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Abstract: The use of Ultra-High-Performance Concrete (UHPC) in beams has been growing rapidly
in the past two decades due to its superior mechanical and durability properties compared to
conventional concrete. One of the areas of interest to designers is the elimination of transverse
reinforcement as it simplifies beam fabrication/construction and could result in smaller and lighter
beams. UHPC has a relatively high post-cracking tensile strength due to the presence of steel
fibers, which enhance its shear strength and eliminate the need for transverse reinforcement. In this
paper, UHPC shear test data were collected from the literature to study the effect of the following
parameters on the shear strength of UHPC beams without transverse reinforcement: compressive
strength, tensile strength, level of prestressing, longitudinal reinforcement ratio, and fiber volume
fraction. Statistical analysis of test data indicated that level of prestressing and tensile strength are
the most significant parameters for prestressed UHPC beams, whereas longitudinal reinforcement
ratio and tensile strength are the most significant parameters for non-prestressed UHPC beams.
Additionally, shear strength of the tested UHPC beams was predicted using five models: RILEM
TC 162-TDF, 2003, fib Model Code, 2010, French Standard NF P 18-710, 2016, PCI-UHPC Structures
Design Guide, 2021, and Draft of AASHTO Guide Specification for Structural Design with UHPC,
2021. Comparing measured against predicted shear strength indicated that the French Standard
model provides the closest prediction with the least scatter, where the average measured-to-predicted
strength was 1.1 with a standard deviation of 0.38. The Draft of AASHTO provided the second closest
prediction where the average measured-to-predicted strength was 1.3 with a standard deviation of
0.64. The other three models underestimated the shear strength.

Keywords: UHPC; shear strength; prediction models; test data

1. Introduction

Ultra-high-performance concrete (UHPC) is a relatively new class of concrete that has
superior mechanical and durability properties compared to conventional concrete. This
is primarily due to its very dense matrix of particles and presence of high strength steel
fibers. The stress-strain behavior of UHPC in tension and compression is significantly
different than that of conventional concrete [1,2]. Limited experimental investigations were
conducted to evaluate the shear capacity of UHPC beams when transverse reinforcement is
removed. The elimination of transverse reinforcement greatly simplifies beam fabrication
and construction and results in thinner webs and lighter sections. The addition of steel
fibers in UHPC beams significantly increases the post-cracking tensile strength that typically
controls the shear strength in beams (i.e., diagonal tension). Shear strength of UHPC is
influenced by several parameters, such as fiber content, concrete compressive and tensile
strengths, longitudinal reinforcement ratio, and level of prestressing. Currently, there are
limited prediction models that estimate the shear strength of UHPC beams; moreover, there
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are relatively high margins of safety used in these models due to the limited amount of
shear test data [3,4].

This paper presents a database of UHPC beam shear tests available in the literature to
study the effect of various parameters on the shear strength when transverse reinforcement
is eliminated. Then, five of the popular prediction models, namely RILEM TC 162-TDF,
2003 [5], fib Model Code, 2010 [6], French Standard NF P 18-710, 2016 [7], PCI-UHPC
Structures Design Guide, 2021 [8], and Draft of AASHTO Guide Specification for Structural
Design with UHPC, 2021 [9] are evaluated by comparing measured against predicted
shear strength to determine their accuracy and consistency. The work done in this study is
considered the first attempt to collect test data of UHPC beams without shear reinforcement
failing in diagonal tension mode.

2. Materials and Methods

This section presents an overview on the UHPC beam shear prediction models and
the experiments done on prestressed and non-prestressed UHPC beams.

2.1. Prediction Models

Five prediction models are presented in this section: RILEM TC 162-TDF, 2003 [5], fib
Model Code, 2010 [6], French standard, NF P 18-710, 2016 [7], PCI-UHPC Structures Design
Guide, 2021 [8], and Draft of AASHTO Guide Specification for Structural Design with
UHPC, 2021 [9]. The first three models represent the historical evolution of shear strength
prediction approaches from conventional concrete to fiber-reinforced concrete to UHPC
internationally, whereas the last two models are recently published in the United States
to promote the implementation of UHPC in structural applications. The main differences
among these models are the terms that account for the post-cracking tensile strength of
UHPC and safety factors.

2.1.1. RILEM TC 162-TDF, 2003

The prediction model of shear strength of conventional concrete beams given in the
Eurocode 2 part 1, 1991 [10] was used as the main framework in developing this prediction
model [11]. Eurocode 2 only considers the pre-peak behavior of conventional concrete
in tension, whereas the effect of steel fibers on the post-peak behavior of fiber-reinforced
concrete is considered in this model. This leads to the consideration of the tensile stress-
strain behavior of fiber-reinforced concrete in this model. The ultimate shear resistance
of a section is estimated as the algebraic sum of contributions of concrete (Vcd), stirrups
and/or inclined bars, and steel fibers (Vf d). Fiber contribution is estimated according to the
following equation:

Vf d = 0.7 k f k bw d
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f d [N] (1)

where k f is a factor that accounts for the flanges contribution in T-shaped sections and
recommended to be taken as 1.0 for other shapes. Flange contribution is typically neglected
in most shear strength prediction models for simplicity and due to the fact that diagonal
tension failure starts at the web of flanged sections. k f is calculated as follows:

k f = 1 + n
( h f

bw

)(h f

d

)
(2)

n =
b f − bw

h f
≤ 3 and n ≤ 3 bw

h f
(3)

where b f is the flanges width [mm]; bw is the minimum cross-section web width [mm]
over d [mm]; d is the effective depth of the section [mm]; h f is the flanges height [mm]; k

is a factor to account for the size of the section taken as 1 +
√

200
d ≤ 2;
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displacement (CMOD) of 3.5 mm [MPa]. Residual flexural tensile strengths ( fR,i) are
estimated by a three-point bending test on a 150× 150× 550 mm notched prism. The stress
versus strain behavior is obtained from the load-deflection or load-CMOD relation of the
prism. The load-CMOD curve is defined using four points (i = 1 through 4) that corresponds
to the CMOD of 0.5, 1.5, 2.5, and 3.5 mm, respectively. fR,i is calculated as follows:

fR,i =
3 FR,i x L
2b x hsp2 [MPa] (4)

where FR,i is the measured load at (CMODi) [N]; L is the prism span [mm]; b is the prism
width [mm]; hsp is the depth between the notch tip to the extreme compression fibers of the
prism cross-section [mm].

The concrete contribution is calculated according to Equation (5).

Vcd =
[
0.12 k (100 ρ1 fck)

1
3 + 0.15
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bw d [N] (5)

ρ1 =
Al

bw d
(6)
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where ρ1 is the ratio of longitudinal reinforcement (recommended not to be taken greater
than 2%); Al is the area of tension reinforcement extending at least (d + anchorage length)
beyond the considered section [mm2]; fck is the cylinder characteristic compressive strength
[MPa];
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2.1.2. Fib Model Code, 2010 
This prediction model is developed for steel fiber-reinforced conventional concrete 

and is not validated yet for UHPC. The approach bears some similarities to the RILEM TC 
162-TDF, 2003 [5] prediction model with the exception of having the steel fibers contribu-
tion coupled with the concrete contribution in one term (𝑉ோௗ,ி) as follows:  𝑉ோௗ,ி =  ቊ଴.ଵ଼ఊ೎ ·  𝑘 · ቂ100 · 𝜌ଵ ቀ1 + 7.5 ௙ಷ೟ೠೖ௙೎೟ೖ ቁ · 𝑓௖௞ቃଵ ଷൗ + 0.15 · Ϭ௖௣ቋ · 𝑏௪ · 𝑑 [N] (8)

where terms such as 𝑘, 𝜌ଵ, Ϭ௖௣, 𝑏௪, and 𝑑 are defined similar to RILEM TC 162-TDF, 2003 
[5]; 𝛾௖ is a partial safety factor for concrete with no fibers (recommended to be taken as 
1.5); 𝑓ி௧௨௞ is the characteristic value of ultimate residual tensile strength calculated as fol-
lows: 𝑓ி௧௨௞ = 𝑓ோ,ଷ3  [MPa] (9)𝑓ி௧௨௞ =  𝑓ி௧௦ − 𝑤௨𝐶𝑀𝑂𝐷ଷ  ൫𝑓ி௧௦ − 0.5 𝑓ோ,ଷ + 0.2 𝑓ோ,ଵ൯ ≥ 0 [MPa] (10)𝑓ி௧௦ = 0.45 𝑓ோ,ଵ [MPa] (11)

Similar to the RILEM TC 162-TDF, 2003 [5] model, 𝑓ோ,ଵ and 𝑓ோ,ଷ are the residual flex-
ural tensile strengths corresponding to CMOD of 0.5 mm and 3.5 mm, respectively [MPa]; 𝑓ி௧௦ is the characteristic residual tensile strength (post-cracking strength at serviceability 
crack opening) [MPa]; 𝑤௨ is the maximum crack opening that is acceptable in structural 
design (recommended to be taken as 1.5 mm); 𝑓ி௧௨௞ is determined according to the rigid-
plastic model Equation (9), or the linear model based on Equations (10) and (11); 𝑓௖௧௞ is the 
characteristic tensile strength of concrete containing no fibers [MPa] and can be deter-
mined as follows: 

cp is the factor to account for the level of axial loading or prestressing in the beam
[MPa]; NSd is the axial force in the section due to loading or prestressing (positive for
compression) [N]; AC is the area of the beam cross-section [mm2].

2.1.2. Fib Model Code, 2010

This prediction model is developed for steel fiber-reinforced conventional concrete
and is not validated yet for UHPC. The approach bears some similarities to the RILEM TC
162-TDF, 2003 [5] prediction model with the exception of having the steel fibers contribution
coupled with the concrete contribution in one term (VRd,F) as follows:

VRd,F =

{
0.18
γc
· k ·

[
100·ρ1

(
1 + 7.5

fFtuk
fctk

)
· fck

]1/3

+ 0.15 ·
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flexural tensile strength of the prism corresponding to the crack mouth opening displace-
ment (CMOD) of 3.5 mm [MPa]. Residual flexural tensile strengths (𝑓ோ,௜) are estimated by 
a three-point bending test on a 150 × 150 × 550 mm notched prism. The stress versus strain 
behavior is obtained from the load-deflection or load-CMOD relation of the prism. The 
load-CMOD curve is defined using four points (𝑖 = 1 through 4) that corresponds to the 
CMOD of 0.5, 1.5, 2.5, and 3.5 mm, respectively. 𝑓ோ,௜ is calculated as follows: 𝑓ோ,௜ =  3 𝐹ோ,௜ 𝑥 𝐿2𝑏 𝑥 ℎ௦௣ଶ  [MPa] (4)

where 𝐹ோ,௜ is the measured load at (CMODi) [N]; 𝐿 is the prism span [mm]; 𝑏 is the prism 
width [mm]; ℎ௦௣ is the depth between the notch tip to the extreme compression fibers of 
the prism cross-section [mm]. 

The concrete contribution is calculated according to Equation (5). 𝑉௖ௗ =  ൤0.12 𝑘 (100 𝜌ଵ 𝑓௖௞)ଵଷ + 0.15 Ϭ௖௣൨ 𝑏௪ 𝑑 [N] (5)

𝜌ଵ =  𝐴௟𝑏௪ 𝑑 (6)

Ϭ௖௣ =  𝑁௦ௗ𝐴௖  [MPa] (7)

where 𝜌ଵ is the ratio of longitudinal reinforcement (recommended not to be taken greater 
than 2%); 𝐴௟ is the area of tension reinforcement extending at least (𝑑 + anchorage length) 
beyond the considered section [mm2]; 𝑓௖௞  is the cylinder characteristic compressive 
strength [MPa]; Ϭ௖௣ is the factor to account for the level of axial loading or prestressing in 
the beam [MPa]; 𝑁ௌௗ is the axial force in the section due to loading or prestressing (posi-
tive for compression) [N]; 𝐴஼ is the area of the beam cross-section [mm2]. 

2.1.2. Fib Model Code, 2010 
This prediction model is developed for steel fiber-reinforced conventional concrete 

and is not validated yet for UHPC. The approach bears some similarities to the RILEM TC 
162-TDF, 2003 [5] prediction model with the exception of having the steel fibers contribu-
tion coupled with the concrete contribution in one term (𝑉ோௗ,ி) as follows:  𝑉ோௗ,ி =  ቊ଴.ଵ଼ఊ೎ ·  𝑘 · ቂ100 · 𝜌ଵ ቀ1 + 7.5 ௙ಷ೟ೠೖ௙೎೟ೖ ቁ · 𝑓௖௞ቃଵ ଷൗ + 0.15 · Ϭ௖௣ቋ · 𝑏௪ · 𝑑 [N] (8)

where terms such as 𝑘, 𝜌ଵ, Ϭ௖௣, 𝑏௪, and 𝑑 are defined similar to RILEM TC 162-TDF, 2003 
[5]; 𝛾௖ is a partial safety factor for concrete with no fibers (recommended to be taken as 
1.5); 𝑓ி௧௨௞ is the characteristic value of ultimate residual tensile strength calculated as fol-
lows: 𝑓ி௧௨௞ = 𝑓ோ,ଷ3  [MPa] (9)𝑓ி௧௨௞ =  𝑓ி௧௦ − 𝑤௨𝐶𝑀𝑂𝐷ଷ  ൫𝑓ி௧௦ − 0.5 𝑓ோ,ଷ + 0.2 𝑓ோ,ଵ൯ ≥ 0 [MPa] (10)𝑓ி௧௦ = 0.45 𝑓ோ,ଵ [MPa] (11)

Similar to the RILEM TC 162-TDF, 2003 [5] model, 𝑓ோ,ଵ and 𝑓ோ,ଷ are the residual flex-
ural tensile strengths corresponding to CMOD of 0.5 mm and 3.5 mm, respectively [MPa]; 𝑓ி௧௦ is the characteristic residual tensile strength (post-cracking strength at serviceability 
crack opening) [MPa]; 𝑤௨ is the maximum crack opening that is acceptable in structural 
design (recommended to be taken as 1.5 mm); 𝑓ி௧௨௞ is determined according to the rigid-
plastic model Equation (9), or the linear model based on Equations (10) and (11); 𝑓௖௧௞ is the 
characteristic tensile strength of concrete containing no fibers [MPa] and can be deter-
mined as follows: 

cp

}
·bw·d [N] (8)

where terms such as k, ρ1,
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a three-point bending test on a 150 × 150 × 550 mm notched prism. The stress versus strain 
behavior is obtained from the load-deflection or load-CMOD relation of the prism. The 
load-CMOD curve is defined using four points (𝑖 = 1 through 4) that corresponds to the 
CMOD of 0.5, 1.5, 2.5, and 3.5 mm, respectively. 𝑓ோ,௜ is calculated as follows: 𝑓ோ,௜ =  3 𝐹ோ,௜ 𝑥 𝐿2𝑏 𝑥 ℎ௦௣ଶ  [MPa] (4)

where 𝐹ோ,௜ is the measured load at (CMODi) [N]; 𝐿 is the prism span [mm]; 𝑏 is the prism 
width [mm]; ℎ௦௣ is the depth between the notch tip to the extreme compression fibers of 
the prism cross-section [mm]. 

The concrete contribution is calculated according to Equation (5). 𝑉௖ௗ =  ൤0.12 𝑘 (100 𝜌ଵ 𝑓௖௞)ଵଷ + 0.15 Ϭ௖௣൨ 𝑏௪ 𝑑 [N] (5)

𝜌ଵ =  𝐴௟𝑏௪ 𝑑 (6)

Ϭ௖௣ =  𝑁௦ௗ𝐴௖  [MPa] (7)

where 𝜌ଵ is the ratio of longitudinal reinforcement (recommended not to be taken greater 
than 2%); 𝐴௟ is the area of tension reinforcement extending at least (𝑑 + anchorage length) 
beyond the considered section [mm2]; 𝑓௖௞  is the cylinder characteristic compressive 
strength [MPa]; Ϭ௖௣ is the factor to account for the level of axial loading or prestressing in 
the beam [MPa]; 𝑁ௌௗ is the axial force in the section due to loading or prestressing (posi-
tive for compression) [N]; 𝐴஼ is the area of the beam cross-section [mm2]. 

