
Importance of Non-Selective Cation Channel TRPV4
Interaction with Cytoskeleton and Their Reciprocal
Regulations in Cultured Cells
Chandan Goswami1,2*, Julia Kuhn1, Paul A. Heppenstall3¤, Tim Hucho1

1 Signal Transduction in Pain and Mental Retardation, Department for Molecular Human Genetics Max Planck Institute for Molecular Genetics, Berlin, Germany, 2 National

Institute of Science Education and Research, Bhubaneswar, India, 3 Klinik für Anaesthesiologie und Operative Intensivmedizin, Charité Universitätsmedizin Berlin, Campus
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Abstract

Background: TRPV4 and the cellular cytoskeleton have each been reported to influence cellular mechanosensitive
processes as well as the development of mechanical hyperalgesia. If and how TRPV4 interacts with the microtubule and
actin cytoskeleton at a molecular and functional level is not known.

Methodology and Principal Findings: We investigated the interaction of TRPV4 with cytoskeletal components
biochemically, cell biologically by observing morphological changes of DRG-neurons and DRG-neuron-derived F-11 cells,
as well as functionally with calcium imaging. We find that TRPV4 physically interacts with tubulin, actin and neurofilament
proteins as well as the nociceptive molecules PKCe and CamKII. The C-terminus of TRPV4 is sufficient for the direct
interaction with tubulin and actin, both with their soluble and their polymeric forms. Actin and tubulin compete for binding.
The interaction with TRPV4 stabilizes microtubules even under depolymerizing conditions in vitro. Accordingly, in cellular
systems TRPV4 colocalizes with actin and microtubules enriched structures at submembranous regions. Both expression
and activation of TRPV4 induces striking morphological changes affecting lamellipodial, filopodial, growth cone, and neurite
structures in non-neuronal cells, in DRG-neuron derived F11 cells, and also in IB4-positive DRG neurons. The functional
interaction of TRPV4 and the cytoskeleton is mutual as Taxol, a microtubule stabilizer, reduces the Ca2+-influx via TRPV4.

Conclusions and Significance: TRPV4 acts as a regulator for both, the microtubule and the actin. In turn, we describe that
microtubule dynamics are an important regulator of TRPV4 activity. TRPV4 forms a supra-molecular complex containing
cytoskeletal proteins and regulatory kinases. Thereby it can integrate signaling of various intracellular second messengers
and signaling cascades, as well as cytoskeletal dynamics. This study points out the existence of cross-talks between non-
selective cation channels and cytoskeleton at multiple levels. These cross talks may help us to understand the molecular
basis of the Taxol-induced neuropathic pain development commonly observed in cancer patients.
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Introduction

Transient receptor potential vanilloid sub type 4 (TRPV4) is a

member of TRP super family of Ca2+-permeable non-selective

cation channels. This polymodal receptor is involved in cellular

processes such as mechanosensation, osmosensation and thermo-

sensation [1–5]. Some of these sensory functions are well conserved

in different species. For example, mammalian TRPV4 can rescue

mechanosensitive defects observed in C.elegans OSM-9 mutants [5].

In higher organisms TRPV4 is endogenously expressed in

nociceptive dorsal root ganglion (DRG) neurons but also in many

non-neuronal tissues and cells such as skin, kidney corneal epithelial

cells [6], cerebral microvascular endothelial cells [7], cortical

astrocytes [8], tracheal epithelial cells [9], keratinocyte cell lines [10]

and in other cells. The widespread distribution of TRPV4 is

indicative of its involvement in various physiological functions.

Indeed, TRPV4 is of importance in shear stress-induced vasodila-

tion [11] as well as in auditory functions [12–13]. Recently TRPV4

gained importance as it has been linked with the development of

different pathophysiological conditions such as neuropathic pain,

cystic fibrosis, brachyolmia and cancer [14–18].

From several reports, the involvement of cytoskeleton can be

correlated with the localization and function of TRPV4. For

example, TRPV4 is found in structures like cilia in various tissues

and cells [9,19–21] and in lamellipodia, where it regulates the

dynamics of cytoskeleton [22–23]. Many cellular functions

involving TRPV4 are known to require active participation of

the cytoskeleton. For example, TRPV4 activity is central to
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cytoskeleton-dependent/mediated regulatory volume decrease of

cells [6,10,24], a process where actin-binding proteins contribute

to cell volume regulatory ion channel activation [24–26]. In

addition, TRPV4 has a conserved role in mechanotransduction, a

complex process that involves both actin and microtubule

cytoskeletal components [27–29]. The interplay of TRPV4 with

microtubule cytoskeleton also appears on a behavioural level,

where alteration of microtubule dynamics by Taxol induces a

TRPV4-dependent painful peripheral neuropathy [30]. While all

these cellular and behavioural studies strongly suggest that TRPV4

shares a functional relation with the cytoskeleton, so far a direct

link of TRPV4 with the cytoskeleton has not been demonstrated.

