water, sanitation, and hy-
giene, indoor smoke and childhood mortality in poor ru-
ral households in developing countries; higher smoking,
BMI, and occupational risks in developed countries
[108]), estimating attributable fractions would require
stratified (e.g. by other risk factors) prevalence as well as
disease data. Lack of stratified data is another source of

uncertainty, in general leading to underestimation of ef-
fects in the presence of positive risk factor correlation [34].

Characterizing and quantifying uncertainty
Various taxonomies of uncertainty have been used in risk
assessment [99] including:

1) classification based on information type such as uncer-
tainty in hazard identification, exposure assessment, ex-
posure-response assessment, as discussed above;

2) classification based on uncertainty type such as ran-
domness, true variability, and bias; and

3) classification based on the approach to handling uncer-
tainty which divides uncertainty into model uncertainty
and parameter uncertainty. Parameter uncertainty includes
the uncertainty quantifiable using random-variable meth-
ods such as uncertainty due to sampling and measure-
ment error. Model uncertainty is due to gaps in scientific
theory, measurement technology, and data [99]. It in-
cludes uncertainty in the knowledge of causal relation-
ships or of the form of the exposure-response relationship
(threshold versus continuous, linear versus non-linear,
etc.), the level of bias in measurement, etc. Defined broad-
ly, model uncertainty also includes extrapolation of expo-
sure or hazard from one population to another.
Uncertainty in international risk assessment is by far dom-
inated by model uncertainty, which is a result of lack and
difficulty of direct studies on exposure, hazard, and back-
ground disease burden.

We distinguish between uncertainty – which is due to gaps
in knowledge, methods, or data – and variability – which
is a real property of the world and itself may be known
with certainty or with uncertainty. Variability can none-
theless be a source of uncertainty in the absence of popu-
lation-specific data on exposure or exposure-response
relationship. For many risk factors, data on exposure dis-
tribution are available for a limited number of countries
or demographic groups. The exposure distribution for
other populations are then extrapolated from the availa-
ble data based on some model. As we discussed earlier,
the extrapolation model may be as simple as using the
population-weighted average of the existing data or more
complex and based on a number of predictors. In such
cases, the statistical uncertainty of the estimator (e.g. the
95% confidence interval of the mean or regression coeffi-
cients) is an underestimation of true uncertainty in pre-
dicted values due to the unexplained variability in the
data. More complex models can increase the predictive
power and therefore reduce uncertainty but even the most
sophisticated models are unlikely to fully explain the
variability of the data, hence leaving behind some uncer-
tainty. Variability can also be a source of uncertainty in es-
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timation and extrapolation of exposure-response
relationships or relative risks that are measured in a limit-
ed number of settings. In the presence of multiple esti-
mates of hazard, it is common to use meta-analytical
approaches to obtain an overall estimate. At the same
time, the differences between various estimates may re-
flect true variability in effect size, especially if obtained
from different populations, resulting in uncertainty in
hazard estimates.

Parameter uncertainty can be readily included in quanti-
tative analysis using random-variable statistical tools
[109]. While we have discussed the various sources of un-
certainty, the important issue of extrapolation of exposure
and hazard using models requires new approaches to
quantifying uncertainty in the presence of limited data.
Quantitative analysis of model uncertainty by definition
would require considering the uncertainty of the models
and assumptions used (including assumptions about dis-
ease mechanism or data/parameter extrapolation) using
tools of Bayesian statistics.

Conclusions
We have described a framework for systematic quantifica-
tion of the burden of disease due to risk factors which at-
tempts to unify the growing interest in health risks in a
number of health, physical, and social sciences. We have
discussed the following attributes of the framework along
with the corresponding methodological issues that arise
in its application:

1) comparing the burden of disease due to the observed
exposure distribution in a population with the burden
from a hypothetical distribution or series of distributions,
rather than a single reference level such as non-exposed;

2) considering the multiple stages of causality and interac-
tions between risk factor(s) and disease outcome to allow
making inferences about combinations of risk factors for
which epidemiological studies have not been conducted,
including the joint effects of changes in multiple risk
factors;

3) calculating the health loss due to risk factor(s) as a
time-indexed "stream" of disease burden due to a time-in-
dexed "stream" of exposure, including consideration of
discounting;

4) describing the sources of uncertainty in the risk assess-
ment process.

For each of the above aspects, we have described the im-
portant conceptual and methodological issues and their
implications for risk assessment. While this framework
provides a means for considering risk factors in different

layers of causality, with multiple counterfactuals [42], its
application is limited by the availability of data on risk
factors and hazards [40]. The availability and form of data
on both exposure and hazard are often determined by dis-
ciplinary boundaries as well as measurement difficulties.
Analysis of selected risks itself illustrates data and moni-
toring needs for better quantification and intervention of
important risk factors, especially more detailed data on
exposure, hazard accumulation over time, and heteroge-
neity of risk factor – disease relationships.

For more effective and affordable implementation of a
prevention paradigm, policies, programs, and scientific
research should acknowledge and take advantage of the
interactive role of major risks to health, across and within
causality layers. Despite methodological complexity and
empirical difficulties, especially in estimating time-based
multi-risk exposures, this framework provides a consistent
basis for better information about the causes of disease
and injury.
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