2.1.2. Fib Model Code, 2010 
This prediction model is developed for steel fiber-reinforced conventional concrete 

and is not validated yet for UHPC. The approach bears some similarities to the RILEM TC 
162-TDF, 2003 [5] prediction model with the exception of having the steel fibers contribu-
tion coupled with the concrete contribution in one term (𝑉ோௗ,ி) as follows:  𝑉ோௗ,ி =  ቊ଴.ଵ଼ఊ೎ ·  𝑘 · ቂ100 · 𝜌ଵ ቀ1 + 7.5 ௙ಷ೟ೠೖ௙೎೟ೖ ቁ · 𝑓௖௞ቃଵ ଷൗ + 0.15 · Ϭ௖௣ቋ · 𝑏௪ · 𝑑 [N] (8)

where terms such as 𝑘, 𝜌ଵ, Ϭ௖௣, 𝑏௪, and 𝑑 are defined similar to RILEM TC 162-TDF, 2003 
[5]; 𝛾௖ is a partial safety factor for concrete with no fibers (recommended to be taken as 
1.5); 𝑓ி௧௨௞ is the characteristic value of ultimate residual tensile strength calculated as fol-
lows: 𝑓ி௧௨௞ = 𝑓ோ,ଷ3  [MPa] (9)𝑓ி௧௨௞ =  𝑓ி௧௦ − 𝑤௨𝐶𝑀𝑂𝐷ଷ  ൫𝑓ி௧௦ − 0.5 𝑓ோ,ଷ + 0.2 𝑓ோ,ଵ൯ ≥ 0 [MPa] (10)𝑓ி௧௦ = 0.45 𝑓ோ,ଵ [MPa] (11)

Similar to the RILEM TC 162-TDF, 2003 [5] model, 𝑓ோ,ଵ and 𝑓ோ,ଷ are the residual flex-
ural tensile strengths corresponding to CMOD of 0.5 mm and 3.5 mm, respectively [MPa]; 𝑓ி௧௦ is the characteristic residual tensile strength (post-cracking strength at serviceability 
crack opening) [MPa]; 𝑤௨ is the maximum crack opening that is acceptable in structural 
design (recommended to be taken as 1.5 mm); 𝑓ி௧௨௞ is determined according to the rigid-
plastic model Equation (9), or the linear model based on Equations (10) and (11); 𝑓௖௧௞ is the 
characteristic tensile strength of concrete containing no fibers [MPa] and can be deter-
mined as follows: 

cp, bw, and d are defined similar to RILEM TC 162-TDF, 2003 [5];
γc is a partial safety factor for concrete with no fibers (recommended to be taken as 1.5);
fFtuk is the characteristic value of ultimate residual tensile strength calculated as follows:

fFtuk =
fR,3

3
[MPa] (9)

fFtuk = fFts −
wu

CMOD3
( fFts − 0.5 fR,3 + 0.2 fR,1) ≥ 0 [MPa] (10)

fFts = 0.45 fR,1[MPa] (11)

Similar to the RILEM TC 162-TDF, 2003 [5] model, fR,1 and fR,3 are the residual flexural
tensile strengths corresponding to CMOD of 0.5 mm and 3.5 mm, respectively [MPa]; fFts
is the characteristic residual tensile strength (post-cracking strength at serviceability crack
opening) [MPa]; wu is the maximum crack opening that is acceptable in structural design
(recommended to be taken as 1.5 mm); fFtuk is determined according to the rigid-plastic
model Equation (9), or the linear model based on Equations (10) and (11); fctk is the
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characteristic tensile strength of concrete containing no fibers [MPa] and can be determined
as follows:

fctk = 2.12 ln(1 + 0.1( fck + 8 MPa)) [MPa] ( f or fck > 50 MPa) (12)

where fck is the cylinder characteristic compressive strength [MPa]. The residual flexural
tensile strengths are determined experimentally according to the EN 14,651 [12], where a
three-point bending test is performed on a 150 × 150 × 550 mm notched prism.

2.1.3. French Standard, NF P 18-710, 2016

Based on the AFGC, 2013 [13], this model was developed and calibrated for UHPC.
The basis of this model is similar to the AASHTO LRFD [14] simplified version of the
Modified Compression Field Theory (MCFT) procedure, where the shear strength of a beam
consists of a concrete contribution term (VRd,c), and a shear reinforcement contribution
term (VRd,s). Then, the tensile strength of UHPC is represented by the addition of a
fiber contribution term (VRd, f ) [15]. The concrete contribution is calculated according to
Equations (13) and (14) for prestressed and non-prestressed beam sections, respectively.

VRd,c =
0.24

γc f γE
k fck

1/2 bw z [N] (13)

VRd,c =
0.18

γc f γE
k fck

1/2 bw h [N] (14)

k = 1 +
3
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flexural tensile strength of the prism corresponding to the crack mouth opening displace-
ment (CMOD) of 3.5 mm [MPa]. Residual flexural tensile strengths (𝑓ோ,௜) are estimated by 
a three-point bending test on a 150 × 150 × 550 mm notched prism. The stress versus strain 
behavior is obtained from the load-deflection or load-CMOD relation of the prism. The 
load-CMOD curve is defined using four points (𝑖 = 1 through 4) that corresponds to the 
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where 𝐹ோ,௜ is the measured load at (CMODi) [N]; 𝐿 is the prism span [mm]; 𝑏 is the prism 
width [mm]; ℎ௦௣ is the depth between the notch tip to the extreme compression fibers of 
the prism cross-section [mm]. 

The concrete contribution is calculated according to Equation (5). 𝑉௖ௗ =  ൤0.12 𝑘 (100 𝜌ଵ 𝑓௖௞)ଵଷ + 0.15 Ϭ௖௣൨ 𝑏௪ 𝑑 [N] (5)

𝜌ଵ =  𝐴௟𝑏௪ 𝑑 (6)

Ϭ௖௣ =  𝑁௦ௗ𝐴௖  [MPa] (7)

where 𝜌ଵ is the ratio of longitudinal reinforcement (recommended not to be taken greater 
than 2%); 𝐴௟ is the area of tension reinforcement extending at least (𝑑 + anchorage length) 
beyond the considered section [mm2]; 𝑓௖௞  is the cylinder characteristic compressive 
strength [MPa]; Ϭ௖௣ is the factor to account for the level of axial loading or prestressing in 
the beam [MPa]; 𝑁ௌௗ is the axial force in the section due to loading or prestressing (posi-
tive for compression) [N]; 𝐴஼ is the area of the beam cross-section [mm2]. 

2.1.2. Fib Model Code, 2010 
This prediction model is developed for steel fiber-reinforced conventional concrete 

and is not validated yet for UHPC. The approach bears some similarities to the RILEM TC 
162-TDF, 2003 [5] prediction model with the exception of having the steel fibers contribu-
tion coupled with the concrete contribution in one term (𝑉ோௗ,ி) as follows:  𝑉ோௗ,ி =  ቊ଴.ଵ଼ఊ೎ ·  𝑘 · ቂ100 · 𝜌ଵ ቀ1 + 7.5 ௙ಷ೟ೠೖ௙೎೟ೖ ቁ · 𝑓௖௞ቃଵ ଷൗ + 0.15 · Ϭ௖௣ቋ · 𝑏௪ · 𝑑 [N] (8)

where terms such as 𝑘, 𝜌ଵ, Ϭ௖௣, 𝑏௪, and 𝑑 are defined similar to RILEM TC 162-TDF, 2003 
[5]; 𝛾௖ is a partial safety factor for concrete with no fibers (recommended to be taken as 
1.5); 𝑓ி௧௨௞ is the characteristic value of ultimate residual tensile strength calculated as fol-
lows: 𝑓ி௧௨௞ = 𝑓ோ,ଷ3  [MPa] (9)𝑓ி௧௨௞ =  𝑓ி௧௦ − 𝑤௨𝐶𝑀𝑂𝐷ଷ  ൫𝑓ி௧௦ − 0.5 𝑓ோ,ଷ + 0.2 𝑓ோ,ଵ൯ ≥ 0 [MPa] (10)𝑓ி௧௦ = 0.45 𝑓ோ,ଵ [MPa] (11)

Similar to the RILEM TC 162-TDF, 2003 [5] model, 𝑓ோ,ଵ and 𝑓ோ,ଷ are the residual flex-
ural tensile strengths corresponding to CMOD of 0.5 mm and 3.5 mm, respectively [MPa]; 𝑓ி௧௦ is the characteristic residual tensile strength (post-cracking strength at serviceability 
crack opening) [MPa]; 𝑤௨ is the maximum crack opening that is acceptable in structural 
design (recommended to be taken as 1.5 mm); 𝑓ி௧௨௞ is determined according to the rigid-
plastic model Equation (9), or the linear model based on Equations (10) and (11); 𝑓௖௧௞ is the 
characteristic tensile strength of concrete containing no fibers [MPa] and can be deter-
mined as follows: 

cp

fck
, for
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flexural tensile strength of the prism corresponding to the crack mouth opening displace-
ment (CMOD) of 3.5 mm [MPa]. Residual flexural tensile strengths (𝑓ோ,௜) are estimated by 
a three-point bending test on a 150 × 150 × 550 mm notched prism. The stress versus strain 
behavior is obtained from the load-deflection or load-CMOD relation of the prism. The 
load-CMOD curve is defined using four points (𝑖 = 1 through 4) that corresponds to the 
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width [mm]; ℎ௦௣ is the depth between the notch tip to the extreme compression fibers of 
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𝜌ଵ =  𝐴௟𝑏௪ 𝑑 (6)

Ϭ௖௣ =  𝑁௦ௗ𝐴௖  [MPa] (7)

where 𝜌ଵ is the ratio of longitudinal reinforcement (recommended not to be taken greater 
than 2%); 𝐴௟ is the area of tension reinforcement extending at least (𝑑 + anchorage length) 
beyond the considered section [mm2]; 𝑓௖௞  is the cylinder characteristic compressive 
strength [MPa]; Ϭ௖௣ is the factor to account for the level of axial loading or prestressing in 
the beam [MPa]; 𝑁ௌௗ is the axial force in the section due to loading or prestressing (posi-
tive for compression) [N]; 𝐴஼ is the area of the beam cross-section [mm2]. 

2.1.2. Fib Model Code, 2010 
This prediction model is developed for steel fiber-reinforced conventional concrete 

and is not validated yet for UHPC. The approach bears some similarities to the RILEM TC 
162-TDF, 2003 [5] prediction model with the exception of having the steel fibers contribu-
tion coupled with the concrete contribution in one term (𝑉ோௗ,ி) as follows:  𝑉ோௗ,ி =  ቊ଴.ଵ଼ఊ೎ ·  𝑘 · ቂ100 · 𝜌ଵ ቀ1 + 7.5 ௙ಷ೟ೠೖ௙೎೟ೖ ቁ · 𝑓௖௞ቃଵ ଷൗ + 0.15 · Ϭ௖௣ቋ · 𝑏௪ · 𝑑 [N] (8)

where terms such as 𝑘, 𝜌ଵ, Ϭ௖௣, 𝑏௪, and 𝑑 are defined similar to RILEM TC 162-TDF, 2003 
[5]; 𝛾௖ is a partial safety factor for concrete with no fibers (recommended to be taken as 
1.5); 𝑓ி௧௨௞ is the characteristic value of ultimate residual tensile strength calculated as fol-
lows: 𝑓ி௧௨௞ = 𝑓ோ,ଷ3  [MPa] (9)𝑓ி௧௨௞ =  𝑓ி௧௦ − 𝑤௨𝐶𝑀𝑂𝐷ଷ  ൫𝑓ி௧௦ − 0.5 𝑓ோ,ଷ + 0.2 𝑓ோ,ଵ൯ ≥ 0 [MPa] (10)𝑓ி௧௦ = 0.45 𝑓ோ,ଵ [MPa] (11)

Similar to the RILEM TC 162-TDF, 2003 [5] model, 𝑓ோ,ଵ and 𝑓ோ,ଷ are the residual flex-
ural tensile strengths corresponding to CMOD of 0.5 mm and 3.5 mm, respectively [MPa]; 𝑓ி௧௦ is the characteristic residual tensile strength (post-cracking strength at serviceability 
crack opening) [MPa]; 𝑤௨ is the maximum crack opening that is acceptable in structural 
design (recommended to be taken as 1.5 mm); 𝑓ி௧௨௞ is determined according to the rigid-
plastic model Equation (9), or the linear model based on Equations (10) and (11); 𝑓௖௧௞ is the 
characteristic tensile strength of concrete containing no fibers [MPa] and can be deter-
mined as follows: 

cp ≥ 0 (15)

The terms k, fck, bw, and
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where 𝜌ଵ is the ratio of longitudinal reinforcement (recommended not to be taken greater 
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2.1.2. Fib Model Code, 2010 
This prediction model is developed for steel fiber-reinforced conventional concrete 

and is not validated yet for UHPC. The approach bears some similarities to the RILEM TC 
162-TDF, 2003 [5] prediction model with the exception of having the steel fibers contribu-
tion coupled with the concrete contribution in one term (𝑉ோௗ,ி) as follows:  𝑉ோௗ,ி =  ቊ଴.ଵ଼ఊ೎ ·  𝑘 · ቂ100 · 𝜌ଵ ቀ1 + 7.5 ௙ಷ೟ೠೖ௙೎೟ೖ ቁ · 𝑓௖௞ቃଵ ଷൗ + 0.15 · Ϭ௖௣ቋ · 𝑏௪ · 𝑑 [N] (8)

where terms such as 𝑘, 𝜌ଵ, Ϭ௖௣, 𝑏௪, and 𝑑 are defined similar to RILEM TC 162-TDF, 2003 
[5]; 𝛾௖ is a partial safety factor for concrete with no fibers (recommended to be taken as 
1.5); 𝑓ி௧௨௞ is the characteristic value of ultimate residual tensile strength calculated as fol-
lows: 𝑓ி௧௨௞ = 𝑓ோ,ଷ3  [MPa] (9)𝑓ி௧௨௞ =  𝑓ி௧௦ − 𝑤௨𝐶𝑀𝑂𝐷ଷ  ൫𝑓ி௧௦ − 0.5 𝑓ோ,ଷ + 0.2 𝑓ோ,ଵ൯ ≥ 0 [MPa] (10)𝑓ி௧௦ = 0.45 𝑓ோ,ଵ [MPa] (11)

Similar to the RILEM TC 162-TDF, 2003 [5] model, 𝑓ோ,ଵ and 𝑓ோ,ଷ are the residual flex-
ural tensile strengths corresponding to CMOD of 0.5 mm and 3.5 mm, respectively [MPa]; 𝑓ி௧௦ is the characteristic residual tensile strength (post-cracking strength at serviceability 
crack opening) [MPa]; 𝑤௨ is the maximum crack opening that is acceptable in structural 
design (recommended to be taken as 1.5 mm); 𝑓ி௧௨௞ is determined according to the rigid-
plastic model Equation (9), or the linear model based on Equations (10) and (11); 𝑓௖௧௞ is the 
characteristic tensile strength of concrete containing no fibers [MPa] and can be deter-
mined as follows: 

cp are defined similarly to the terms in the previous models;
The partial safety factors γc f and γE are recommended to be taken as 1.5 after being
multiplied; γc f is a factor for UHPC in tension recommended to be taken as 1.3, and γE
is a factor to account for the uncertainty in extrapolating the model developed for high
performance concrete to UHPC; (z) is the lever arm of the internal moment in the cross-
section (typically taken as 90% of the section depth). A larger number of test data is required
to lower the safety factors used in the calculation of concrete contribution. The contribution
term of fibers is calculated by quantifying the post-crack residual tensile strength resisting
the main crack across the angle θ across z as shown in Figure 1 [16].
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Figure 1. Tensile stresses carried by steel fibers in a beam cross-section according to the Modified
Compression Field Theory [16].

Fiber contribution term is calculated as follows:

VRd, f =
A f v
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where 𝜌ଵ is the ratio of longitudinal reinforcement (recommended not to be taken greater 
than 2%); 𝐴௟ is the area of tension reinforcement extending at least (𝑑 + anchorage length) 
beyond the considered section [mm2]; 𝑓௖௞  is the cylinder characteristic compressive 
strength [MPa]; Ϭ௖௣ is the factor to account for the level of axial loading or prestressing in 
the beam [MPa]; 𝑁ௌௗ is the axial force in the section due to loading or prestressing (posi-
tive for compression) [N]; 𝐴஼ is the area of the beam cross-section [mm2]. 

2.1.2. Fib Model Code, 2010 
This prediction model is developed for steel fiber-reinforced conventional concrete 

and is not validated yet for UHPC. The approach bears some similarities to the RILEM TC 
162-TDF, 2003 [5] prediction model with the exception of having the steel fibers contribu-
tion coupled with the concrete contribution in one term (𝑉ோௗ,ி) as follows:  𝑉ோௗ,ி =  ቊ଴.ଵ଼ఊ೎ ·  𝑘 · ቂ100 · 𝜌ଵ ቀ1 + 7.5 ௙ಷ೟ೠೖ௙೎೟ೖ ቁ · 𝑓௖௞ቃଵ ଷൗ + 0.15 · Ϭ௖௣ቋ · 𝑏௪ · 𝑑 [N] (8)

where terms such as 𝑘, 𝜌ଵ, Ϭ௖௣, 𝑏௪, and 𝑑 are defined similar to RILEM TC 162-TDF, 2003 
[5]; 𝛾௖ is a partial safety factor for concrete with no fibers (recommended to be taken as 
1.5); 𝑓ி௧௨௞ is the characteristic value of ultimate residual tensile strength calculated as fol-
lows: 𝑓ி௧௨௞ = 𝑓ோ,ଷ3  [MPa] (9)𝑓ி௧௨௞ =  𝑓ி௧௦ − 𝑤௨𝐶𝑀𝑂𝐷ଷ  ൫𝑓ி௧௦ − 0.5 𝑓ோ,ଷ + 0.2 𝑓ோ,ଵ൯ ≥ 0 [MPa] (10)𝑓ி௧௦ = 0.45 𝑓ோ,ଵ [MPa] (11)

Similar to the RILEM TC 162-TDF, 2003 [5] model, 𝑓ோ,ଵ and 𝑓ோ,ଷ are the residual flex-
ural tensile strengths corresponding to CMOD of 0.5 mm and 3.5 mm, respectively [MPa]; 𝑓ி௧௦ is the characteristic residual tensile strength (post-cracking strength at serviceability 
crack opening) [MPa]; 𝑤௨ is the maximum crack opening that is acceptable in structural 
design (recommended to be taken as 1.5 mm); 𝑓ி௧௨௞ is determined according to the rigid-
plastic model Equation (9), or the linear model based on Equations (10) and (11); 𝑓௖௧௞ is the 
characteristic tensile strength of concrete containing no fibers [MPa] and can be deter-
mined as follows: 

Rd, f

tan(θ)
[N] (16)
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and is not validated yet for UHPC. The approach bears some similarities to the RILEM TC 
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Similar to the RILEM TC 162-TDF, 2003 [5] model, 𝑓ோ,ଵ and 𝑓ோ,ଷ are the residual flex-
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K γc f

1
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where 𝜌ଵ is the ratio of longitudinal reinforcement (recommended not to be taken greater 
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the beam [MPa]; 𝑁ௌௗ is the axial force in the section due to loading or prestressing (posi-
tive for compression) [N]; 𝐴஼ is the area of the beam cross-section [mm2]. 