Thus, a molecular mechanism for the role of TRPV4 and the

cytoskeleton in pain, mechanosensation as well as other cellular

functions remains elusive.

Recently, we have established a functional interplay between

TRPV1, a close homologue of TRPV4, and the microtubule

cytoskeleton [31–35]. We demonstrated the physical interaction of

microtubule cytoskeleton with TRPV1 via two novel tubulin-

binding motifs [36–37]. Based on our previous experiments done

on TRPV1 and the sequence homology between TRPV1 and

TRPV4, we predicted that TRPV4 might interact with tubulin via

its C-terminal domain. Therefore, in this work we set out to

explore if TRPV4 physically and functionally interacts with actin

and microtubule cytoskeletal components.

Results

TRPV4 interacts with endogenous actin and tubulin
In order to test if TRPV4 interacts with cytoskeletal proteins like

tubulin and actin, we performed co-immunoprecipitation experi-

ments with affinity purified TRPV4 antibodies. CHO-KI-TRPV4

stable cell lines were used, which express low levels of TRPV4. In

immunoblot analysis, we observed that TRPV4 antibodies

precipitated TRPV4 together with actin and tubulin proteins

(Fig. 1a). Presence of tubulin and actin was not observed when a

similar co-immunoprecipitation was performed from the same cell

extract using an antibody, which was not raised against TRPV4. To

confirm further that the tubulin interaction is occurring even in

endogenous tissues, we isolate DRG neurons from rat and

performed similar co-immunoprecipitation experiments with affin-

ity purified TRPV4 antibodies. We observed that tubulin co-

immunoprecipitated with TRPV4 even from DRG neurons (1b).

The C-terminus of TRPV4 is sufficient for interaction with
actin and tubulin

To identify, which part of the TRPV4 interacts with actin and/

or tubulin proteins, we performed a pull down experiment using

maltose-binding-protein (MBP)-fused to the N- and C-termini of

TRPV4. According to our prediction [37], at least one tubulin-

binding site is located within the C-terminus of TRPV4 (Fig. S1)

Figure 1. Interaction of soluble tubulin and actin with TRPV4. a. Co-immunoprecipitation of actin and tubulin with TRPV4. Cell extracts from
CHO-KI cells stably expressing TRPV4 (lane 1) was immunoprecipitated by TRPV4 antibody (lane 2) or by a non-specific antibody (lane 3). Blots were
probed for TRPV4 (left side), tubulin (middle) and actin (right side). b. Co-immunoprecipitation of tubulin with TRPV4. Extracts from DRG (lane 1) was
immunoprecipitated by TRPV4 antibody (lane 2) or by a non-specific antibody (lane 3). Blots were probed for TRPV4 (upper panel) and tubulin (lower
side). c. MBP-TRPV4-Ct (lane 2-3) but not MBP-LacZ (lane 4–5) forms specific complexes when incubated with mammalian brain extract (lane 1), both
in presence (lane 2 and 4) or absence (lane 3 and 5) of Ca2+ (1 mM). Presence of PKCe, actin and tubulin are observed only in lane 2 and 3.
Neurofilament in the pull down samples is visible only after exposing for a prolonged time. Presence of CamKII is noted only in the presence of Ca2+

(lane 2). Note that the amount of MBP-LacZ used, as a negative control for the pull down experiment is much more than MBP-TRPV4-Ct. d. Tubulin
interacts with TRPV4-Ct directly. MBP-LacZ (lane 1–2) or MBP-TRPV4-Ct (lane 3–4) was incubated with buffer only (lane 1 and 3) or with purified
tubulin (lane 2 and 4). Pulled down samples were probed for different isotype-specific and different post-translationally modified tubulins. e. Actin
interacts directly with TRPV4-Ct. MBP-TRPV4-Ct (lane 1–2) or MBP-LacZ (lane 3–4) was incubated with purified actin (lane 1–4) either in the presence
(lane 1-and 3) or absence (lane 2 and 4) of Ca2+ (1 mM) and subsequently probed for bound actin. f. Soluble tubulin and actin competes for the C-
terminal cytoplasmic fragment of TRPV4. MBP-TRPV4-Ct was incubated with only tubulin (lane 1), with only actin (lane 2), or both tubulin and actin in
a sequential manner (lane 3–4). Prior incubation of tubulin inhibits further binding of actin (lane 3). Similarly, prior incubation of actin significantly
reduces the further binding of tubulin (lane 4).
doi:10.1371/journal.pone.0011654.g001

TRPV4 Regulates Cytoskeleton
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and as the expression of the N-terminal cytoplasmic fragment

remained poor, we restricted our study to the C-terminus of

TRPV4 only. Pull down was performed from adult porcine brain

homogenate as well as from F11 cell lysate, a fusion-cell of rat

DRG neurons and mouse neuroblastoma cells [38]. In immuno-

blot analysis, we observed MBP-TRPV4-C-terminus fusion

protein (MBP-TRPV4-Ct) but not the control fusion protein

MBP-LacZ to pull down soluble tubulin and actin (Fig. 1c, S2).