2.1.2. Fib Model Code, 2010 
This prediction model is developed for steel fiber-reinforced conventional concrete 

and is not validated yet for UHPC. The approach bears some similarities to the RILEM TC 
162-TDF, 2003 [5] prediction model with the exception of having the steel fibers contribu-
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Similar to the RILEM TC 162-TDF, 2003 [5] model, 𝑓ோ,ଵ and 𝑓ோ,ଷ are the residual flex-
ural tensile strengths corresponding to CMOD of 0.5 mm and 3.5 mm, respectively [MPa]; 𝑓ி௧௦ is the characteristic residual tensile strength (post-cracking strength at serviceability 
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f (w)·dw [MPa] (17)

where A f v is the area where the fibers are effective (A f v = bw z) [mm2];

Materials 2022, 15, x FOR PEER REVIEW 3 of 26 
 

 

flexural tensile strength of the prism corresponding to the crack mouth opening displace-
ment (CMOD) of 3.5 mm [MPa]. Residual flexural tensile strengths (𝑓ோ,௜) are estimated by 
a three-point bending test on a 150 × 150 × 550 mm notched prism. The stress versus strain 
behavior is obtained from the load-deflection or load-CMOD relation of the prism. The 
load-CMOD curve is defined using four points (𝑖 = 1 through 4) that corresponds to the 
CMOD of 0.5, 1.5, 2.5, and 3.5 mm, respectively. 𝑓ோ,௜ is calculated as follows: 𝑓ோ,௜ =  3 𝐹ோ,௜ 𝑥 𝐿2𝑏 𝑥 ℎ௦௣ଶ  [MPa] (4)

where 𝐹ோ,௜ is the measured load at (CMODi) [N]; 𝐿 is the prism span [mm]; 𝑏 is the prism 
width [mm]; ℎ௦௣ is the depth between the notch tip to the extreme compression fibers of 
the prism cross-section [mm]. 

The concrete contribution is calculated according to Equation (5). 𝑉௖ௗ =  ൤0.12 𝑘 (100 𝜌ଵ 𝑓௖௞)ଵଷ + 0.15 Ϭ௖௣൨ 𝑏௪ 𝑑 [N] (5)

𝜌ଵ =  𝐴௟𝑏௪ 𝑑 (6)

Ϭ௖௣ =  𝑁௦ௗ𝐴௖  [MPa] (7)
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Rd, f is the residual
tensile strength of the fiber-reinforced member [MPa]; θ is the angle between the principal
compression stress and beam axis in degrees, and is recommended not to be taken less
than 30 degrees;
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Rd, f is estimated as the area under the stress-crack width curve of a
3-point bending test; K is a reduction factor to account for the difference between fibers
orientation of the prism and that of the structure; the K factor is recommended to be taken
between 1.0 to 1.4; wlim is the maximum crack width reached at the ultimate bending
moment, or the admissible crack width (recommended as 0.3 mm). The dimensions of the
flexure test prism depend on the length of fibers (lf). For (lf ≤ 15 mm), 70 × 70 × 280 mm
prisms are recommended, and for (15 mm < lf ≤ 20 mm), 100 × 100 × 380 mm prisms are
recommended to be used. The depth of the notch is equal to 10% of the prism height to
allow for an efficient localization of the crack, and to minimize the risk of cracking outside
the notch location. The distance between the two bearing points must be three times the
depth of the prism. The residual tensile strength can be also calculated from direct tension
tests on un-notched prisms.

2.1.4. PCI-UHPC Structures Design Guide, 2021

The Precast/Prestressed Concrete Institute (PCI) recently published Phase II report for
the implementation of using UHPC in precast bridges and buildings. The report provides
guidelines for the design of UHPC members, as well as acceptance criteria for PCI-UHPC
material mechanical properties and production. The model presented in the report is based
on the MCFT and A AASHTO LRFD [14]. The ultimate shear load carrying capacity (Vn) is
taken as the sum of the contributions of UHPC tensile strength (Vc f ), shear reinforcement
(Vs), and the component of prestressing force resisting vertical shear (Vp). Vc f is calculated
according to the following equation:

Vc f = 1.33 frr bw d cot(θ) [N] (18)

where frr is the residual tensile strength of UHPC and recommended to be taken as 5.2 MPa
for UHPC meeting minimum PCI-UHPC tensile properties requirements; this value was
calculated based on the minimum required peak flexural strength according to ASTM
C1609 [17] of 13.8 MPa multiplied by a 0.375 conversion factor according to [18,19]. Other
parameters are similar to what was described in the previous models. The crack angle is
estimated according to the following equations:

θ = 29 + 3500 Es (19)

where Es is the strain at the level of tension reinforcement and calculated as follows for
positive values of Es:

Es =

(
Mu
d

)
+
(
Vu −Vp

)
− Pe(

Es As + Ep Aps
) ≤ 0.006 (20)

where Mu and Vu are the applied factored moment and vertical shear at the critical section
under consideration; Pe is the effective axial prestressing force acting on the section; Es and
Ep are the moduli of elasticity of reinforcing and prestressing steel, respectively; As and
Aps are the area of reinforcing and prestressing steel, respectively. For negative values of Es
the equation becomes as follows:

Es =

(
Mu
d

)
+
(
Vu −Vp

)
− Pe(

Es As + Ep Aps + Ec Act
) ≥ −0.0004 (21)
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where Ec is the UHPC modulus of elasticity, and Act is the area of UHPC on the flexural
tension side of the member measured from the mid-height of the section. The upper and
lower bounds of Es are selected to provide an angle between 27.6 and 50.0 degrees. It should
be noted that this model is based on the load and resistance factor design which utilizes
a strength reduction factor and a load magnification factor. Strength reduction factors
were not considered when the shear strength was predicted using the model in that paper.
Furthermore, the model assumes proper reinforcement is provided and developed in the
flexural tension side of the critical section to achieve the full diagonal tension strength.

2.1.5. Draft of AASHTO Guide Specification for Structural Design with UHPC, 2021

A draft guide specification for the design of concrete elements fabricated with UHPC
is currently being considered by the AASHTO CBS T-10 committee to be included in the
next revision of the AASHTO LRFD [14]. The document was developed by the Federal
Highway Administration (FHWA) Turner-Fairbank Highway Research Center. Similar to
the French standard [7] and AASHTO LRFD [14], the model is based on the MCFT with
the analysis of the principal strains at critical sections. The nominal shear resistance of a
member (Vn) is taken as the sum of the contributions of UHPC tensile strength (VUHPC),
shear reinforcement (Vs), and component of prestressing force resisting vertical shear (Vp).
VUHPC is calculated according to the following equation:

VUHPC = γ ft,loc bw d cot(θ) [N] (22)

where γ is a reduction factor to account for the variability of tensile stresses carried by
UHPC (recommended not to exceed 0.85), ft,loc is the localization tensile strength of UHPC
estimated by means of direct tension testing on 50 × 50 mm2 prisms, and other parameters
are similar to what was described before. The crack angle (θ) in this model is limited to a
range from 25 to 45 degrees, and is estimated according to the following equations:

Et,loc =
Es

2

(
1 + cot2 θ

)
+

2 ft,loc

Ec
cot4 θ+

2ρv fv

Ec
sin α cot2θ [1 + cot2 θ + cot α(tan θ + cot θ)] (23)

E2 = −
2 ft,loc

Ec
cot2θ − 2ρv fv

Ec
sin α [1 + cot2 θ + cot α(tan θ + cot θ)] (24)

Ev = Et,loc − 0.5 Es + E2 (25)

fv = Es Ev ≤ fy (26)

where Et,loc is the localization strain obtained by the direct tension testing when the tensile
stresses carried by the UHPC prism start to decrease consistently, and recommended to be
taken between 0.004 to 0.010 [20–22]; Es is longitudinal strain at the level of reinforcement
calculated as follows:

Es =

|Mu |
dv

+ 0.5 Nu + |Vu −VP| − Aps fpo − γ ft,loc Act

Es As + Ep Aps
(27)

where |Mu| is the absolute value of the factored moment at the design section, not to be
taken as less than |Vu −VP|dv; Nu is the factored axial force at the design section, taken
as positive if tension and negative if compression; Vu is the factored shear force at the
design section; Aps and As are the area of prestressing steel and non-prestressed steel,
respectively, in the flexural tension side of the member; fpo is the parameter taken as
modulus of elasticity of prestressing steel multiplied by the locked-in difference in strain
between the prestressing steel and surrounding UHPC and could be taken as 70% of the
ultimate tensile strength of the strands for appropriate levels of prestressing; Act is the area
of UHPC in the flexural tension side of the member; Es and Ep are the moduli of elasticity
of non-prestressed and prestressing steel respectively; ρv is the transverse reinforcement
ratio calculated as the area of transverse reinforcement divided by bar spacing and web
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width; fv is the stress in transverse reinforcement; E2 is the diagonal compressive strain in
the section; and Ev is the vertical strain in transverse reinforcement at the design section.
Similar to the PCI-UHPC model, this model is based on the load and resistance factor
design and the model also assumes proper reinforcement is provided and developed in the
flexural tension side of the critical section.

2.2. Shear Experiments

Tables A1 and A2 present a summary of the shear experiments conducted on pre-
stressed and non-prestressed UHPC beams, respectively. All test data were conducted on
beams without transverse reinforcement. Figure 2 shows a schematic of the cross-sections
of the prestressed beams, whereas Figure 3 shows that of non-prestressed beams. This
data was collected from 16 research programs conducted on UHPC beams reinforced
longitudinally with mild reinforcement (yield strength ranging from 400 to 600 MPa or
prestressing strands (tensile strength ranging from 1700 to 1860 MPa). All UHPC mixes
in these experiments had straight fibers that have a tensile strength ranging from 1800 to
2600 MPa, except for Voo et al., 2006 [23] who used a mix of straight- and end-hooked fibers
in some tests.

Hegger et al., 2004 [24], performed one test on an I-shaped beam to investigate the
bond anchorage behavior and shear strength of the section. Some slippage occurred at
the bottom strands and the utilization of the prestressing force was nearly 80% at failure.
Voo et al., 2006 [23] conducted seven tests where the combined fiber volume fraction
was 2.5% for all beams except SB4 which had 1.25%. The used fibers were a combi-
nation of straight- (type I) and end-hooked (type II) types. Specimens SB1, SB2, and
SB3 only contained type I fibers, whereas specimens SB4, SB5, and SB7 contained 1.25%,
1%, 0.62% type II fibers, respectively, and specimen SB6 contained only type II fibers.
Hegger and Bertram, 2008 [25], conducted shear tests on prestressed I-shaped beams to
estimate the bond anchorage of strands and the shear capacity of the section with and
without openings in the web. Five beams without web openings were only considered in
this study.

Crane, 2010 [15], conducted six tests on bulb-tee girders having a depth of 835 mm,
and a 200 mm cast in place of a high-performance concrete deck having a compressive
strength of 84 MPa was placed on the beams. Because of the significant differences in
concrete properties between the deck and UHPC girder, the effective shear depth was based
only on the girder and not the composite section. Lim et al., 2016 [26], conducted shear
tests on rectangular beams and the primary test variable was the shear reinforcement ratio.
Only one specimen (out of four) that did not contain any shear reinforcement and failed in
diagonal tension was included in this study.
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Figure 2. Girder cross-sections of the shear test data of prestressed beams (units in millimeter).
(a) Hegger et al., 2004 [24]. (b) Voo et al., 2006 [23]. (c) Graybeal, 2006 [27]. (d) Hegger and Bertram, 2008 [25].
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(i) Tadros et al., 2021 [8]. (j) Tadros et al., 2021 [8].
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All the specimens had a shear span to depth ratio of at least 2.3 and experienced a
diagonal tension failure. Diagonal tension failure in UHPC beams typically starts with
several narrow and closely spaced cracks parallel to the failure crack angle. One of these
cracks starts to grow wider and longer with the increase of load until failure [27]. The
unreported crack angles (θ) were reasonably estimated based on failure photos, whereas
post-cracking residual tensile strengths (
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3. Results

This section presents the parametric study done on the shear experiments discussed
earlier. Then comparison against prediction models is presented for the five models.
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3.1. Shear Strength Parameters

Test data listed in Table A1 were used to evaluate the effect of key parameters, such
as compressive strength, fiber content, tensile strength, and level of prestressing, on the
shear strength of prestressed UHPC beams. Figure 4a–d plots

[
fc
′]0.5, Vf ,
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𝜌ଵ =  𝐴௟𝑏௪ 𝑑 (6)

Ϭ௖௣ =  𝑁௦ௗ𝐴௖  [MPa] (7)

where 𝜌ଵ is the ratio of longitudinal reinforcement (recommended not to be taken greater 
than 2%); 𝐴௟ is the area of tension reinforcement extending at least (𝑑 + anchorage length) 
beyond the considered section [mm2]; 𝑓௖௞  is the cylinder characteristic compressive 
strength [MPa]; Ϭ௖௣ is the factor to account for the level of axial loading or prestressing in 
the beam [MPa]; 𝑁ௌௗ is the axial force in the section due to loading or prestressing (posi-
tive for compression) [N]; 𝐴஼ is the area of the beam cross-section [mm2]. 

2.1.2. Fib Model Code, 2010 
This prediction model is developed for steel fiber-reinforced conventional concrete 

and is not validated yet for UHPC. The approach bears some similarities to the RILEM TC 
162-TDF, 2003 [5] prediction model with the exception of having the steel fibers contribu-
tion coupled with the concrete contribution in one term (𝑉ோௗ,ி) as follows:  𝑉ோௗ,ி =  ቊ଴.ଵ଼ఊ೎ ·  𝑘 · ቂ100 · 𝜌ଵ ቀ1 + 7.5 ௙ಷ೟ೠೖ௙೎೟ೖ ቁ · 𝑓௖௞ቃଵ ଷൗ + 0.15 · Ϭ௖௣ቋ · 𝑏௪ · 𝑑 [N] (8)

where terms such as 𝑘, 𝜌ଵ, Ϭ௖௣, 𝑏௪, and 𝑑 are defined similar to RILEM TC 162-TDF, 2003 
[5]; 𝛾௖ is a partial safety factor for concrete with no fibers (recommended to be taken as 
1.5); 𝑓ி௧௨௞ is the characteristic value of ultimate residual tensile strength calculated as fol-
lows: 𝑓ி௧௨௞ = 𝑓ோ,ଷ3  [MPa] (9)𝑓ி௧௨௞ =  𝑓ி௧௦ − 𝑤௨𝐶𝑀𝑂𝐷ଷ  ൫𝑓ி௧௦ − 0.5 𝑓ோ,ଷ + 0.2 𝑓ோ,ଵ൯ ≥ 0 [MPa] (10)𝑓ி௧௦ = 0.45 𝑓ோ,ଵ [MPa] (11)

Similar to the RILEM TC 162-TDF, 2003 [5] model, 𝑓ோ,ଵ and 𝑓ோ,ଷ are the residual flex-
ural tensile strengths corresponding to CMOD of 0.5 mm and 3.5 mm, respectively [MPa]; 𝑓ி௧௦ is the characteristic residual tensile strength (post-cracking strength at serviceability 
crack opening) [MPa]; 𝑤௨ is the maximum crack opening that is acceptable in structural 
design (recommended to be taken as 1.5 mm); 𝑓ி௧௨௞ is determined according to the rigid-
plastic model Equation (9), or the linear model based on Equations (10) and (11); 𝑓௖௧௞ is the 
characteristic tensile strength of concrete containing no fibers [MPa] and can be deter-
mined as follows: 
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flexural tensile strength of the prism corresponding to the crack mouth opening displace-
ment (CMOD) of 3.5 mm [MPa]. Residual flexural tensile strengths (𝑓ோ,௜) are estimated by 
a three-point bending test on a 150 × 150 × 550 mm notched prism. The stress versus strain 
behavior is obtained from the load-deflection or load-CMOD relation of the prism. The 
load-CMOD curve is defined using four points (𝑖 = 1 through 4) that corresponds to the 
CMOD of 0.5, 1.5, 2.5, and 3.5 mm, respectively. 𝑓ோ,௜ is calculated as follows: 𝑓ோ,௜ =  3 𝐹ோ,௜ 𝑥 𝐿2𝑏 𝑥 ℎ௦௣ଶ  [MPa] (4)

where 𝐹ோ,௜ is the measured load at (CMODi) [N]; 𝐿 is the prism span [mm]; 𝑏 is the prism 
width [mm]; ℎ௦௣ is the depth between the notch tip to the extreme compression fibers of 
the prism cross-section [mm]. 

The concrete contribution is calculated according to Equation (5). 𝑉௖ௗ =  ൤0.12 𝑘 (100 𝜌ଵ 𝑓௖௞)ଵଷ + 0.15 Ϭ௖௣൨ 𝑏௪ 𝑑 [N] (5)

𝜌ଵ =  𝐴௟𝑏௪ 𝑑 (6)

Ϭ௖௣ =  𝑁௦ௗ𝐴௖  [MPa] (7)

where 𝜌ଵ is the ratio of longitudinal reinforcement (recommended not to be taken greater 
than 2%); 𝐴௟ is the area of tension reinforcement extending at least (𝑑 + anchorage length) 
beyond the considered section [mm2]; 𝑓௖௞  is the cylinder characteristic compressive 
strength [MPa]; Ϭ௖௣ is the factor to account for the level of axial loading or prestressing in 
the beam [MPa]; 𝑁ௌௗ is the axial force in the section due to loading or prestressing (posi-
tive for compression) [N]; 𝐴஼ is the area of the beam cross-section [mm2]. 

2.1.2. Fib Model Code, 2010 
This prediction model is developed for steel fiber-reinforced conventional concrete 

and is not validated yet for UHPC. The approach bears some similarities to the RILEM TC 
162-TDF, 2003 [5] prediction model with the exception of having the steel fibers contribu-
tion coupled with the concrete contribution in one term (𝑉ோௗ,ி) as follows:  𝑉ோௗ,ி =  ቊ଴.ଵ଼ఊ೎ ·  𝑘 · ቂ100 · 𝜌ଵ ቀ1 + 7.5 ௙ಷ೟ೠೖ௙೎೟ೖ ቁ · 𝑓௖௞ቃଵ ଷൗ + 0.15 · Ϭ௖௣ቋ · 𝑏௪ · 𝑑 [N] (8)

where terms such as 𝑘, 𝜌ଵ, Ϭ௖௣, 𝑏௪, and 𝑑 are defined similar to RILEM TC 162-TDF, 2003 
[5]; 𝛾௖ is a partial safety factor for concrete with no fibers (recommended to be taken as 
1.5); 𝑓ி௧௨௞ is the characteristic value of ultimate residual tensile strength calculated as fol-
lows: 𝑓ி௧௨௞ = 𝑓ோ,ଷ3  [MPa] (9)𝑓ி௧௨௞ =  𝑓ி௧௦ − 𝑤௨𝐶𝑀𝑂𝐷ଷ  ൫𝑓ி௧௦ − 0.5 𝑓ோ,ଷ + 0.2 𝑓ோ,ଵ൯ ≥ 0 [MPa] (10)𝑓ி௧௦ = 0.45 𝑓ோ,ଵ [MPa] (11)

Similar to the RILEM TC 162-TDF, 2003 [5] model, 𝑓ோ,ଵ and 𝑓ோ,ଷ are the residual flex-
ural tensile strengths corresponding to CMOD of 0.5 mm and 3.5 mm, respectively [MPa]; 𝑓ி௧௦ is the characteristic residual tensile strength (post-cracking strength at serviceability 
crack opening) [MPa]; 𝑤௨ is the maximum crack opening that is acceptable in structural 
design (recommended to be taken as 1.5 mm); 𝑓ி௧௨௞ is determined according to the rigid-
plastic model Equation (9), or the linear model based on Equations (10) and (11); 𝑓௖௧௞ is the 
characteristic tensile strength of concrete containing no fibers [MPa] and can be deter-
mined as follows: 

cp, respectively, versus measured shear strength. These plots indicate there is no strong
correlation between any of these parameters and the shear strength of prestressed UHPC
beams. Correlation coefficients were calculated using the Pearson correlation test and were
found to be 0.05, 0.36, 0.44, and 0.33 for
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flexural tensile strength of the prism corresponding to the crack mouth opening displace-
ment (CMOD) of 3.5 mm [MPa]. Residual flexural tensile strengths (𝑓ோ,௜) are estimated by 
a three-point bending test on a 150 × 150 × 550 mm notched prism. The stress versus strain 
behavior is obtained from the load-deflection or load-CMOD relation of the prism. The 
load-CMOD curve is defined using four points (𝑖 = 1 through 4) that corresponds to the 
CMOD of 0.5, 1.5, 2.5, and 3.5 mm, respectively. 𝑓ோ,௜ is calculated as follows: 𝑓ோ,௜ =  3 𝐹ோ,௜ 𝑥 𝐿2𝑏 𝑥 ℎ௦௣ଶ  [MPa] (4)

where 𝐹ோ,௜ is the measured load at (CMODi) [N]; 𝐿 is the prism span [mm]; 𝑏 is the prism 
width [mm]; ℎ௦௣ is the depth between the notch tip to the extreme compression fibers of 
the prism cross-section [mm]. 

The concrete contribution is calculated according to Equation (5). 𝑉௖ௗ =  ൤0.12 𝑘 (100 𝜌ଵ 𝑓௖௞)ଵଷ + 0.15 Ϭ௖௣൨ 𝑏௪ 𝑑 [N] (5)

𝜌ଵ =  𝐴௟𝑏௪ 𝑑 (6)

Ϭ௖௣ =  𝑁௦ௗ𝐴௖  [MPa] (7)

where 𝜌ଵ is the ratio of longitudinal reinforcement (recommended not to be taken greater 
than 2%); 𝐴௟ is the area of tension reinforcement extending at least (𝑑 + anchorage length) 
beyond the considered section [mm2]; 𝑓௖௞  is the cylinder characteristic compressive 
strength [MPa]; Ϭ௖௣ is the factor to account for the level of axial loading or prestressing in 
the beam [MPa]; 𝑁ௌௗ is the axial force in the section due to loading or prestressing (posi-
tive for compression) [N]; 𝐴஼ is the area of the beam cross-section [mm2]. 

2.1.2. Fib Model Code, 2010 
This prediction model is developed for steel fiber-reinforced conventional concrete 

and is not validated yet for UHPC. The approach bears some similarities to the RILEM TC 
162-TDF, 2003 [5] prediction model with the exception of having the steel fibers contribu-
tion coupled with the concrete contribution in one term (𝑉ோௗ,ி) as follows:  𝑉ோௗ,ி =  ቊ଴.ଵ଼ఊ೎ ·  𝑘 · ቂ100 · 𝜌ଵ ቀ1 + 7.5 ௙ಷ೟ೠೖ௙೎೟ೖ ቁ · 𝑓௖௞ቃଵ ଷൗ + 0.15 · Ϭ௖௣ቋ · 𝑏௪ · 𝑑 [N] (8)

where terms such as 𝑘, 𝜌ଵ, Ϭ௖௣, 𝑏௪, and 𝑑 are defined similar to RILEM TC 162-TDF, 2003 
[5]; 𝛾௖ is a partial safety factor for concrete with no fibers (recommended to be taken as 
1.5); 𝑓ி௧௨௞ is the characteristic value of ultimate residual tensile strength calculated as fol-
lows: 𝑓ி௧௨௞ = 𝑓ோ,ଷ3  [MPa] (9)𝑓ி௧௨௞ =  𝑓ி௧௦ − 𝑤௨𝐶𝑀𝑂𝐷ଷ  ൫𝑓ி௧௦ − 0.5 𝑓ோ,ଷ + 0.2 𝑓ோ,ଵ൯ ≥ 0 [MPa] (10)𝑓ி௧௦ = 0.45 𝑓ோ,ଵ [MPa] (11)

Similar to the RILEM TC 162-TDF, 2003 [5] model, 𝑓ோ,ଵ and 𝑓ோ,ଷ are the residual flex-
ural tensile strengths corresponding to CMOD of 0.5 mm and 3.5 mm, respectively [MPa]; 𝑓ி௧௦ is the characteristic residual tensile strength (post-cracking strength at serviceability 
crack opening) [MPa]; 𝑤௨ is the maximum crack opening that is acceptable in structural 
design (recommended to be taken as 1.5 mm); 𝑓ி௧௨௞ is determined according to the rigid-
plastic model Equation (9), or the linear model based on Equations (10) and (11); 𝑓௖௧௞ is the 
characteristic tensile strength of concrete containing no fibers [MPa] and can be deter-
mined as follows: 
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flexural tensile strength of the prism corresponding to the crack mouth opening displace-
ment (CMOD) of 3.5 mm [MPa]. Residual flexural tensile strengths (𝑓ோ,௜) are estimated by 
a three-point bending test on a 150 × 150 × 550 mm notched prism. The stress versus strain 
behavior is obtained from the load-deflection or load-CMOD relation of the prism. The 
load-CMOD curve is defined using four points (𝑖 = 1 through 4) that corresponds to the 
CMOD of 0.5, 1.5, 2.5, and 3.5 mm, respectively. 𝑓ோ,௜ is calculated as follows: 𝑓ோ,௜ =  3 𝐹ோ,௜ 𝑥 𝐿2𝑏 𝑥 ℎ௦௣ଶ  [MPa] (4)

where 𝐹ோ,௜ is the measured load at (CMODi) [N]; 𝐿 is the prism span [mm]; 𝑏 is the prism 
width [mm]; ℎ௦௣ is the depth between the notch tip to the extreme compression fibers of 
the prism cross-section [mm]. 

The concrete contribution is calculated according to Equation (5). 𝑉௖ௗ =  ൤0.12 𝑘 (100 𝜌ଵ 𝑓௖௞)ଵଷ + 0.15 Ϭ௖௣൨ 𝑏௪ 𝑑 [N] (5)

𝜌ଵ =  𝐴௟𝑏௪ 𝑑 (6)

Ϭ௖௣ =  𝑁௦ௗ𝐴௖  [MPa] (7)

where 𝜌ଵ is the ratio of longitudinal reinforcement (recommended not to be taken greater 
than 2%); 𝐴௟ is the area of tension reinforcement extending at least (𝑑 + anchorage length) 
beyond the considered section [mm2]; 𝑓௖௞  is the cylinder characteristic compressive 
strength [MPa]; Ϭ௖௣ is the factor to account for the level of axial loading or prestressing in 
the beam [MPa]; 𝑁ௌௗ is the axial force in the section due to loading or prestressing (posi-
tive for compression) [N]; 𝐴஼ is the area of the beam cross-section [mm2]. 

2.1.2. Fib Model Code, 2010 
This prediction model is developed for steel fiber-reinforced conventional concrete 

and is not validated yet for UHPC. The approach bears some similarities to the RILEM TC 
162-TDF, 2003 [5] prediction model with the exception of having the steel fibers contribu-
tion coupled with the concrete contribution in one term (𝑉ோௗ,ி) as follows:  𝑉ோௗ,ி =  ቊ଴.ଵ଼ఊ೎ ·  𝑘 · ቂ100 · 𝜌ଵ ቀ1 + 7.5 ௙ಷ೟ೠೖ௙೎೟ೖ ቁ · 𝑓௖௞ቃଵ ଷൗ + 0.15 · Ϭ௖௣ቋ · 𝑏௪ · 𝑑 [N] (8)

where terms such as 𝑘, 𝜌ଵ, Ϭ௖௣, 𝑏௪, and 𝑑 are defined similar to RILEM TC 162-TDF, 2003 
[5]; 𝛾௖ is a partial safety factor for concrete with no fibers (recommended to be taken as 
1.5); 𝑓ி௧௨௞ is the characteristic value of ultimate residual tensile strength calculated as fol-
lows: 𝑓ி௧௨௞ = 𝑓ோ,ଷ3  [MPa] (9)𝑓ி௧௨௞ =  𝑓ி௧௦ − 𝑤௨𝐶𝑀𝑂𝐷ଷ  ൫𝑓ி௧௦ − 0.5 𝑓ோ,ଷ + 0.2 𝑓ோ,ଵ൯ ≥ 0 [MPa] (10)𝑓ி௧௦ = 0.45 𝑓ோ,ଵ [MPa] (11)

Similar to the RILEM TC 162-TDF, 2003 [5] model, 𝑓ோ,ଵ and 𝑓ோ,ଷ are the residual flex-
ural tensile strengths corresponding to CMOD of 0.5 mm and 3.5 mm, respectively [MPa]; 𝑓ி௧௦ is the characteristic residual tensile strength (post-cracking strength at serviceability 
crack opening) [MPa]; 𝑤௨ is the maximum crack opening that is acceptable in structural 
design (recommended to be taken as 1.5 mm); 𝑓ி௧௨௞ is determined according to the rigid-
plastic model Equation (9), or the linear model based on Equations (10) and (11); 𝑓௖௧௞ is the 
characteristic tensile strength of concrete containing no fibers [MPa] and can be deter-
mined as follows: 

cp, respectively. These
coefficients indicate that there is only a moderate correlation between

Materials 2022, 15, x FOR PEER REVIEW 3 of 26 
 

 

flexural tensile strength of the prism corresponding to the crack mouth opening displace-
ment (CMOD) of 3.5 mm [MPa]. Residual flexural tensile strengths (𝑓ோ,௜) are estimated by 
a three-point bending test on a 150 × 150 × 550 mm notched prism. The stress versus strain 
behavior is obtained from the load-deflection or load-CMOD relation of the prism. The 
load-CMOD curve is defined using four points (𝑖 = 1 through 4) that corresponds to the 
CMOD of 0.5, 1.5, 2.5, and 3.5 mm, respectively. 𝑓ோ,௜ is calculated as follows: 𝑓ோ,௜ =  3 𝐹ோ,௜ 𝑥 𝐿2𝑏 𝑥 ℎ௦௣ଶ  [MPa] (4)

where 𝐹ோ,௜ is the measured load at (CMODi) [N]; 𝐿 is the prism span [mm]; 𝑏 is the prism 
width [mm]; ℎ௦௣ is the depth between the notch tip to the extreme compression fibers of 
the prism cross-section [mm]. 

The concrete contribution is calculated according to Equation (5). 𝑉௖ௗ =  ൤0.12 𝑘 (100 𝜌ଵ 𝑓௖௞)ଵଷ + 0.15 Ϭ௖௣൨ 𝑏௪ 𝑑 [N] (5)

𝜌ଵ =  𝐴௟𝑏௪ 𝑑 (6)

Ϭ௖௣ =  𝑁௦ௗ𝐴௖  [MPa] (7)

where 𝜌ଵ is the ratio of longitudinal reinforcement (recommended not to be taken greater 
than 2%); 𝐴௟ is the area of tension reinforcement extending at least (𝑑 + anchorage length) 
beyond the considered section [mm2]; 𝑓௖௞  is the cylinder characteristic compressive 
strength [MPa]; Ϭ௖௣ is the factor to account for the level of axial loading or prestressing in 
the beam [MPa]; 𝑁ௌௗ is the axial force in the section due to loading or prestressing (posi-
tive for compression) [N]; 𝐴஼ is the area of the beam cross-section [mm2]. 

2.1.2. Fib Model Code, 2010 
This prediction model is developed for steel fiber-reinforced conventional concrete 

and is not validated yet for UHPC. The approach bears some similarities to the RILEM TC 
162-TDF, 2003 [5] prediction model with the exception of having the steel fibers contribu-
tion coupled with the concrete contribution in one term (𝑉ோௗ,ி) as follows:  𝑉ோௗ,ி =  ቊ଴.ଵ଼ఊ೎ ·  𝑘 · ቂ100 · 𝜌ଵ ቀ1 + 7.5 ௙ಷ೟ೠೖ௙೎೟ೖ ቁ · 𝑓௖௞ቃଵ ଷൗ + 0.15 · Ϭ௖௣ቋ · 𝑏௪ · 𝑑 [N] (8)

where terms such as 𝑘, 𝜌ଵ, Ϭ௖௣, 𝑏௪, and 𝑑 are defined similar to RILEM TC 162-TDF, 2003 
[5]; 𝛾௖ is a partial safety factor for concrete with no fibers (recommended to be taken as 
1.5); 𝑓ி௧௨௞ is the characteristic value of ultimate residual tensile strength calculated as fol-
lows: 𝑓ி௧௨௞ = 𝑓ோ,ଷ3  [MPa] (9)𝑓ி௧௨௞ =  𝑓ி௧௦ − 𝑤௨𝐶𝑀𝑂𝐷ଷ  ൫𝑓ி௧௦ − 0.5 𝑓ோ,ଷ + 0.2 𝑓ோ,ଵ൯ ≥ 0 [MPa] (10)𝑓ி௧௦ = 0.45 𝑓ோ,ଵ [MPa] (11)

Similar to the RILEM TC 162-TDF, 2003 [5] model, 𝑓ோ,ଵ and 𝑓ோ,ଷ are the residual flex-
ural tensile strengths corresponding to CMOD of 0.5 mm and 3.5 mm, respectively [MPa]; 𝑓ி௧௦ is the characteristic residual tensile strength (post-cracking strength at serviceability 
crack opening) [MPa]; 𝑤௨ is the maximum crack opening that is acceptable in structural 
design (recommended to be taken as 1.5 mm); 𝑓ி௧௨௞ is determined according to the rigid-
plastic model Equation (9), or the linear model based on Equations (10) and (11); 𝑓௖௧௞ is the 
characteristic tensile strength of concrete containing no fibers [MPa] and can be deter-
mined as follows: 

Rd, f and the shear
strength, which is in agreement with the prediction models presented earlier in Section 2. In
addition, to test for the statistical significance of these key parameters on the shear strength
of prestressed beams, a multiple regression analysis was performed for shear strength as
the dependent variable and
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flexural tensile strength of the prism corresponding to the crack mouth opening displace-
ment (CMOD) of 3.5 mm [MPa]. Residual flexural tensile strengths (𝑓ோ,௜) are estimated by 
a three-point bending test on a 150 × 150 × 550 mm notched prism. The stress versus strain 
behavior is obtained from the load-deflection or load-CMOD relation of the prism. The 
load-CMOD curve is defined using four points (𝑖 = 1 through 4) that corresponds to the 
CMOD of 0.5, 1.5, 2.5, and 3.5 mm, respectively. 𝑓ோ,௜ is calculated as follows: 𝑓ோ,௜ =  3 𝐹ோ,௜ 𝑥 𝐿2𝑏 𝑥 ℎ௦௣ଶ  [MPa] (4)

where 𝐹ோ,௜ is the measured load at (CMODi) [N]; 𝐿 is the prism span [mm]; 𝑏 is the prism 
width [mm]; ℎ௦௣ is the depth between the notch tip to the extreme compression fibers of 
the prism cross-section [mm]. 

The concrete contribution is calculated according to Equation (5). 𝑉௖ௗ =  ൤0.12 𝑘 (100 𝜌ଵ 𝑓௖௞)ଵଷ + 0.15 Ϭ௖௣൨ 𝑏௪ 𝑑 [N] (5)

𝜌ଵ =  𝐴௟𝑏௪ 𝑑 (6)

Ϭ௖௣ =  𝑁௦ௗ𝐴௖  [MPa] (7)

where 𝜌ଵ is the ratio of longitudinal reinforcement (recommended not to be taken greater 
than 2%); 𝐴௟ is the area of tension reinforcement extending at least (𝑑 + anchorage length) 
beyond the considered section [mm2]; 𝑓௖௞  is the cylinder characteristic compressive 
strength [MPa]; Ϭ௖௣ is the factor to account for the level of axial loading or prestressing in 
the beam [MPa]; 𝑁ௌௗ is the axial force in the section due to loading or prestressing (posi-
tive for compression) [N]; 𝐴஼ is the area of the beam cross-section [mm2]. 