When probed for the presence of another cytoskeletal element,

namely soluble neurofilament proteins, only minimal amounts of

NF116 kDa and no NF200 kDa were detected.

As activation of TRPV4 results in high Ca2+-influx, we tested if

higher concentration of Ca2+ could modulate these interactions.

However, we observed that tubulin and actin interaction with

TRPV4 do not depend on Ca2+ (Fig. 1c, S2).

TRPV4-Ct forms a Ca2+-sensitive supra-molecular
signaling complex made of actin, tubulin as well as
nociceptive signaling components PKCe and CamKII

Previously we have demonstrated that mechanical hyperalgesia

induced agonists of novel estrogen receptor GPR30 strongly

correlates with the translocation of PKCe in IB4 (+) neurons [39].

Moreover, mechanical hyperalgesia can be induced by activation of

the epsilon isoform of PKC (PKCe), a well-described pro-

nociceptive signaling molecule [39–43]. In addition, calmodulin,

and CamKII function has been linked with the chronic inflamma-

tory pain [44–46]. Thus, we tested if the TRPV4-actin/tubulin

complex also contains PKCe and/or CamKII. We found CamKII

to be present in the eluates of the pull-down material both from

soluble brain and F11 cell extract, but only in the presence of Ca2+

(Fig. 1c, Fig. S1). In addition, we also detected PKCe in the MBP-

TRPV4-Ct complex, both in presence and absence of Ca2+.

Presence of PKCe or CamKII was not observed with the control

protein MBP-LacZ. Thus, using two different biological sources,

our results indicate that TRPV4-Ct can form supra-molecular

complexes consisting of structural and signaling proteins.

MBP-TRPV4-Ct interacts directly with soluble tubulin and
actin

To test if TRPV4-Ct interacts directly with tubulin and actin, we

performed pull down experiments with the purified MBP-TRPV4-

Ct, tubulin, and actin. As expected, MBP-TRPV4-Ct but not MBP-

LacZ pulls down tubulin (Fig. 1d). Tubulin is subjected to different

types of post-translational modification, which regulate the process

of microtubule stabilization, destabilization and maturation. Thus,

we tested for the presence of various post-translationally modified

tubulins in the complex formed with MBP-TRPV4-Ct. Indeed we

found a large number of these post-translationally modified tubulins

and neuron-specific b-III tubulin (Fig. 1d).

Next we tested if also soluble actin interacts directly with MBP-

TRPV4-Ct. In immunoblot analysis, we observed that the MBP-

TRPV4-Ct pulls down purified actin, while under the same

conditions MBP-LacZ was unable to pull down any actin (Fig. 1e).

Again, we observed no influence of Ca2+ on this interaction.

Tubulin and actin compete for binding to MBP-TRPV4-Ct
To understand if tubulin binding affects actin binding and vice

versa, we performed a competition experiment between soluble

tubulin and soluble actin for the binding to MBP-TRPV4-Ct. Soluble

tubulin and actin were added to MBP-TRPV4-Ct sequentially before

being analysed for their binding to TRPV4 (Fig. 1f). As control either

soluble tubulin or soluble actin were used alone and washed in the

same manner. We observed that the amount of bound tubulin was

strongly reduced if MBP-TRPV4-Ct was initially incubated with actin

(Fig. 1f). Inversely, the amount of bound actin is very low if MBP-

TRPV4-Ct is initially incubated with tubulin. These results indicate

that both actin and tubulin compete for binding to MBP-TRPV4-Ct.

MBP-TRPV4-Ct interacts with polymerized actin and
tubulin filaments and favours formation of stable
microtubules

Next we addressed whether TRPV4 can also bind to polymerized

filaments. We observed that MBP-TRPV4-Ct co-sedimented with

polymerized actin and thus appeared in the pellet fraction (Fig. 2a).

Under the same conditions, MBP only showed no interaction with

polymerized actin filaments.

Here we probed if the MBP-TRPV4-Ct can also interact with

polymerized microtubules. We observed that MBP-TRPV4-Ct but

not MBP alone co-sedimented with Taxol-stabilized polymerized

microtubules (Fig. 2b, left side). In addition, we observed that if

MBP-TRPV4-Ct was added to saturated tubulin dimer solution

during GTP-induced microtubule formation, co-sedimentation of

MBP-TRPV4-Ct with polymerized microtubules was also observed

(Fig. 2b, right side). Again, only MBP, the control protein failed to

bind polymerized microtubules. These results confirm that MBP-

TRPV4-Ct directly interacts with filamentous microtubules.

We tested if MBP-TRPV4-Ct can change the physico-chemical

properties of the microtubules. For that purpose, we analysed the

stability of the microtubules by comparing the amount of

microtubules formed under depolymerization conditions, both in

the presence or absence of MBP-TRPV4-Ct. We observed that the

presence of MBP-TRPV4-Ct favours microtubule formation even

in presence of Nocodazole, Ca2+, or both (Fig. 2c). In contrast, in

absence of MBP-TRPV4-Ct much lower amount of microtubules

was formed. MBP as a control protein does not interact with the

polymerised microtubules and thus fails to provide stability to the

microtubules. This result suggests a stabilization effect of MBP-

TRPV4-Ct on microtubules.