2.1.2. Fib Model Code, 2010 
This prediction model is developed for steel fiber-reinforced conventional concrete 

and is not validated yet for UHPC. The approach bears some similarities to the RILEM TC 
162-TDF, 2003 [5] prediction model with the exception of having the steel fibers contribu-
tion coupled with the concrete contribution in one term (𝑉ோௗ,ி) as follows:  𝑉ோௗ,ி =  ቊ଴.ଵ଼ఊ೎ ·  𝑘 · ቂ100 · 𝜌ଵ ቀ1 + 7.5 ௙ಷ೟ೠೖ௙೎೟ೖ ቁ · 𝑓௖௞ቃଵ ଷൗ + 0.15 · Ϭ௖௣ቋ · 𝑏௪ · 𝑑 [N] (8)

where terms such as 𝑘, 𝜌ଵ, Ϭ௖௣, 𝑏௪, and 𝑑 are defined similar to RILEM TC 162-TDF, 2003 
[5]; 𝛾௖ is a partial safety factor for concrete with no fibers (recommended to be taken as 
1.5); 𝑓ி௧௨௞ is the characteristic value of ultimate residual tensile strength calculated as fol-
lows: 𝑓ி௧௨௞ = 𝑓ோ,ଷ3  [MPa] (9)𝑓ி௧௨௞ =  𝑓ி௧௦ − 𝑤௨𝐶𝑀𝑂𝐷ଷ  ൫𝑓ி௧௦ − 0.5 𝑓ோ,ଷ + 0.2 𝑓ோ,ଵ൯ ≥ 0 [MPa] (10)𝑓ி௧௦ = 0.45 𝑓ோ,ଵ [MPa] (11)

Similar to the RILEM TC 162-TDF, 2003 [5] model, 𝑓ோ,ଵ and 𝑓ோ,ଷ are the residual flex-
ural tensile strengths corresponding to CMOD of 0.5 mm and 3.5 mm, respectively [MPa]; 𝑓ி௧௦ is the characteristic residual tensile strength (post-cracking strength at serviceability 
crack opening) [MPa]; 𝑤௨ is the maximum crack opening that is acceptable in structural 
design (recommended to be taken as 1.5 mm); 𝑓ி௧௨௞ is determined according to the rigid-
plastic model Equation (9), or the linear model based on Equations (10) and (11); 𝑓௖௧௞ is the 
characteristic tensile strength of concrete containing no fibers [MPa] and can be deter-
mined as follows: 
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where 𝜌ଵ is the ratio of longitudinal reinforcement (recommended not to be taken greater 
than 2%); 𝐴௟ is the area of tension reinforcement extending at least (𝑑 + anchorage length) 
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2.1.2. Fib Model Code, 2010 
This prediction model is developed for steel fiber-reinforced conventional concrete 

and is not validated yet for UHPC. The approach bears some similarities to the RILEM TC 
162-TDF, 2003 [5] prediction model with the exception of having the steel fibers contribu-
tion coupled with the concrete contribution in one term (𝑉ோௗ,ி) as follows:  𝑉ோௗ,ி =  ቊ଴.ଵ଼ఊ೎ ·  𝑘 · ቂ100 · 𝜌ଵ ቀ1 + 7.5 ௙ಷ೟ೠೖ௙೎೟ೖ ቁ · 𝑓௖௞ቃଵ ଷൗ + 0.15 · Ϭ௖௣ቋ · 𝑏௪ · 𝑑 [N] (8)

where terms such as 𝑘, 𝜌ଵ, Ϭ௖௣, 𝑏௪, and 𝑑 are defined similar to RILEM TC 162-TDF, 2003 
[5]; 𝛾௖ is a partial safety factor for concrete with no fibers (recommended to be taken as 
1.5); 𝑓ி௧௨௞ is the characteristic value of ultimate residual tensile strength calculated as fol-
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Similar to the RILEM TC 162-TDF, 2003 [5] model, 𝑓ோ,ଵ and 𝑓ோ,ଷ are the residual flex-
ural tensile strengths corresponding to CMOD of 0.5 mm and 3.5 mm, respectively [MPa]; 𝑓ி௧௦ is the characteristic residual tensile strength (post-cracking strength at serviceability 
crack opening) [MPa]; 𝑤௨ is the maximum crack opening that is acceptable in structural 
design (recommended to be taken as 1.5 mm); 𝑓ி௧௨௞ is determined according to the rigid-
plastic model Equation (9), or the linear model based on Equations (10) and (11); 𝑓௖௧௞ is the 
characteristic tensile strength of concrete containing no fibers [MPa] and can be deter-
mined as follows: 
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Similar to the RILEM TC 162-TDF, 2003 [5] model, 𝑓ோ,ଵ and 𝑓ோ,ଷ are the residual flex-
ural tensile strengths corresponding to CMOD of 0.5 mm and 3.5 mm, respectively [MPa]; 𝑓ி௧௦ is the characteristic residual tensile strength (post-cracking strength at serviceability 
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design (recommended to be taken as 1.5 mm); 𝑓ி௧௨௞ is determined according to the rigid-
plastic model Equation (9), or the linear model based on Equations (10) and (11); 𝑓௖௧௞ is the 
characteristic tensile strength of concrete containing no fibers [MPa] and can be deter-
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where 𝜌ଵ is the ratio of longitudinal reinforcement (recommended not to be taken greater 
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tive for compression) [N]; 𝐴஼ is the area of the beam cross-section [mm2]. 

2.1.2. Fib Model Code, 2010 
This prediction model is developed for steel fiber-reinforced conventional concrete 

and is not validated yet for UHPC. The approach bears some similarities to the RILEM TC 
162-TDF, 2003 [5] prediction model with the exception of having the steel fibers contribu-
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[5]; 𝛾௖ is a partial safety factor for concrete with no fibers (recommended to be taken as 
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Similar to the RILEM TC 162-TDF, 2003 [5] model, 𝑓ோ,ଵ and 𝑓ோ,ଷ are the residual flex-
ural tensile strengths corresponding to CMOD of 0.5 mm and 3.5 mm, respectively [MPa]; 𝑓ி௧௦ is the characteristic residual tensile strength (post-cracking strength at serviceability 
crack opening) [MPa]; 𝑤௨ is the maximum crack opening that is acceptable in structural 
design (recommended to be taken as 1.5 mm); 𝑓ி௧௨௞ is determined according to the rigid-
plastic model Equation (9), or the linear model based on Equations (10) and (11); 𝑓௖௧௞ is the 
characteristic tensile strength of concrete containing no fibers [MPa] and can be deter-
mined as follows: 
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′]0.5 and Vf had p-values of 0.43,

and 0.69, respectively, which indicate that their effects are statistically insignificant.
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Figure 4. Effect of key parameters on shear strength of prestressed UHPC beams. (a) effect of the 
square root of UHPC compressive strength ([𝑓𝑐′]0.5). (b) effect of fiber volume fraction (𝑉𝑓). (c) 
effect of UHPC post-cracking tensile strength (Ϭ𝑅𝑑,𝑓). (d) effect of level of prestressing (Ϭ𝑐𝑝). 

In order to have a more homogenous group of test data, specimens with a fiber vol-
ume fraction less than 2% (𝑉𝑓 < 2.0%) were omitted since the commonly used 𝑉𝑓 in UHPC 
mixtures is at least 2% [39]. In addition, the Hegger et al., 2004, specimen was omitted as 
the prestressing force was not fully utilized due to strand slippage [24]. The remaining 
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strength (Vu/bwd) as shown in Figure 5. Multiple regression analysis was done on that 
group and resulted in Ϭ𝑐𝑝 and 𝑉𝑓 being statistically significant as their p-values were 1 × 
10−7, and 6 × 10−5, respectively, whereas [𝑓𝑐′]0.5 and Ϭ𝑅𝑑,𝑓 had p-values of 0.96, and 0.86, 
respectively. The resulting relation between the shear strength and 𝑉𝑓  was very weak 
which is in agreement with the Pearson correlation test results of the multiple regression 
analysis. The standard error of the model containing all data points was 3.56, whereas the 
standard error value for the (𝑉𝑓 > 2.0%) group was 2.90. This indicates that the (𝑉𝑓 > 2.0%) 
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square root of UHPC compressive strength (
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′]0.5). (b) effect of fiber volume fraction (Vf ). (c) effect
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flexural tensile strength of the prism corresponding to the crack mouth opening displace-
ment (CMOD) of 3.5 mm [MPa]. Residual flexural tensile strengths (𝑓ோ,௜) are estimated by 
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where 𝐹ோ,௜ is the measured load at (CMODi) [N]; 𝐿 is the prism span [mm]; 𝑏 is the prism 
width [mm]; ℎ௦௣ is the depth between the notch tip to the extreme compression fibers of 
the prism cross-section [mm]. 
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𝜌ଵ =  𝐴௟𝑏௪ 𝑑 (6)

Ϭ௖௣ =  𝑁௦ௗ𝐴௖  [MPa] (7)

where 𝜌ଵ is the ratio of longitudinal reinforcement (recommended not to be taken greater 
than 2%); 𝐴௟ is the area of tension reinforcement extending at least (𝑑 + anchorage length) 
beyond the considered section [mm2]; 𝑓௖௞  is the cylinder characteristic compressive 
strength [MPa]; Ϭ௖௣ is the factor to account for the level of axial loading or prestressing in 
the beam [MPa]; 𝑁ௌௗ is the axial force in the section due to loading or prestressing (posi-
tive for compression) [N]; 𝐴஼ is the area of the beam cross-section [mm2]. 

2.1.2. Fib Model Code, 2010 
This prediction model is developed for steel fiber-reinforced conventional concrete 

and is not validated yet for UHPC. The approach bears some similarities to the RILEM TC 
162-TDF, 2003 [5] prediction model with the exception of having the steel fibers contribu-
tion coupled with the concrete contribution in one term (𝑉ோௗ,ி) as follows:  𝑉ோௗ,ி =  ቊ଴.ଵ଼ఊ೎ ·  𝑘 · ቂ100 · 𝜌ଵ ቀ1 + 7.5 ௙ಷ೟ೠೖ௙೎೟ೖ ቁ · 𝑓௖௞ቃଵ ଷൗ + 0.15 · Ϭ௖௣ቋ · 𝑏௪ · 𝑑 [N] (8)

where terms such as 𝑘, 𝜌ଵ, Ϭ௖௣, 𝑏௪, and 𝑑 are defined similar to RILEM TC 162-TDF, 2003 
[5]; 𝛾௖ is a partial safety factor for concrete with no fibers (recommended to be taken as 
1.5); 𝑓ி௧௨௞ is the characteristic value of ultimate residual tensile strength calculated as fol-
lows: 𝑓ி௧௨௞ = 𝑓ோ,ଷ3  [MPa] (9)𝑓ி௧௨௞ =  𝑓ி௧௦ − 𝑤௨𝐶𝑀𝑂𝐷ଷ  ൫𝑓ி௧௦ − 0.5 𝑓ோ,ଷ + 0.2 𝑓ோ,ଵ൯ ≥ 0 [MPa] (10)𝑓ி௧௦ = 0.45 𝑓ோ,ଵ [MPa] (11)

Similar to the RILEM TC 162-TDF, 2003 [5] model, 𝑓ோ,ଵ and 𝑓ோ,ଷ are the residual flex-
ural tensile strengths corresponding to CMOD of 0.5 mm and 3.5 mm, respectively [MPa]; 𝑓ி௧௦ is the characteristic residual tensile strength (post-cracking strength at serviceability 
crack opening) [MPa]; 𝑤௨ is the maximum crack opening that is acceptable in structural 
design (recommended to be taken as 1.5 mm); 𝑓ி௧௨௞ is determined according to the rigid-
plastic model Equation (9), or the linear model based on Equations (10) and (11); 𝑓௖௧௞ is the 
characteristic tensile strength of concrete containing no fibers [MPa] and can be deter-
mined as follows: 
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a three-point bending test on a 150 × 150 × 550 mm notched prism. The stress versus strain 
behavior is obtained from the load-deflection or load-CMOD relation of the prism. The 
load-CMOD curve is defined using four points (𝑖 = 1 through 4) that corresponds to the 
CMOD of 0.5, 1.5, 2.5, and 3.5 mm, respectively. 𝑓ோ,௜ is calculated as follows: 𝑓ோ,௜ =  3 𝐹ோ,௜ 𝑥 𝐿2𝑏 𝑥 ℎ௦௣ଶ  [MPa] (4)

where 𝐹ோ,௜ is the measured load at (CMODi) [N]; 𝐿 is the prism span [mm]; 𝑏 is the prism 
width [mm]; ℎ௦௣ is the depth between the notch tip to the extreme compression fibers of 
the prism cross-section [mm]. 

The concrete contribution is calculated according to Equation (5). 𝑉௖ௗ =  ൤0.12 𝑘 (100 𝜌ଵ 𝑓௖௞)ଵଷ + 0.15 Ϭ௖௣൨ 𝑏௪ 𝑑 [N] (5)

𝜌ଵ =  𝐴௟𝑏௪ 𝑑 (6)

Ϭ௖௣ =  𝑁௦ௗ𝐴௖  [MPa] (7)

where 𝜌ଵ is the ratio of longitudinal reinforcement (recommended not to be taken greater 
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2.1.2. Fib Model Code, 2010 
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Similar to the RILEM TC 162-TDF, 2003 [5] model, 𝑓ோ,ଵ and 𝑓ோ,ଷ are the residual flex-
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design (recommended to be taken as 1.5 mm); 𝑓ி௧௨௞ is determined according to the rigid-
plastic model Equation (9), or the linear model based on Equations (10) and (11); 𝑓௖௧௞ is the 
characteristic tensile strength of concrete containing no fibers [MPa] and can be deter-
mined as follows: 

cp ).

In order to have a more homogenous group of test data, specimens with a fiber
volume fraction less than 2% (Vf < 2.0%) were omitted since the commonly used Vf in
UHPC mixtures is at least 2% [39]. In addition, the Hegger et al., 2004, specimen was
omitted as the prestressing force was not fully utilized due to strand slippage [24]. The
remaining specimens yielded a strong correlation between level of prestressing (

Materials 2022, 15, x FOR PEER REVIEW 3 of 26 
 

 

flexural tensile strength of the prism corresponding to the crack mouth opening displace-
ment (CMOD) of 3.5 mm [MPa]. Residual flexural tensile strengths (𝑓ோ,௜) are estimated by 
a three-point bending test on a 150 × 150 × 550 mm notched prism. The stress versus strain 
behavior is obtained from the load-deflection or load-CMOD relation of the prism. The 
load-CMOD curve is defined using four points (𝑖 = 1 through 4) that corresponds to the 
CMOD of 0.5, 1.5, 2.5, and 3.5 mm, respectively. 𝑓ோ,௜ is calculated as follows: 𝑓ோ,௜ =  3 𝐹ோ,௜ 𝑥 𝐿2𝑏 𝑥 ℎ௦௣ଶ  [MPa] (4)

where 𝐹ோ,௜ is the measured load at (CMODi) [N]; 𝐿 is the prism span [mm]; 𝑏 is the prism 
width [mm]; ℎ௦௣ is the depth between the notch tip to the extreme compression fibers of 
the prism cross-section [mm]. 

The concrete contribution is calculated according to Equation (5). 𝑉௖ௗ =  ൤0.12 𝑘 (100 𝜌ଵ 𝑓௖௞)ଵଷ + 0.15 Ϭ௖௣൨ 𝑏௪ 𝑑 [N] (5)

𝜌ଵ =  𝐴௟𝑏௪ 𝑑 (6)

Ϭ௖௣ =  𝑁௦ௗ𝐴௖  [MPa] (7)

where 𝜌ଵ is the ratio of longitudinal reinforcement (recommended not to be taken greater 
than 2%); 𝐴௟ is the area of tension reinforcement extending at least (𝑑 + anchorage length) 
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tive for compression) [N]; 𝐴஼ is the area of the beam cross-section [mm2]. 

2.1.2. Fib Model Code, 2010 
This prediction model is developed for steel fiber-reinforced conventional concrete 

and is not validated yet for UHPC. The approach bears some similarities to the RILEM TC 
162-TDF, 2003 [5] prediction model with the exception of having the steel fibers contribu-
tion coupled with the concrete contribution in one term (𝑉ோௗ,ி) as follows:  𝑉ோௗ,ி =  ቊ଴.ଵ଼ఊ೎ ·  𝑘 · ቂ100 · 𝜌ଵ ቀ1 + 7.5 ௙ಷ೟ೠೖ௙೎೟ೖ ቁ · 𝑓௖௞ቃଵ ଷൗ + 0.15 · Ϭ௖௣ቋ · 𝑏௪ · 𝑑 [N] (8)

where terms such as 𝑘, 𝜌ଵ, Ϭ௖௣, 𝑏௪, and 𝑑 are defined similar to RILEM TC 162-TDF, 2003 
[5]; 𝛾௖ is a partial safety factor for concrete with no fibers (recommended to be taken as 
1.5); 𝑓ி௧௨௞ is the characteristic value of ultimate residual tensile strength calculated as fol-
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Similar to the RILEM TC 162-TDF, 2003 [5] model, 𝑓ோ,ଵ and 𝑓ோ,ଷ are the residual flex-
ural tensile strengths corresponding to CMOD of 0.5 mm and 3.5 mm, respectively [MPa]; 𝑓ி௧௦ is the characteristic residual tensile strength (post-cracking strength at serviceability 
crack opening) [MPa]; 𝑤௨ is the maximum crack opening that is acceptable in structural 
design (recommended to be taken as 1.5 mm); 𝑓ி௧௨௞ is determined according to the rigid-
plastic model Equation (9), or the linear model based on Equations (10) and (11); 𝑓௖௧௞ is the 
characteristic tensile strength of concrete containing no fibers [MPa] and can be deter-
mined as follows: 

cp) and
the shear strength (Vu/bwd) as shown in Figure 5. Multiple regression analysis was done on
that group and resulted in
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cp and Vf being statistically significant as their p-values were

1 × 10−7, and 6 × 10−5, respectively, whereas
[

fc
′]0.5 and
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design (recommended to be taken as 1.5 mm); 𝑓ி௧௨௞ is determined according to the rigid-
plastic model Equation (9), or the linear model based on Equations (10) and (11); 𝑓௖௧௞ is the 
characteristic tensile strength of concrete containing no fibers [MPa] and can be deter-
mined as follows: 

Rd, f had p-values of 0.96, and
0.86, respectively. The resulting relation between the shear strength and Vf was very weak
which is in agreement with the Pearson correlation test results of the multiple regression
analysis. The standard error of the model containing all data points was 3.56, whereas the
standard error value for the (Vf > 2.0%) group was 2.90. This indicates that the (Vf > 2.0%)
regression model provides higher accuracy than model containing all data points.



Materials 2022, 15, 4794 12 of 23
Materials 2022, 15, x FOR PEER REVIEW 12 of 26 
 

 

 

Figure 5. Effect of the level of prestressing (Ϭ𝑐𝑝) on the shear strength for prestressed beam with 𝑉𝑓 
≥ 2.0%. 

Test data listed in Table A2 were used to evaluate the effect of key parameters, such 
as compressive strength, fiber content, tensile strength, and reinforcement ratio, on the 
shear strength of non-prestressed UHPC beams. Figure 6a–d plots [𝑓𝑐′]0.5, 𝑉𝑓, Ϭ𝑅𝑑,𝑓, and 𝐴𝑙/𝑏𝑤𝑑, respectively, versus measured shear strength. These plots indicate no strong cor-
relation between any of these parameters and the shear strength of non-prestressed UHPC 
beams. Correlation coefficients were calculated using the Pearson correlation test and 
were found to be 0.49, −0.05, 0.60, and 0.43 for [𝑓𝑐′]0.5, 𝑉𝑓, Ϭ𝑅𝑑,𝑓, and 𝐴𝑙/𝑏𝑤𝑑, respectively. 
These coefficients indicate that there is only a moderate correlation between Ϭ𝑅𝑑,𝑓 and the 
shear strength, which is in agreement with the prediction models presented earlier in Sec-
tion 2. In addition, to test for the statistical significance of these key parameters on the 
shear strength of non-prestressed beams, a multiple regression analysis was performed 
for shear strength as the dependent variable and [𝑓𝑐′]0.5, 𝑉𝑓, Ϭ𝑅𝑑,𝑓, and 𝐴𝑙/𝑏𝑤𝑑 as the inde-
pendent variables using 5% significance level. Only Ϭ𝑅𝑑,𝑓 was found to have a significant 
effect, where the p-value was 0.024, whereas [𝑓𝑐′]0.5, 𝑉𝑓, and 𝐴𝑙/𝑏𝑤𝑑 had p-values of 0.22, 
0.92, and 0.90, which indicate that their effects are statistically insignificant. 

 
(a) 

Figure 5. Effect of the level of prestressing (

Materials 2022, 15, x FOR PEER REVIEW 3 of 26 
 

 

flexural tensile strength of the prism corresponding to the crack mouth opening displace-
ment (CMOD) of 3.5 mm [MPa]. Residual flexural tensile strengths (𝑓ோ,௜) are estimated by 
a three-point bending test on a 150 × 150 × 550 mm notched prism. The stress versus strain 
behavior is obtained from the load-deflection or load-CMOD relation of the prism. The 
load-CMOD curve is defined using four points (𝑖 = 1 through 4) that corresponds to the 
CMOD of 0.5, 1.5, 2.5, and 3.5 mm, respectively. 𝑓ோ,௜ is calculated as follows: 𝑓ோ,௜ =  3 𝐹ோ,௜ 𝑥 𝐿2𝑏 𝑥 ℎ௦௣ଶ  [MPa] (4)

where 𝐹ோ,௜ is the measured load at (CMODi) [N]; 𝐿 is the prism span [mm]; 𝑏 is the prism 
width [mm]; ℎ௦௣ is the depth between the notch tip to the extreme compression fibers of 
the prism cross-section [mm]. 

The concrete contribution is calculated according to Equation (5). 𝑉௖ௗ =  ൤0.12 𝑘 (100 𝜌ଵ 𝑓௖௞)ଵଷ + 0.15 Ϭ௖௣൨ 𝑏௪ 𝑑 [N] (5)

𝜌ଵ =  𝐴௟𝑏௪ 𝑑 (6)

Ϭ௖௣ =  𝑁௦ௗ𝐴௖  [MPa] (7)

where 𝜌ଵ is the ratio of longitudinal reinforcement (recommended not to be taken greater 
than 2%); 𝐴௟ is the area of tension reinforcement extending at least (𝑑 + anchorage length) 
beyond the considered section [mm2]; 𝑓௖௞  is the cylinder characteristic compressive 
strength [MPa]; Ϭ௖௣ is the factor to account for the level of axial loading or prestressing in 
the beam [MPa]; 𝑁ௌௗ is the axial force in the section due to loading or prestressing (posi-
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mined as follows: 

cp) on the shear strength for prestressed beam with
Vf ≥ 2.0%.

Test data listed in Table A2 were used to evaluate the effect of key parameters, such as
compressive strength, fiber content, tensile strength, and reinforcement ratio, on the shear
strength of non-prestressed UHPC beams. Figure 6a–d plots

[
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crack opening) [MPa]; 𝑤௨ is the maximum crack opening that is acceptable in structural 
design (recommended to be taken as 1.5 mm); 𝑓ி௧௨௞ is determined according to the rigid-
plastic model Equation (9), or the linear model based on Equations (10) and (11); 𝑓௖௧௞ is the 
characteristic tensile strength of concrete containing no fibers [MPa] and can be deter-
mined as follows: 

Rd, f , and Al/bwd,
respectively, versus measured shear strength. These plots indicate no strong correlation
between any of these parameters and the shear strength of non-prestressed UHPC beams.
Correlation coefficients were calculated using the Pearson correlation test and were found
to be 0.49, −0.05, 0.60, and 0.43 for
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flexural tensile strength of the prism corresponding to the crack mouth opening displace-
ment (CMOD) of 3.5 mm [MPa]. Residual flexural tensile strengths (𝑓ோ,௜) are estimated by 
a three-point bending test on a 150 × 150 × 550 mm notched prism. The stress versus strain 
behavior is obtained from the load-deflection or load-CMOD relation of the prism. The 
load-CMOD curve is defined using four points (𝑖 = 1 through 4) that corresponds to the 
CMOD of 0.5, 1.5, 2.5, and 3.5 mm, respectively. 𝑓ோ,௜ is calculated as follows: 𝑓ோ,௜ =  3 𝐹ோ,௜ 𝑥 𝐿2𝑏 𝑥 ℎ௦௣ଶ  [MPa] (4)

where 𝐹ோ,௜ is the measured load at (CMODi) [N]; 𝐿 is the prism span [mm]; 𝑏 is the prism 
width [mm]; ℎ௦௣ is the depth between the notch tip to the extreme compression fibers of 
the prism cross-section [mm]. 

The concrete contribution is calculated according to Equation (5). 𝑉௖ௗ =  ൤0.12 𝑘 (100 𝜌ଵ 𝑓௖௞)ଵଷ + 0.15 Ϭ௖௣൨ 𝑏௪ 𝑑 [N] (5)

𝜌ଵ =  𝐴௟𝑏௪ 𝑑 (6)

Ϭ௖௣ =  𝑁௦ௗ𝐴௖  [MPa] (7)

where 𝜌ଵ is the ratio of longitudinal reinforcement (recommended not to be taken greater 
than 2%); 𝐴௟ is the area of tension reinforcement extending at least (𝑑 + anchorage length) 
beyond the considered section [mm2]; 𝑓௖௞  is the cylinder characteristic compressive 
strength [MPa]; Ϭ௖௣ is the factor to account for the level of axial loading or prestressing in 
the beam [MPa]; 𝑁ௌௗ is the axial force in the section due to loading or prestressing (posi-
tive for compression) [N]; 𝐴஼ is the area of the beam cross-section [mm2]. 

2.1.2. Fib Model Code, 2010 
This prediction model is developed for steel fiber-reinforced conventional concrete 

and is not validated yet for UHPC. The approach bears some similarities to the RILEM TC 
162-TDF, 2003 [5] prediction model with the exception of having the steel fibers contribu-
tion coupled with the concrete contribution in one term (𝑉ோௗ,ி) as follows:  𝑉ோௗ,ி =  ቊ଴.ଵ଼ఊ೎ ·  𝑘 · ቂ100 · 𝜌ଵ ቀ1 + 7.5 ௙ಷ೟ೠೖ௙೎೟ೖ ቁ · 𝑓௖௞ቃଵ ଷൗ + 0.15 · Ϭ௖௣ቋ · 𝑏௪ · 𝑑 [N] (8)

where terms such as 𝑘, 𝜌ଵ, Ϭ௖௣, 𝑏௪, and 𝑑 are defined similar to RILEM TC 162-TDF, 2003 
[5]; 𝛾௖ is a partial safety factor for concrete with no fibers (recommended to be taken as 
1.5); 𝑓ி௧௨௞ is the characteristic value of ultimate residual tensile strength calculated as fol-
lows: 𝑓ி௧௨௞ = 𝑓ோ,ଷ3  [MPa] (9)𝑓ி௧௨௞ =  𝑓ி௧௦ − 𝑤௨𝐶𝑀𝑂𝐷ଷ  ൫𝑓ி௧௦ − 0.5 𝑓ோ,ଷ + 0.2 𝑓ோ,ଵ൯ ≥ 0 [MPa] (10)𝑓ி௧௦ = 0.45 𝑓ோ,ଵ [MPa] (11)

Similar to the RILEM TC 162-TDF, 2003 [5] model, 𝑓ோ,ଵ and 𝑓ோ,ଷ are the residual flex-
ural tensile strengths corresponding to CMOD of 0.5 mm and 3.5 mm, respectively [MPa]; 𝑓ி௧௦ is the characteristic residual tensile strength (post-cracking strength at serviceability 
crack opening) [MPa]; 𝑤௨ is the maximum crack opening that is acceptable in structural 
design (recommended to be taken as 1.5 mm); 𝑓ி௧௨௞ is determined according to the rigid-
plastic model Equation (9), or the linear model based on Equations (10) and (11); 𝑓௖௧௞ is the 
characteristic tensile strength of concrete containing no fibers [MPa] and can be deter-
mined as follows: 

Rd, f , and Al/bwd, respectively. These
coefficients indicate that there is only a moderate correlation between
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flexural tensile strength of the prism corresponding to the crack mouth opening displace-
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a three-point bending test on a 150 × 150 × 550 mm notched prism. The stress versus strain 
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𝜌ଵ =  𝐴௟𝑏௪ 𝑑 (6)

Ϭ௖௣ =  𝑁௦ௗ𝐴௖  [MPa] (7)

where 𝜌ଵ is the ratio of longitudinal reinforcement (recommended not to be taken greater 
than 2%); 𝐴௟ is the area of tension reinforcement extending at least (𝑑 + anchorage length) 
beyond the considered section [mm2]; 𝑓௖௞  is the cylinder characteristic compressive 
strength [MPa]; Ϭ௖௣ is the factor to account for the level of axial loading or prestressing in 
the beam [MPa]; 𝑁ௌௗ is the axial force in the section due to loading or prestressing (posi-
tive for compression) [N]; 𝐴஼ is the area of the beam cross-section [mm2]. 

2.1.2. Fib Model Code, 2010 
This prediction model is developed for steel fiber-reinforced conventional concrete 

and is not validated yet for UHPC. The approach bears some similarities to the RILEM TC 
162-TDF, 2003 [5] prediction model with the exception of having the steel fibers contribu-
tion coupled with the concrete contribution in one term (𝑉ோௗ,ி) as follows:  𝑉ோௗ,ி =  ቊ଴.ଵ଼ఊ೎ ·  𝑘 · ቂ100 · 𝜌ଵ ቀ1 + 7.5 ௙ಷ೟ೠೖ௙೎೟ೖ ቁ · 𝑓௖௞ቃଵ ଷൗ + 0.15 · Ϭ௖௣ቋ · 𝑏௪ · 𝑑 [N] (8)

where terms such as 𝑘, 𝜌ଵ, Ϭ௖௣, 𝑏௪, and 𝑑 are defined similar to RILEM TC 162-TDF, 2003 
[5]; 𝛾௖ is a partial safety factor for concrete with no fibers (recommended to be taken as 
1.5); 𝑓ி௧௨௞ is the characteristic value of ultimate residual tensile strength calculated as fol-
lows: 𝑓ி௧௨௞ = 𝑓ோ,ଷ3  [MPa] (9)𝑓ி௧௨௞ =  𝑓ி௧௦ − 𝑤௨𝐶𝑀𝑂𝐷ଷ  ൫𝑓ி௧௦ − 0.5 𝑓ோ,ଷ + 0.2 𝑓ோ,ଵ൯ ≥ 0 [MPa] (10)𝑓ி௧௦ = 0.45 𝑓ோ,ଵ [MPa] (11)

Similar to the RILEM TC 162-TDF, 2003 [5] model, 𝑓ோ,ଵ and 𝑓ோ,ଷ are the residual flex-
ural tensile strengths corresponding to CMOD of 0.5 mm and 3.5 mm, respectively [MPa]; 𝑓ி௧௦ is the characteristic residual tensile strength (post-cracking strength at serviceability 
crack opening) [MPa]; 𝑤௨ is the maximum crack opening that is acceptable in structural 
design (recommended to be taken as 1.5 mm); 𝑓ி௧௨௞ is determined according to the rigid-
plastic model Equation (9), or the linear model based on Equations (10) and (11); 𝑓௖௧௞ is the 
characteristic tensile strength of concrete containing no fibers [MPa] and can be deter-
mined as follows: 

Rd, f and the shear
strength, which is in agreement with the prediction models presented earlier in Section 2. In
addition, to test for the statistical significance of these key parameters on the shear strength
of non-prestressed beams, a multiple regression analysis was performed for shear strength
as the dependent variable and
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flexural tensile strength of the prism corresponding to the crack mouth opening displace-
ment (CMOD) of 3.5 mm [MPa]. Residual flexural tensile strengths (𝑓ோ,௜) are estimated by 
a three-point bending test on a 150 × 150 × 550 mm notched prism. The stress versus strain 
behavior is obtained from the load-deflection or load-CMOD relation of the prism. The 
load-CMOD curve is defined using four points (𝑖 = 1 through 4) that corresponds to the 
CMOD of 0.5, 1.5, 2.5, and 3.5 mm, respectively. 𝑓ோ,௜ is calculated as follows: 𝑓ோ,௜ =  3 𝐹ோ,௜ 𝑥 𝐿2𝑏 𝑥 ℎ௦௣ଶ  [MPa] (4)

where 𝐹ோ,௜ is the measured load at (CMODi) [N]; 𝐿 is the prism span [mm]; 𝑏 is the prism 
width [mm]; ℎ௦௣ is the depth between the notch tip to the extreme compression fibers of 
the prism cross-section [mm]. 

The concrete contribution is calculated according to Equation (5). 𝑉௖ௗ =  ൤0.12 𝑘 (100 𝜌ଵ 𝑓௖௞)ଵଷ + 0.15 Ϭ௖௣൨ 𝑏௪ 𝑑 [N] (5)

𝜌ଵ =  𝐴௟𝑏௪ 𝑑 (6)

Ϭ௖௣ =  𝑁௦ௗ𝐴௖  [MPa] (7)

where 𝜌ଵ is the ratio of longitudinal reinforcement (recommended not to be taken greater 
than 2%); 𝐴௟ is the area of tension reinforcement extending at least (𝑑 + anchorage length) 
beyond the considered section [mm2]; 𝑓௖௞  is the cylinder characteristic compressive 
strength [MPa]; Ϭ௖௣ is the factor to account for the level of axial loading or prestressing in 
the beam [MPa]; 𝑁ௌௗ is the axial force in the section due to loading or prestressing (posi-
tive for compression) [N]; 𝐴஼ is the area of the beam cross-section [mm2]. 

2.1.2. Fib Model Code, 2010 
This prediction model is developed for steel fiber-reinforced conventional concrete 

and is not validated yet for UHPC. The approach bears some similarities to the RILEM TC 
162-TDF, 2003 [5] prediction model with the exception of having the steel fibers contribu-
tion coupled with the concrete contribution in one term (𝑉ோௗ,ி) as follows:  𝑉ோௗ,ி =  ቊ଴.ଵ଼ఊ೎ ·  𝑘 · ቂ100 · 𝜌ଵ ቀ1 + 7.5 ௙ಷ೟ೠೖ௙೎೟ೖ ቁ · 𝑓௖௞ቃଵ ଷൗ + 0.15 · Ϭ௖௣ቋ · 𝑏௪ · 𝑑 [N] (8)

where terms such as 𝑘, 𝜌ଵ, Ϭ௖௣, 𝑏௪, and 𝑑 are defined similar to RILEM TC 162-TDF, 2003 
[5]; 𝛾௖ is a partial safety factor for concrete with no fibers (recommended to be taken as 
1.5); 𝑓ி௧௨௞ is the characteristic value of ultimate residual tensile strength calculated as fol-
lows: 𝑓ி௧௨௞ = 𝑓ோ,ଷ3  [MPa] (9)𝑓ி௧௨௞ =  𝑓ி௧௦ − 𝑤௨𝐶𝑀𝑂𝐷ଷ  ൫𝑓ி௧௦ − 0.5 𝑓ோ,ଷ + 0.2 𝑓ோ,ଵ൯ ≥ 0 [MPa] (10)𝑓ி௧௦ = 0.45 𝑓ோ,ଵ [MPa] (11)

Similar to the RILEM TC 162-TDF, 2003 [5] model, 𝑓ோ,ଵ and 𝑓ோ,ଷ are the residual flex-
ural tensile strengths corresponding to CMOD of 0.5 mm and 3.5 mm, respectively [MPa]; 𝑓ி௧௦ is the characteristic residual tensile strength (post-cracking strength at serviceability 
crack opening) [MPa]; 𝑤௨ is the maximum crack opening that is acceptable in structural 
design (recommended to be taken as 1.5 mm); 𝑓ி௧௨௞ is determined according to the rigid-
plastic model Equation (9), or the linear model based on Equations (10) and (11); 𝑓௖௧௞ is the 
characteristic tensile strength of concrete containing no fibers [MPa] and can be deter-
mined as follows: 

Rd, f , and Al/bwd as the independent variables
using 5% significance level. Only
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flexural tensile strength of the prism corresponding to the crack mouth opening displace-
ment (CMOD) of 3.5 mm [MPa]. Residual flexural tensile strengths (𝑓ோ,௜) are estimated by 
a three-point bending test on a 150 × 150 × 550 mm notched prism. The stress versus strain 
behavior is obtained from the load-deflection or load-CMOD relation of the prism. The 
load-CMOD curve is defined using four points (𝑖 = 1 through 4) that corresponds to the 
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𝜌ଵ =  𝐴௟𝑏௪ 𝑑 (6)

Ϭ௖௣ =  𝑁௦ௗ𝐴௖  [MPa] (7)

where 𝜌ଵ is the ratio of longitudinal reinforcement (recommended not to be taken greater 
than 2%); 𝐴௟ is the area of tension reinforcement extending at least (𝑑 + anchorage length) 
beyond the considered section [mm2]; 𝑓௖௞  is the cylinder characteristic compressive 
strength [MPa]; Ϭ௖௣ is the factor to account for the level of axial loading or prestressing in 
the beam [MPa]; 𝑁ௌௗ is the axial force in the section due to loading or prestressing (posi-
tive for compression) [N]; 𝐴஼ is the area of the beam cross-section [mm2]. 