TRPV4 localizes to actin- and microtubule-enriched
regions in F11 cell

Based on a RT-PCR analysis demonstrating the amplification of

small mRNA fragment, endogenous expression of TRPV4 in F11

cell has been proposed [47]. However, by immunofluorescence

analysis two different polyclonal antibodies which recognise the C-

terminal region of TRPV4, we could not observe any specific

endogenous expression of TRPV4 in F11 cells. To investigate if

the biochemical interaction under in vitro conditions also occurs in

vivo, we expressed TRPV4 in F11 cells as well as in other non-

neuronal cells and performed co-localization experiments. The

purpose of TRPV4 overexpression in F-11 cells is to mimic the

physiological situation in DRG neurons.

Using fluorescent labelled Phalloidin, we observed co-localiza-

tion of TRPV4 with actin at various actin cytoskeleton enriched

regions, such as the actin ribs of the cortical membranous regions,

and at filopodial and lamellipodial structures (Fig. S3).

As some of these structures are very dynamic and sensitive to

environmental changes such as temperature drops or media

composition, we attempted to confirm that the observed co-localization

in these structures was not a fixation artefact. Thus, we performed live

cell imaging by expressing TRPV4-GFP and RFP-actin in F11 cells

and we observed co-localization at filopodia, at lamellipodia, and also

at cortical actin-rich structures (Fig. 3a-c). We also noted co-localization

at actin-rich structures, which resemble focal adhesion points (Fig. 3b).

This is in agreement with the fact that focal adhesion points are

important for cellular mechanosensory functions [48].

TRPV4 Regulates Cytoskeleton
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Next, we addressed if TRPV4 similarly co-localizes with

microtubules. We observed co-localization between TRPV4 and

microtubules in fixed F11 cells all along neurite-like structures. Co-

localization was observed at the plasma membrane and at

membrane ruffles that are enriched in TRPV4 (Fig. 3d-e). In

addition, we noted the presence of numerous microtubule ends at

the submembranous regions. Often these microtubule ends

extended to the plasma membrane and seemed to be stabilized at

the membranous regions containing TRPV4. Co-localization of

tubulin and TRPV4 was also observed in filopodial structures that

were developed from growth cones, from neurite-like structures as

well as from cell bodies. This kind of submembranous tubulin

accumulation was not observed in non-transfected cells (Fig. 3f),

implying that this effect is primarily due to the presence of TRPV4.

Activation of TRPV4 results in fast retraction of growth
cones in F11 cell

TRPV4 localizes to growth cones when expressed in F11 cells.

So we tested if TRPV4 activation can alter the morphology and

movement of growth cones. For that purpose we expressed

TRPV4-GFP along with RFP-actin and performed live cell

imaging. We observed that in response to 4a-phorbol-didecanoate

(4aPDD, 1 mM), a TRPV4-specific agonist [22], neurites from

TRPV4-GFP expressing F11 cells show rapid change in its

morphology and induce multiple varicosities (Fig. S4). In response

to 4aPDD, TRPV4-GFP containing growth cones retract quickly

(Fig. 4a). Under the same conditions growth cones developing

from non-transfected cells do not show any retraction, thus

assuring specificity of the pharmacological treatment. These results

strongly suggest that TRPV4 can regulate the growth cone

motility.

Long-term exposure to a TRPV4 agonist restricts neurite
outgrowth in a subset of primary DRG neurons

To validate the effect of TRPV4 activation on growth cones in a

system with endogenous TRPV4 expression, we used primary

neurons and tested the effect of TRPV4 activation. DRG neurons

from adult male rat were cultured for 5 days and treated with

4aPDD (1 mM) for short-term (20 minutes). Live cell-imaging

revealed indications of slow retraction of neurites in response to

Figure 2. TRPV4 interacts directly with polymerized actin and microtubule filaments. MBP and MBP-TRPV4-Ct were centrifuged at
70000 g/30 min/4uC and only soluble proteins present in the supernatant were used for all co-sedimentation experiments. a. MBP-TRPV4-Ct co-
sediments with polymerized actin filaments. Actin was polymerized either in presence of MBP-TRPV4-Ct (lane 1 and 4), in presence of MBP only (lane
2 and 5) or in buffer only (lane 3 and 6). Polymerized actin filaments and associated proteins were isolated from remaining soluble actin and unbound
proteins by centrifugal separation of pellets (P, lane 1–3) from corresponding supernatants (S, lane 4–6). The entire amount of MBP remains in the
supernatant (lane 5) while a significant amount of MBP-TRPV4-Ct appears in the pellet (lane 1). Arrows indicate the position of respective proteins. b.
MBP-TRPV4-Ct co-sediments with microtubules. Taxol-stabilized microtubules (left panel) were incubated with MBP (lane 1–2), MBP-TRPV4-Ct (lane 3–
4) or with buffer only (lane 5–6) followed by the centrifugal separation of pellet (P) consisting MT and bound proteins from supernatant (S) consisting
of soluble tubulin and other unbound proteins (left side panel). In right side panel, soluble tubulin and GTP was incubated with MBP (lane 1–2), MBP-
TRPV4-Ct (lane 3–4) or buffer only (lane 5–6) followed by separation of pellet (P) and supernatant (S). Note the specific presence of MBP-TRPV4-Ct in
the pellet in both cases (in lane 4). c. MBP-TRPV4-Ct stabilizes microtubules against depolymerizing factors. Microtubules was formed form soluble
tubulin in buffer (lane 1), along with MBP (lane 2) or along with MBP-TRPV4-Ct (lane 3) in control condition (left most panel), in presence of
Nocodazole (middle left panel), in presence of Ca2+ (middle right side) or in presence of both Nocodazole and Ca2+ (right most). Microtubules and
bound proteins present in the pellet fraction (P) were isolated from unpolymerized tubulin and unbound proteins remaining in the supernatant (S)
by centrifugal separation. Note the enhancement of polymerized microtubules (represented by tubulin present in lane 3, P fraction in every
conditions) due to the presence of MBP-TRPV4-Ct.
doi:10.1371/journal.pone.0011654.g002
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Figure 3. TRPV4 co-localizes with actin and microtubule cytoskeleton. a–c. Shown are the live-cell confocal images of F11 cells expressing
TRV4-GFP (green) and RFP-actin (red). Presences of TRPV4-GFP specifically in actin-enriched structures are shown. a. Enlarged view of lamellipodia
and at the tip of the actin filaments are shown. b–c. Enlarged view of focal adhesion point-like structures (b) and cell cortex with actin ribs (c) are
shown. Arrows indicate the localization of TRPV4-GFP at filopodial tips. d–f. TRPV4 co-localizes with microtubule cytoskeleton. Shown are the
confocal images of F11 cells immunostained for TRPV4 (green) and tyrosinated tubulin (red). Arrows indicate presence and acumulation of
microtubules in thin filopodial structures (d, upper panel) and thin lamellipodial structures (e, middle panel). The status of the microtubules in the
non-transfected cells are shown in below (f, lower panel).
doi:10.1371/journal.pone.0011654.g003
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Figure 4. TRPV4 localizes in the growth cone and regulates axonal motility as activation of TRPV4 results in microtubule
disassembly. a. Shown are the confocal time series images of live F11 cell expressing TRPV4-GFP (green) and RFP-Actin (red). Fluorescence images
were superimposed on the DIC images. Addition of 4aPDD (1 mM) results in growth cone retraction of the transfected cell (T) but not from the non-
transfected (NT) cells. b. Prolonged activation of endogenous TRPV4 reduces neurite outgrowth. Shown are the images of cultured DRG neurons
stained for IB4 (red) and bIII tubulin (green). IB4-positive neurons extend their neurites in control condition (upper panel). Majority of the IB4-positive
neurons do not produce any neurite when 4aPDD at low dose (0.1 mM) was applied for 36 hours (middle panel). An enlarged view of an IB4-positive
and an IB4-negative neuron is shown in the lower panel. Note that the majority of the IB4-negative neurons remain unaffected even in the presence
of 4aPDD. c. CHO-KI-TRPV4 cells that express low level of TRPV4 or CHO-KI-Mock cells that do not express TRPV4 were activated with 4aPDD (1 mM).
After activation, cells were extracted by detergent in isotonic buffer and fixed subsequently by PFA. Cells were immunostained for actin (green) and
tubulin (red). CHO-KI-TRPV4 cells loose all the peripheral microtubules but retain filamentous actin after activation and extraction. The stable MTOC
regions are marked with arrows. In contrast, CHO-KI-Mock cells remain unaffected. Intensity of the microtubule is shown (red and blue indicate
highest and lowest intensity respectively).
doi:10.1371/journal.pone.0011654.g004
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4aPDD in some neurites, but did not show immediate retraction

or varicosity formation (data not shown). Thus we tested if long-

term exposure to a TRPV4 agonist but a low-level activation of

TRPV4 can regulate the neurites. For that purpose, DRG neurons

were cultured for 36 hours and then treated with a low dose of

4aPDD (0.1 mM) for an additional 36 hours. Neurons were

visualized for neuron-specific bIII tubulin. Immunodetection of

TRPV4-positive neurons was not conclusive due to the very low

endogenous expression of TRPV4 in DRG neurons in this stage.

Thus, we categorized the DRG neurons by staining with IB4

lectin, which mark a subsection of nociceptive neurons [49]. We

observed that due to long-term exposure of 4aPDD, majority of

the IB4-positive neurons developed much shorter neurites if at all

(Fig. 4b). In contrast, under the same condition, IB4-negative

neurons revealed long neurites similar to non-treated neurons

(Fig. 4b). This confirmed that long-term exposure to a TRPV4

agonist resulted in growth cone and neurite retraction, and

demonstrates that this effect is restricted to a subpopulation of

nociceptors.