2.1.2. Fib Model Code, 2010 
This prediction model is developed for steel fiber-reinforced conventional concrete 

and is not validated yet for UHPC. The approach bears some similarities to the RILEM TC 
162-TDF, 2003 [5] prediction model with the exception of having the steel fibers contribu-
tion coupled with the concrete contribution in one term (𝑉ோௗ,ி) as follows:  𝑉ோௗ,ி =  ቊ଴.ଵ଼ఊ೎ ·  𝑘 · ቂ100 · 𝜌ଵ ቀ1 + 7.5 ௙ಷ೟ೠೖ௙೎೟ೖ ቁ · 𝑓௖௞ቃଵ ଷൗ + 0.15 · Ϭ௖௣ቋ · 𝑏௪ · 𝑑 [N] (8)

where terms such as 𝑘, 𝜌ଵ, Ϭ௖௣, 𝑏௪, and 𝑑 are defined similar to RILEM TC 162-TDF, 2003 
[5]; 𝛾௖ is a partial safety factor for concrete with no fibers (recommended to be taken as 
1.5); 𝑓ி௧௨௞ is the characteristic value of ultimate residual tensile strength calculated as fol-
lows: 𝑓ி௧௨௞ = 𝑓ோ,ଷ3  [MPa] (9)𝑓ி௧௨௞ =  𝑓ி௧௦ − 𝑤௨𝐶𝑀𝑂𝐷ଷ  ൫𝑓ி௧௦ − 0.5 𝑓ோ,ଷ + 0.2 𝑓ோ,ଵ൯ ≥ 0 [MPa] (10)𝑓ி௧௦ = 0.45 𝑓ோ,ଵ [MPa] (11)

Similar to the RILEM TC 162-TDF, 2003 [5] model, 𝑓ோ,ଵ and 𝑓ோ,ଷ are the residual flex-
ural tensile strengths corresponding to CMOD of 0.5 mm and 3.5 mm, respectively [MPa]; 𝑓ி௧௦ is the characteristic residual tensile strength (post-cracking strength at serviceability 
crack opening) [MPa]; 𝑤௨ is the maximum crack opening that is acceptable in structural 
design (recommended to be taken as 1.5 mm); 𝑓ி௧௨௞ is determined according to the rigid-
plastic model Equation (9), or the linear model based on Equations (10) and (11); 𝑓௖௧௞ is the 
characteristic tensile strength of concrete containing no fibers [MPa] and can be deter-
mined as follows: 

Rd, f was found to have a significant effect, where the

p-value was 0.024, whereas
[
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′]0.5, Vf , and Al/bwd had p-values of 0.22, 0.92, and 0.90,

which indicate that their effects are statistically insignificant.
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Figure 6. Effect of key parameters on shear strength of non-prestressed UHPC beams. (a) effect of 
the square root of UHPC compressive strength ([𝑓𝑐′]0.5). (b) effect of fiber volume fraction (𝑉𝑓). (c) 
effect of UHPC post-cracking tensile strength (Ϭ𝑅𝑑,𝑓). (d) effect of longitudinal reinforcement ratio 
(𝐴𝑙/𝑏𝑤𝑑). 

Figure 6. Effect of key parameters on shear strength of non-prestressed UHPC beams. (a) effect of
the square root of UHPC compressive strength (

[
fc
′]0.5). (b) effect of fiber volume fraction (Vf ).

(c) effect of UHPC post-cracking tensile strength (
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flexural tensile strength of the prism corresponding to the crack mouth opening displace-
ment (CMOD) of 3.5 mm [MPa]. Residual flexural tensile strengths (𝑓ோ,௜) are estimated by 
a three-point bending test on a 150 × 150 × 550 mm notched prism. The stress versus strain 
behavior is obtained from the load-deflection or load-CMOD relation of the prism. The 
load-CMOD curve is defined using four points (𝑖 = 1 through 4) that corresponds to the 
CMOD of 0.5, 1.5, 2.5, and 3.5 mm, respectively. 𝑓ோ,௜ is calculated as follows: 𝑓ோ,௜ =  3 𝐹ோ,௜ 𝑥 𝐿2𝑏 𝑥 ℎ௦௣ଶ  [MPa] (4)

where 𝐹ோ,௜ is the measured load at (CMODi) [N]; 𝐿 is the prism span [mm]; 𝑏 is the prism 
width [mm]; ℎ௦௣ is the depth between the notch tip to the extreme compression fibers of 
the prism cross-section [mm]. 

The concrete contribution is calculated according to Equation (5). 𝑉௖ௗ =  ൤0.12 𝑘 (100 𝜌ଵ 𝑓௖௞)ଵଷ + 0.15 Ϭ௖௣൨ 𝑏௪ 𝑑 [N] (5)

𝜌ଵ =  𝐴௟𝑏௪ 𝑑 (6)

Ϭ௖௣ =  𝑁௦ௗ𝐴௖  [MPa] (7)

where 𝜌ଵ is the ratio of longitudinal reinforcement (recommended not to be taken greater 
than 2%); 𝐴௟ is the area of tension reinforcement extending at least (𝑑 + anchorage length) 
beyond the considered section [mm2]; 𝑓௖௞  is the cylinder characteristic compressive 
strength [MPa]; Ϭ௖௣ is the factor to account for the level of axial loading or prestressing in 
the beam [MPa]; 𝑁ௌௗ is the axial force in the section due to loading or prestressing (posi-
tive for compression) [N]; 𝐴஼ is the area of the beam cross-section [mm2]. 

2.1.2. Fib Model Code, 2010 
This prediction model is developed for steel fiber-reinforced conventional concrete 

and is not validated yet for UHPC. The approach bears some similarities to the RILEM TC 
162-TDF, 2003 [5] prediction model with the exception of having the steel fibers contribu-
tion coupled with the concrete contribution in one term (𝑉ோௗ,ி) as follows:  𝑉ோௗ,ி =  ቊ଴.ଵ଼ఊ೎ ·  𝑘 · ቂ100 · 𝜌ଵ ቀ1 + 7.5 ௙ಷ೟ೠೖ௙೎೟ೖ ቁ · 𝑓௖௞ቃଵ ଷൗ + 0.15 · Ϭ௖௣ቋ · 𝑏௪ · 𝑑 [N] (8)

where terms such as 𝑘, 𝜌ଵ, Ϭ௖௣, 𝑏௪, and 𝑑 are defined similar to RILEM TC 162-TDF, 2003 
[5]; 𝛾௖ is a partial safety factor for concrete with no fibers (recommended to be taken as 
1.5); 𝑓ி௧௨௞ is the characteristic value of ultimate residual tensile strength calculated as fol-
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Similar to the RILEM TC 162-TDF, 2003 [5] model, 𝑓ோ,ଵ and 𝑓ோ,ଷ are the residual flex-
ural tensile strengths corresponding to CMOD of 0.5 mm and 3.5 mm, respectively [MPa]; 𝑓ி௧௦ is the characteristic residual tensile strength (post-cracking strength at serviceability 
crack opening) [MPa]; 𝑤௨ is the maximum crack opening that is acceptable in structural 
design (recommended to be taken as 1.5 mm); 𝑓ி௧௨௞ is determined according to the rigid-
plastic model Equation (9), or the linear model based on Equations (10) and (11); 𝑓௖௧௞ is the 
characteristic tensile strength of concrete containing no fibers [MPa] and can be deter-
mined as follows: 

Rd, f ). (d) effect of longitudinal reinforcement
ratio (Al/bwd).
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In order to have a more homogenous group of test data, specimens with a fiber volume
fraction of less than 2% (Vf < 2.0%) were omitted since the commonly used Vf in UHPC
mixtures is at least 2% [39]. The remaining specimens yielded a strong correlation between
reinforcement ration (Al/bwd) and the shear strength as shown in Figure 7. Multiple
regression analysis was done on that group and resulted in Al/bwd being statistically
significant as the p-value was 0.024, whereas

[
fc
′]0.5, Vf , and
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Rd, f had p-values of 0.82,
0.89, and 0.49, respectively, which is in agreement with the Pearson correlation test results.
The standard error of the model containing all data points was 6.27, whereas the standard
error value for the (Vf > 2.0%) group was 2.80. This indicates that the (Vf > 2.0%) regression
model provides higher accuracy than models containing all data points.
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Figure 7. Effect of the longitudinal reinforcement ratio (Al/bwd) on the shear strength of
non−prestressed UHPC beams with Vf ≥ 2.0%.

3.2. Comparison to Model Predictions

Prediction models were evaluated by comparing measured versus predicted shear
strength for the test data presented earlier. Safety factors were set to 1.0 when calculating
the predicted shear strength of UHPC beams. Crack angles that were not reported for
some tests were assumed based on shear failure photos. The tensile strength that was not
reported for some tests was assumed based on direct tension or flexural test results. A
conversion factor was used to convert the tensile strength obtained from flexure testing
to that obtained from the direct tension test. This conversion factor was found to be 0.377
based on the average of the German guidelines for UHPC [18] and the Swiss standard [19].
The conversion factor is multiplied by the post-cracking flexural tensile strength to get
the axial tensile strength and is based on having the neutral axis located at a distance of
about 82% of the prism height from the extreme tension surface. Table 1 presents three-
point bending tests conducted in the literature to quantify the residual tensile strength of
UHPC. It shows that the size of the prism has a significant effect on the measured tensile
strength. Average values from this table were used to estimate the residual tensile strength
of UHPC in the terms fR,4, f f tuk,
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Rd, f , frr, or ft,loc in the five considered prediction models,
respectively. For example, for a fiber volume fraction of 2%, fR,4 would be 29.6 MPa,
whereas for mixes with 2.5% and 1% fiber volume fractions, fR,4 would be to use the 40.0
and 2.8 MPa, respectively. For mixes with different fiber volume fractions, values are
estimated by interpolation. A prediction example of Tadros et al., 2021 [8], IA1 data point is
presented in the Appendix A section to show how the calculation procedure is performed
for the five models.
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Table 1. UHPC residual tensile strength reported in the literature.

Reference
Fiber Volume(

Vf
) Fiber Length

(lf) (mm)

Fiber
Diameter
(Φf) (mm)

Cylinder Compressive

Strength
(

fc
’
)
(MPa)

Prism Cross Section
(b × h) (mm2)

Notch Height
(mm)

Span
(mm)

Residual Flexural Tensile Strengths(
fR,i

)
(MPa)

fR,1 fR,2 fR,3 fR,4

Prem et al., 2012 [40]
(R1 Mix) 2.5% 13 × 180.0 70 × 70 21.0 300 45.5 49.6 42.7 40.0

Prem et al., 2012 [40]
(R2 Mix) 2% 13 0.15 170.0 70 × 70 21.0 300 37.2 40.0 37.2 34.5

Yang et al., 2010 [41] (average) 2% 13 0.2 190.9 100 × 100 10.0 300 26.9 30.3 27.6 24.8

Graybeal, 2006 [3] (M2P02) 2% 13 0.2 126.2 50 × 100 25.4 406 22.1 20.7 – –

Zagon et al., 2016 [42]
(average) 1% 10 0.18 141.3 100 × 100 27.0 400 11.7 6.2 4.1 2.8

3.2.1. RILEM TC 162-TDF, 2003

Reasonable assumptions for unreported values of fR,4 were made according to Table 1.
For example, fR,4 was assumed as 29.6 MPa for test data having Vf = 2.0%. Figure 8
plots the measured versus predicted shear strength using RILEM TC 162-TDF model. The
average (Vu)measured

(Vu)predicted
was 2.7, with a standard deviation of 0.88. It can be noticed that the

underestimation increases with the increase of the measured shear strength.
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Figure 8. Measured versus predicted shear strength according to RILEM TC 162-TDF, 2003
(Equations (1) and (5)).

3.2.2. Fib Model Code, 2010

Reasonable assumptions for unreported values of f f tuk were made according to Table 1.
For example, f f tuk was assumed as 11.0 MPa for test data having Vf = 2.0%. This assumption
is based on Equations (10) and (11) and having the flexural tensile strengths ( fR,i) according
to Table 1. Figure 9 plots the measured versus the predicted shear strength fib Model Code.
The average (Vu)measured

(Vu)predicted
was 2.4, with a standard deviation of 0.74. It can be noticed that the

predicted shear strength is close to what the RILEM TC 162-TDF, 2003 5 provides.



Materials 2022, 15, 4794 16 of 23

Materials 2022, 15, x FOR PEER REVIEW 16 of 26 
 

 

(𝑓ோ,௜) according to Table 1. Figure 9 plots the measured versus the predicted shear strength 
fib Model Code. The average (௏ೠ)೘೐ೌೞೠೝ೐೏(௏ೠ)೛ೝ೐೏೔೎೟೐೏ was 2.4, with a standard deviation of 0.74. It can 

be noticed that the predicted shear strength is close to what the RILEM TC 162-TDF, 2003 
5] provides. 

 
Figure 9. Measured versus predicted shear strength according to the fib Model Code, 2010 (Equation 
(8)). 

3.2.3. French Standard, NF P 18-710, 2016 
Reasonable assumptions for unreported values of Ϭோௗ,௙ were made according to Ta-

ble 1. For example, Ϭோௗ,௙ was assumed as 11.0 MPa for test data having 𝑉௙ = 2.0%. Figure 
10 plots the measured versus predicted shear strength using the French standard model. 
The average (௏ೠ)೘೐ೌೞೠೝ೐೏(௏ೠ)೛ೝ೐೏೔೎೟೐೏ was 1.1, with a standard deviation of 0.38. It can be noticed that 

the data are well distributed around the 45-degree angle line indicating a reasonable con-
sistency in the prediction accuracy. 

 
Figure 10. Measured versus predicted shear strength according to French Standard NF P 18-710, 
2016 (Equations (13) or (14), and (16)). 

3.2.4. PCI-UHPC Structures Design Guide, 2021 
The assumed value of 𝑓௥௥ was limited to 5.2 MPa as recommended by the model. This 

value is significantly lower than what is typically achieved by commonly used UHPC 
mixes, which caused the predicted shear strengths to be significantly underestimated. The 
crack angle was calculated according to the suggested procedure of the model and was 

Figure 9. Measured versus predicted shear strength according to the fib Model Code, 2010
(Equation (8)).

3.2.3. French Standard, NF P 18-710, 2016
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Similar to the RILEM TC 162-TDF, 2003 [5] model, 𝑓ோ,ଵ and 𝑓ோ,ଷ are the residual flex-
ural tensile strengths corresponding to CMOD of 0.5 mm and 3.5 mm, respectively [MPa]; 𝑓ி௧௦ is the characteristic residual tensile strength (post-cracking strength at serviceability 
crack opening) [MPa]; 𝑤௨ is the maximum crack opening that is acceptable in structural 
design (recommended to be taken as 1.5 mm); 𝑓ி௧௨௞ is determined according to the rigid-
plastic model Equation (9), or the linear model based on Equations (10) and (11); 𝑓௖௧௞ is the 
characteristic tensile strength of concrete containing no fibers [MPa] and can be deter-
mined as follows: 

Rd, f were made according to Table 1.
For example,
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Rd, f was assumed as 11.0 MPa for test data having Vf = 2.0%. Figure 10
plots the measured versus predicted shear strength using the French standard model. The
average (Vu)measured

(Vu)predicted
was 1.1, with a standard deviation of 0.38. It can be noticed that the data

are well distributed around the 45-degree angle line indicating a reasonable consistency in
the prediction accuracy.
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3.2.4. PCI-UHPC Structures Design Guide, 2021

The assumed value of frr was limited to 5.2 MPa as recommended by the model. This
value is significantly lower than what is typically achieved by commonly used UHPC mixes,
which caused the predicted shear strengths to be significantly underestimated. The crack
angle was calculated according to the suggested procedure of the model and was limited
to range between 27.6 and 50.0 degrees as recommended. Figure 11 plots the measured
versus predicted shear strength using the PCI-UHPC Structures Design Guide model. The
average (Vu)measured

(Vu)predicted
was 2.5, with a standard deviation of 1.14. It should be noted that the

French Standard takes into account the level of prestressing whereas the PCI-UHPC model
does not consider the level of prestressing term for simplicity. The effect of prestressing is
only considered in that model when estimating the crack angle.
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Guide, 2021 (Equation (18)).