Activation of TRPV4 results in disassembly of
microtubules

Previously it has been shown that activation of Ca2+ channels

causes rapid reorganization of the cytoskeleton [31,50–51]. Also,

rapid disassembly of microtubules causes growth cone retraction

[32,34,52]. So, we tested if in contrast to a stabilizing function of

TRVP4 at resting stage, activation of this channel leads to

destabilization of microtubules. To better differentiate between

soluble and polymerized cytoskeleton components, soluble pro-

teins were removed by Digitonin-extraction leaving behind only

the insoluble intact cytoskeleton. Extraction of unstimulated

TRPV4 expressing F11 cells showed fine filamentous microtubules

(Fig. S5a). But application of 4aPDD (1 mM) resulted in loss of

microtubules from the majority of TRPV4 expressing F11 cells. In

contrast, cells, which did not express TRPV4 were unaffected by

4aPDD (Fig. S5a).

We observed that the cytoskeleton rearrangement by TRPV4

was not restricted to the neuronal cells only. In TRPV4 expressing

CHO-KI cells 4aPDD treatment induced loss of almost all

microtubules whereas non-transfected cells retained all their

microtubules (Fig. S5b). Similarly, we observed loss of all

peripheral microtubules by application of 4aPDD in CHO-KI-

TRPV4 cells, which express low level of TRPV4 stably (Fig. 4c).

Under the same conditions, CHO-KI mock-transfected cells

retained all microtubules. All these results confirm that activation

of TRPV4 results in microtubules disassembly and this effect is

independent of TRPV4 expression level in whatever cellular

context chosen.

Activation of TRPV4 results in formation of elongated
filopodia

We also explored if TRPV4, being present at the filopodia can

alter the actin cytoskeletal dynamics upon activation. For that

purpose, we expressed TRPV4-GFP and actin-red in F11 cells and

monitored the filopodial structures. We observed that activation of

TRPV4 by 4aPDD results in rapid change of lamellipodia to

filopodia and/or further elongation of filopodial structures (Fig. 5).

These changes were observed at filopodial structures emanating

from the cell body as well from neurites. We observed that during

this change, several lamellipodial actin ribs fused into single

filopodial structures and TRPV4-GFP localized at the filopodial

tips (Fig. 5b). At the same time, lamellipodial region located

between two actin-ribs retract.

Stabilization of microtubules by Taxol reduces Ca2+-influx
through TRPV4 activation

In contrast to a unidirectional effect of TRPV4 activation on

microtubule integrity, we explored if microtubule dynamics can

also affect the TRPV4 channel properties. We measured Ca2+-

influx via TRPV4 as an indicator of TRPV4 channel opening.

We compared the Ca2+-influx via TRPV4 in response to 4aPDD

in the presence and absence of Taxol. We observed that the

normalized average Ca2+-influx due to TRPV4 activation was

strongly diminished (but not abolished) if the cells were treated

with Taxol (Fig. 6a). This suggests a partial inhibition of TRPV4

channel activity due to stabilization of microtubules. This

reduction due to Taxol treatment (30 min) was also observed

when cells were activated by 4aPDD for a second time (Fig. 6a).

To understand the extent of reduction, we compared the total

Ca2+-influx (Fig. 6b). We observed 21.9% reduction in the case of

the 1st pulse in presence of Taxol when compared to Taxol-free

control condition. However, this difference remain non-signifi-

cant at (P.0.05) (Fig. 6b). However, this difference was even

higher in the case of the 2nd pulse where a major reduction

(61.79%) was observed in the presence of Taxol (compared with

Taxol-free 2nd pulse condition). At the level of P,0.05, this

difference is significant. To confirm this inhibitory effect of

microtubule stabilization on TRPV4 channel opening, we

analysed by another parameter, i.e. the time each cell took to

reach its maximum response. We observed that Taxol-treatment

resulted in a delay of the cells to reach their maximum response

level (Fig. 6c). Though this time difference indicates a clear trend

of inhibition, the differences remain non-significant (Fig. 6c). By

immunofluorescence analysis (Fig. S6) and surface-biotinylation

experiments (Fig. S7), we confirmed that the presence of

microtubules and TRPV4 at the cell membrane or nearby

regions was also not altered by Taxol application. Taxol did not

alter the distribution of TRPV4 in the cell surface also. Taken

together, these results suggest that microtubule dynamics can

regulate TRPV4 channel properties.