3.2.5. Draft of AASHTO Guide Specification for Structural Design with UHPC, 2021

Reasonable assumptions for unreported values of ft,loc were made according to Table 1.
For example, ft,loc was assumed as 11.0 MPa for test data having Vf = 2.0%. The comparison
to this model prediction was done for three cases (a to c) where the localization strain
(Et,loc) was considered as 0.005, 0.007, and 0.010, respectively, for all test data based on
the recommended range of 0.004 and 0.010 [20,21]. Figure 12 plots the measured versus
predicted shear strength using Draft AASHTO model for the three cases. The average
(Vu)measured
(Vu)predicted

were 1.6, 1.5, and 1.3 with a standard deviation of 0.60, 0.63, and 0.64 for cases a

through c, respectively. This indicates that the prediction provided by this model is not very
sensitive to Et,loc, and doubling Et,loc from 0.005 to 0.010 resulted in an increase of 23% of the
average prediction. Additionally, the prediction provided by that model is slightly more
conservative than the one provided by the French Standard and is closest to the measured
shear strength compared to all other prediction models.
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4. Discussion and Recommendation

Table 2 summarizes the outcomes of model evaluation. The table shows that the
French Standard NF P 18-710, 2016 [7] provided the closest estimation of the shear strength
followed by the Draft of AASHTO Guide Specification for Structural Design with UHPC,
2021 [9]. The PCI-UHPC Structures Design Guide, 2021 [8], underestimated the predicted
shear strength significantly due to assuming a constant conservative value of UHPC
tensile strength. The fib Model Code, 2010 [6], and RILEM TC 162-TD, 2013 [5], models
provided significantly conservative prediction as they were developed for steel fiber-
reinforced concrete. The French Standard NF P 18-710, 2016 [7] also provided the least
standard deviation, which indicates the highest consistency in the shear strength prediction.
Furthermore, the PCI-UHPC and Draft AASHTO models do not consider explicitly the
level of prestressing in the fiber contribution term as the French Standard does. The
prestressing effect is only considered in the crack angle estimation equations. This is one
of the major factors that causes the French Standard to provide higher consistency in the
shear strength prediction.
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Table 2. Summary of evaluation of prediction models.

Prediction Model Average (Vu)measured
(Vu)predicted

Standard Deviation

RILEM TC 162-TDF, 2003 [5] 2.7 0.88

fib Model Code, 2010 [6] 2.4 0.75

French Standard NF P 18-710, 2016 [7] 1.1 0.38

PCI-UHPC Structures Design Guide, 2021 [8] 2.5 1.15

Draft of AASHTO Guide Specification for Structural Design with UHPC, 2021 [9]—Case (a) 1.6 0.60

Draft of AASHTO Guide Specification for Structural Design with UHPC, 2021 [9]—Case (b) 1.5 0.63

Draft of AASHTO Guide Specification for Structural Design with UHPC, 2021 [9]—Case (c) 1.3 0.64

Based on the findings of this study, it is recommended to use the French Standard
prediction model to estimate the shear strength of UHPC beams if the closest prediction is
required. The PCI-UHPC and Draft AASHTO models can also be used but the designer
should be aware of increased conservatism.

5. Conclusions

The paper presented five prediction models for the shear strength of prestressed and
non-prestressed UHPC beams without transverse reinforcement. Available test data in the
literature were used to evaluate these models and identify the key parameters that affect
the shear strength of UHPC beams. Despite the limited size of published test data, this
investigation yielded the following conclusions:

1. Among the parameters affecting the shear strength of prestressed and non-prestressed
beams, the tensile strength of UHPC (
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Rd, f ) was found to have a significant positive
correlation with the shear strength of UHPC beams.

2. For UHPC beams with a fiber volume fraction of at least 2%, the level of prestressing
(

Materials 2022, 15, x FOR PEER REVIEW 3 of 26 
 

 

flexural tensile strength of the prism corresponding to the crack mouth opening displace-
ment (CMOD) of 3.5 mm [MPa]. Residual flexural tensile strengths (𝑓ோ,௜) are estimated by 
a three-point bending test on a 150 × 150 × 550 mm notched prism. The stress versus strain 
behavior is obtained from the load-deflection or load-CMOD relation of the prism. The 
load-CMOD curve is defined using four points (𝑖 = 1 through 4) that corresponds to the 
CMOD of 0.5, 1.5, 2.5, and 3.5 mm, respectively. 𝑓ோ,௜ is calculated as follows: 𝑓ோ,௜ =  3 𝐹ோ,௜ 𝑥 𝐿2𝑏 𝑥 ℎ௦௣ଶ  [MPa] (4)

where 𝐹ோ,௜ is the measured load at (CMODi) [N]; 𝐿 is the prism span [mm]; 𝑏 is the prism 
width [mm]; ℎ௦௣ is the depth between the notch tip to the extreme compression fibers of 
the prism cross-section [mm]. 

The concrete contribution is calculated according to Equation (5). 𝑉௖ௗ =  ൤0.12 𝑘 (100 𝜌ଵ 𝑓௖௞)ଵଷ + 0.15 Ϭ௖௣൨ 𝑏௪ 𝑑 [N] (5)

𝜌ଵ =  𝐴௟𝑏௪ 𝑑 (6)

Ϭ௖௣ =  𝑁௦ௗ𝐴௖  [MPa] (7)

where 𝜌ଵ is the ratio of longitudinal reinforcement (recommended not to be taken greater 
than 2%); 𝐴௟ is the area of tension reinforcement extending at least (𝑑 + anchorage length) 
beyond the considered section [mm2]; 𝑓௖௞  is the cylinder characteristic compressive 
strength [MPa]; Ϭ௖௣ is the factor to account for the level of axial loading or prestressing in 
the beam [MPa]; 𝑁ௌௗ is the axial force in the section due to loading or prestressing (posi-
tive for compression) [N]; 𝐴஼ is the area of the beam cross-section [mm2]. 

2.1.2. Fib Model Code, 2010 
This prediction model is developed for steel fiber-reinforced conventional concrete 

and is not validated yet for UHPC. The approach bears some similarities to the RILEM TC 
162-TDF, 2003 [5] prediction model with the exception of having the steel fibers contribu-
tion coupled with the concrete contribution in one term (𝑉ோௗ,ி) as follows:  𝑉ோௗ,ி =  ቊ଴.ଵ଼ఊ೎ ·  𝑘 · ቂ100 · 𝜌ଵ ቀ1 + 7.5 ௙ಷ೟ೠೖ௙೎೟ೖ ቁ · 𝑓௖௞ቃଵ ଷൗ + 0.15 · Ϭ௖௣ቋ · 𝑏௪ · 𝑑 [N] (8)

where terms such as 𝑘, 𝜌ଵ, Ϭ௖௣, 𝑏௪, and 𝑑 are defined similar to RILEM TC 162-TDF, 2003 
[5]; 𝛾௖ is a partial safety factor for concrete with no fibers (recommended to be taken as 
1.5); 𝑓ி௧௨௞ is the characteristic value of ultimate residual tensile strength calculated as fol-
lows: 𝑓ி௧௨௞ = 𝑓ோ,ଷ3  [MPa] (9)𝑓ி௧௨௞ =  𝑓ி௧௦ − 𝑤௨𝐶𝑀𝑂𝐷ଷ  ൫𝑓ி௧௦ − 0.5 𝑓ோ,ଷ + 0.2 𝑓ோ,ଵ൯ ≥ 0 [MPa] (10)𝑓ி௧௦ = 0.45 𝑓ோ,ଵ [MPa] (11)

Similar to the RILEM TC 162-TDF, 2003 [5] model, 𝑓ோ,ଵ and 𝑓ோ,ଷ are the residual flex-
ural tensile strengths corresponding to CMOD of 0.5 mm and 3.5 mm, respectively [MPa]; 𝑓ி௧௦ is the characteristic residual tensile strength (post-cracking strength at serviceability 
crack opening) [MPa]; 𝑤௨ is the maximum crack opening that is acceptable in structural 
design (recommended to be taken as 1.5 mm); 𝑓ி௧௨௞ is determined according to the rigid-
plastic model Equation (9), or the linear model based on Equations (10) and (11); 𝑓௖௧௞ is the 
characteristic tensile strength of concrete containing no fibers [MPa] and can be deter-
mined as follows: 

cp) and longitudinal reinforcement ratio (Al/bwd) were found to have a significant
effect on the shear strength of prestressed and non-prestressed beams, respectively.

3. The French Standard model provided the closest prediction to the measured shear
strength of UHPC beams with the highest consistency of prediction, followed by the
Draft of AASHTO model.

4. The PCI-UHPC Structures Design Guide prediction model significantly underesti-
mates the shear strength due to the limitation of UHPC residual tensile strength
to 5.2 MPa. This value is significantly smaller than what is typically achieved by
the commonly used UHPC mixes. However, the model procedure is much simpler
compared to the other models.

5. The RILEM and fib Model Code, 2010 prediction models were developed primarily
for fiber-reinforced concrete and significantly underestimate the shear strength of
UHPC beams.

6. Residual tensile strength of UHPC is an essential parameter in all UHPC prediction
models. The method of its determination is not unified between the shear experiments
and prediction models. Moreover, the variability in residual tensile strength among
specimens is large, which requires several direct tension or flexure tests to yield
reliable predictions.
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Appendix A

Table A1. Shear experiments review on prestressed UHPC beams.

Reference Specimen ID Specimen Shape bw (mm) d (mm) h (mm) Vf % a/d Aps/bwd σcp (MPa) f’c (MPa) lf (mm) Φf (mm) σRd,f (MPa) θ Vu (kN) ( Vu
bwd ) (MPa)

Hegger et al., 2004 [24] 1 I-beam 70 250 300 2.5 5.4 6.80% 26.9 192 13 0.15 12.1 31 271.3 15.9

Voo et al., 2006 [23]

SB2

I-beams 50 600 650

2.5

3.3 2.70%

14.5 160

13 (Type I)
30 (Type II)

0.20 (Type I)
0.50 (Type II)

9.8 34 496.8 16.6
SB3

6.9

149 8.6 32 427.9 13.8
SB4 1.25 164 5.5 26 336.3 11.0
SB5

2.5
171 9.7 29 439.9 14.5

SB6 157 9.3 24 330 11.0
SB7 169 8.8 21 399.9 13.1

Graybeal, 2006 [27]
28S

AASHTO Type II 155 803 910 2.0
2.5

1.90% 9.0 193 13 0.20
11.0 40 1707.6 13.8

24S 2.8 11.0 28 2232.5 17.9
14S 2.3 11.0 25 1946.9 15.9

Hegger and Bertram, 2008 [25]

T1a

I-beams 60 318 400
0.9
2.5
0.9

3.8
4.60% 24.8

144
18

0.15

5.0 30 234 12.4
T1b 165 5.0 30 266.9 13.8

T3b 162 9 11.0 30 407.9 21.4

T4a 167
18

5.0 30 343.8 17.9

T4b 4.4 174 5.0 30 290.9 15.2

Graybeal, 2009 [28]
P 2-21S

Pi-girders 170 750 838 2.0
2.9

1.73% 6.2 229 13 0.20
11.4 32 1912.6 15.2

P4-57SH 2.4 10.6 35 1628.0 13.1

Wipf et al., 2009 [29] 1 I-beams 115 927 1067 2.0 2.5 5.6% 21.4 153 13 0.20 11.7 25 2642.1 24.8

Baby et al., 2010 [31]

Beam 1-A

I-beams 65 305 380
2.5

2.5 4.10% 17.2

185
20 0.30

12.0 30 441.2 22.1

Beam 1-A-bis 192 12.0 30 440.4 22.1

Beam 1-B 2.0 201 13 0.20 12.0 30 515.5 26.2

Voo et al., 2010 [30]

X-B1

I-beams with
Symmetric

Prestressing
50 620 650 1.0

3.2

2.60% 15.2

125

15 0.20

4.4 26 330.0 10.4
X-B2 126 5.3 24 355.0 11.0
X-B3 135 4.6 22 362.1 11.7
X-B4 2.5 122 4.6 26 455.5 14.5
X-B5 3.5 140 6.6 24 422.6 13.1
X-B6 4.5 140 6.6 24 390.5 12.4
X-B7 1.5 2.5 122 7.8 29 521.3 16.6

Crane, 2010 [15]
1-2

Bulb-Tee Girders 101 720 835 2.0 3.4 3.90% 16.5 200 13 0.20 11.0
26 1917.1 26.9

2-1 23 2072.8 29.0
3-1 25 1877.1 26.2

Tadros et al., 2021 [8]

IA1

I-beams
76.2

734.0 863.6

2%

2.9
6.5% 18.0

154.6

13 0.20

11.0 26.8 1596.9 28.3
IA2 120.1 6.9 30.8 1383.4 24.8
IA3 126.3 6.9 28.3 1370.0 24.8
IA8 125.6 8.3 28.0 1596.9 28.3

IA13 50.8 9.8% 19.3 126.3 7.6 32.0 1049.8 28.3
IA14 101.6 4.9% 16.9 126.3 6.9 28.0 1823.8 24.2

DIB—Test 1 Decked I-Beam 100 924.0 1000 2.7 2.2% 6.4 138.0 10.4 28.0 1579.1 17.3
BX-1

Box Section 152.4 406.4 457.2 2.8 3.5% 9.8 136.6 8.3 25.0
1214.4 19.3

BX-2 1138.7 18.4

Maximum 170 927 1067 2.5 5.4 9.80% 26.9 229 30 0.50 12.1 40 2642.1 29.0

Minimum 50 250 300 0.9 2.3 1.73% 6.2 122 9 0.15 4.4 22 234 10.4
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Table A2. Shear experiments review on non-prestressed UHPC beams.

Reference Specimen ID Specimen Shape bw (mm) d (mm) h (mm) Vf % a/d Al
bwd

f’c (MPa) lf (mm) Φf (mm)
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162-TDF, 2003 [5] prediction model with the exception of having the steel fibers contribu-
tion coupled with the concrete contribution in one term (𝑉ோௗ,ி) as follows:  𝑉ோௗ,ி =  ቊ଴.ଵ଼ఊ೎ ·  𝑘 · ቂ100 · 𝜌ଵ ቀ1 + 7.5 ௙ಷ೟ೠೖ௙೎೟ೖ ቁ · 𝑓௖௞ቃଵ ଷൗ + 0.15 · Ϭ௖௣ቋ · 𝑏௪ · 𝑑 [N] (8)

where terms such as 𝑘, 𝜌ଵ, Ϭ௖௣, 𝑏௪, and 𝑑 are defined similar to RILEM TC 162-TDF, 2003 
[5]; 𝛾௖ is a partial safety factor for concrete with no fibers (recommended to be taken as 
1.5); 𝑓ி௧௨௞ is the characteristic value of ultimate residual tensile strength calculated as fol-
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Similar to the RILEM TC 162-TDF, 2003 [5] model, 𝑓ோ,ଵ and 𝑓ோ,ଷ are the residual flex-
ural tensile strengths corresponding to CMOD of 0.5 mm and 3.5 mm, respectively [MPa]; 𝑓ி௧௦ is the characteristic residual tensile strength (post-cracking strength at serviceability 
crack opening) [MPa]; 𝑤௨ is the maximum crack opening that is acceptable in structural 
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plastic model Equation (9), or the linear model based on Equations (10) and (11); 𝑓௖௧௞ is the 
characteristic tensile strength of concrete containing no fibers [MPa] and can be deter-
mined as follows: 

Rd,f (MPa) θ Vu (kN) ( Vu
bwd ) (MPa)

Voo et al., 2006 [23] SB1 I-beams 50 600 650 2.5 3.3 2.70% 161 13(Type I)
30 (Type II)

0.20 (Type I)
0.50 (Type II) 11.0 37 430.1 13.8

Baby et al., 2010 [31] Beam 3-A
I-beams 65 305 380

2.5 2.5 4.80% 185 20 0.30 12.0 30 461.3 23.5
Beam 3-B 2.0 2.5 4.80% 201 13 0.20 12.0 30 455.0 22.8

Fehling et al., 2012 [33]
Q-F1-2 Shear span was

I-shaped 30 295 320 1.0 4.1 6.60%
201

13 0.18
8.7 30 108.1 12.4

Q-F1-3 207 8.7 30 108.1 12.4
Q2-F1-1 185 8.7 30 100.1 11.0

Lim et al., 2016 [26] SB1 Rectangular Beams 150 240 290 1.5 2.8 7.30% 167 16 and 19 0.20 9.6 27 475.9 13.1

Pourbaba et al., 2018 [34]

B35

Rectangular Beams 152 56 76 1.5 2.7

5.60%

125 13 0.18

9.4 32 105.9 12.4

B36 4.00% 9.4 32 85.0 9.7

B37 2.70% 9.4 32 71.2 8.3

Pansuk et al., 2017 [36]
NS08

I-beams 50 350 400
0.8

2.9 5.50%
141

13 0.20
11.0 30 339.8 19.3

NS16 1.6 140 17.0 38 531.1 30.4

Meszoly et al., 2018 [37]

B19

I-beams 60 295 350

2.0

3.7 5.06%

152

15 0.20

11.0 30 396.8 22.8
B20

1.0
154 6.8 29 419.0 23.5

B24 166 6.8 34 314.9 17.9
B25

2.0
179 11.0 33 504.8 28.3

B29 177 6.8 31 487.1 27.6
B30 2.0 169 11.0 36 564.9 31.7

Ridha et al., 2018 [38]

B5

Rectangular Beams 100 112 140 2.0

3.5

2.90%

110

13 0.20

7.0 32 82.3 7.6

B6 7.0 32 107.6 9.7

B7 7.0 32 112.5 10.4

B10 2.5 7.0 32 125 11.0

B11 3.0 7.0 32 97.4 9.0

B16

3.5

125 7.3 32 93.9 8.3

B17 142 7.6 35 101.0 9.0

B18 151 7.8 35 109.9 9.7

Maximum 152 600 650 2.5 4.1 7.30% 207 30 0.50 17.0 38 564.9 30.4

Minimum 30 56 76 0.8 2.5 2.70% 110 9 0.15 6.8 27 71.2 7.6
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