Discussion

A substantial amount of work has been done to identify

endogenous and exogenous sensitizing stimuli, their target proteins

and elucidate their molecular effects on nociceptive neurons. Yet,

the detailed cellular and molecular mechanisms underlying

sensitization against mechanical stimuli and the specific molecular

components associated with these signaling events are not well

understood. A priori, as there is no force without counterforce,

scaffold structures like the cytoskeleton and/or the extracellular

matrix are intuitively likely to be required for stimulus detection

and execution of the responses. In nociception, so far the

cytoskeleton has been described as an important regulator of

sensitization only on a behavioural level [29,42,53–58]. In

contrast, in systems other than nociception, genetic, biochemical,

cellular as well as behavioural data are indicative of the

importance of the cytoskeleton for mechanosensation in general

[29,59–60]. Thus, contrasting the wealth of data in non-

nociceptive context, the nearly complete lack of molecular data

about an involvement of the microtubule and actin cytoskeleton in

pain sensitization is surprising. Though, recent results demon-

strated the expression of TRPV4 in Merkel cells and linked

TRPV4 function with the mechanotransduction [61,62], in the

context of nociceptive and non-nociceptive mechanosensitivity, a

direct physical interaction of actin or microtubule cytoskeleton

with ion channels has not been reported. Therefore, we now

provide the first evidence that both actin and microtubule
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cytoskeleton components interact directly and functionally with a

mechanosensitive ion channel, namely TRPV4.

The C-terminus of TRPV4 interacts directly with actin and
microtubule cytoskeletal components

The C-terminus of various TRP channels has been shown to be

of importance. For example, a recent study reported that the

deletion of the C-terminal cytoplasmic domain of TRPV4 strongly

inhibits membrane localization [63]. And also the C-terminus of

TRPC4 interacts with another cytoskeletal component, spectrin,

which is essential for the surface expression of the receptor [64]. In

this work we now demonstrate that TRPV4-Ct is sufficient for the

interaction with tubulin and actin as well as signaling-components.

The interaction of MBP-TRPV4-Ct to tubulin and actin appears

to be very strong as these interactions withstand the presence of

high salt concentrations (500 mM NaCl, data not shown). If the N-

terminal cytoplasmic domain of TRPV4 can also interact with the

cytoskeleton has not been established yet.

We observed that TRPV4 co-localized with actin-enriched

structures, such as focal adhesion points, filopodial and lamellipo-

dial structures. These results fit well with the previously described

subcellular localizations of TRPV4 in actin cytoskeleton-enriched

structures like dendritic spines [65]. This also accords well with the

reported presence of a2 integrin, an actin binding protein in the

TRPV4 complex [66]. We show that TRPV4 physically interacts

with soluble actin as well as with polymerised actin filaments via its

Figure 5. Activation of TRPV4 results in reorganization of actin cytoskeleton. Shown are the confocal images of live F11 cells expressing
TRPV4-GFP (green) and Actin-RFP (red). a. Activation of TRPV4 results in merging of several actin-ribs at the tips and further transition of lamellipodial
structures to filopodial structures. The arrow indicates the region and direction of the cell retraction at the same time. b. Activation of TRPV4 results
in lateral initiation of filopodial structures from neurites and further elongation of them.
doi:10.1371/journal.pone.0011654.g005
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C-terminal cytoplasmic domain. Thus, our biochemical study

confirms and extends a recent fluorescence resonance energy

transfer (FRET) analysis performed on live cells demonstrating

close proximity of actin and TRPV4 [67]. Interestingly, a recent

study shows that disruption of the actin cytoskeleton increases the

intracellular mobility of TRPV4-GFP and results in loss of co-

localization of TRPV4 with actin [68]. Our findings suggest that

the direct interaction of TRPV4 and actin is a general feature

observed in various cellular systems. This indicates the importance

of the interaction far beyond the nociceptive system.

Recent EM study also reveals that TRPV4 forms a ‘‘hanging

gondola’’-like structure which undergoes different structural

conformations representing open and closed state of the channel

[69]. According to this structure, the C-terminus of TRPV4 is

exposed outside and accessible for interaction with other proteins.

In that context, it is tempting to speculate that interaction of

TRPV4 with the actin and tubulin may have an importance for

such conformational changes. It is also important to note that the

presence of GFP tag (240 amino acid) at the C-terminus of

TRPV4 retains perfect co-localization of TRPV4-GFP with actin

and microtubule cytoskeleton, indicating that the tubulin-binding

region located with the TRPV4-Ct is most likely not present at the

extreme C-terminal free end of the TRPV4. Previously, we

identified two novel tubulin-binding motifs, which we mapped to

the C-terminal cytoplasmic domain of TRPV1 [36–37]. They

consist of two short basic amino acid-rich sequence stretches,

which are thought to interact directly with the acidic overhangs of

tubulin. Indeed, positively charged amino acids in one of these two

novel motifs are partially conserved in the C-termini of TRPV4

and TRPV2 [37]. Though we did not perform deletion mapping,

based on other experimental evidences and best of our

understanding, we applied a similar conceptual basis and

predicted that the basic amino acid residues present within the

C-terminus of TRPV4, especially within the 746 to 779 amino

acids may interact with tubulin (Fig. S1). Though the ability of this

small region to interact with tubulin needs to be experimentally

verified, we found that indeed the total C-terminus of TRPV4

interacts with tubulin and/or microtubules. Thus, beyond the

reported indirect binding through MAP7 [70], we find direct

interaction of TRPV4 to microtubule cytoskeleton. In this study

we have not tested if the N-terminal region of TRPV4 can

interacts with actin and tubulin. However, considering the fact

that the N-terminus of TRPV4 contains multiple ankyrin repeats

which are presumably important for protein interaction possible

interaction of tubulin and actin at the N-terminus cannot be ruled

out completely. In this context, it is worth mentioning that recent

studies demonstrate that point mutations located at these ankyrin

repeats at the N-terminus either increase or decrease the TRPV4

activity and results in genetic disorders [71–73].

In this work we investigated if TRPV4 can affect microtubule

properties. Binding of different post-translationally modified

tubulins suggests that TRPV4 can modulate the stability of the

microtubules. Indeed, we show that TRPV4 stabilizes microtu-

bules at the membrane. These microtubules at the membrane can

Figure 6. Microtubule cytoskeleton regulates Ca2+-influx via TRPV4. a. Taxol (1 mM, 30 minutes) reduces TRPV4-mediated Ca2+-influx in
Cos7 cells. Shown are the normalized average ratiometric Ca2+-influx in arbitrary units (AU). TRPV4 was activated by a pulse (indicated by a black line)
of 4aPDD for 10 sec. The dark blue line (C1) represents average response due to first pulse in control conditions (n = 32), the light blue line (C2)
represents average response due to second pulse in control conditions (n = 32), the blackish green line (T1) represents average response due to first
pulse under the influence of Taxol-stabilized microtubules (n = 42) and the light green line (T2) represents the average response due to second pulse
under the Taxol-stabilized microtubules (n = 30). b. Cells with Taxol-stabilized microtubules reveal reductions in total Ca2+-influx due to TRPV4
activation. Total Ca2+-influx was calculated from the total area appeared by the ratiometric calcium-influx graph (as shown in figure a) for each cell
and was calculated by Origin 7G software. At the ,0.05 level, the difference of the population means between 2nd pulse (untreated and taxol-treated,
one sample t-test) is significant (*). The difference in case of 1st pulse is non-significant. c. Taxol stabilized cells reveal a trend for time delay to reach in
maximum response. The time (in seconds) each cell took to reach its maximum response (indicated by filled triangles) was plotted. Times needed
during first pulse in control conditions (dark blue), second pulse in control conditions (light blue), first pulse with Taxol (blackish green) and second
pulse with Taxol (light green) are indicated. The average values (indicated by filled squares) and the standard deviations are also shown for each
condition. The average time differences remain non-significant.
doi:10.1371/journal.pone.0011654.g006
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be stained by YL1/2 antibody, which is specific for ‘‘tyrosinated

tubulin’’, indicating that these microtubules are dynamic in nature

[74–75]. How TRPV4 stabilizes microtubules in vivo is not clear.

But our in vitro work indicates that the C-terminus of TRPV4 is

sufficient for microtubule stabilization. The extent of microtubule

stabilization by TRPV4-Ct is apparently very strong as TRPV4-Ct

stabilizes microtubules are resistant against potent microtubule

destabilizers such as Nocodazole and Ca2+. Thus, TRPV4-Ct

induces ‘‘Nocodazole-resistant microtubules’’, a class of microtu-

bules that has very different physico-chemical properties [76–77].

Notably, a fraction of ‘‘Nocodazole-resistant microtubules’’ are

known to be resistant against Ca2+ and cold-induced depolymer-

ization [78–79]. The resistance of a subset of microtubules against

calcium is of high importance at the base of an ion channel, which

among others allows calcium influx if activated. The observed

binding of post-translationally modified tubulin such as acetylated

tubulin, detyrosinated tubulin and polyglutamylated tubulin to

TRPV4 may also explain the stabilization as these tubulins are

known to be involved in the formation of stable microtubules

[76,80–81].

Regulation of growth cone, neurites and filopodia by
TRPV4

Cellular and neuritic morphology is modulated through

mutual regulation of the actin and microtubule cytoskeleton.

The microtubule cytoskeleton provides an anterograde force

while the actin cytoskeleton provides retrograde force. Thus these

two opposing forces regulate the morphology and determine the

net movement of neurites [32–34,52,82]. As TRPV4 modulates

actin as well as microtubule stability, it has the ability to steer

growth cone movements. This result matches well with our

previous work demonstrating that activation of TRPV1 causes

rapid disassembly of microtubules and thus regulates growth cone

movement [31–32,51,82]. However, unlike TRPV1, TRPV4

activation-mediated (by using 4aPDD) disassembly of microtu-

bules in DRG neurons, in transfected F11 cells as well as in

non-neuronal cells seems to be much slower. Therefore, TRPV1

and TRPV4 might be involved in regulation of the neuronal

architecture not only in response to different stimuli but also

along a different timescale.

Regulation of TRPV4 activity by actin and microtubule
cytoskeleton

TRPV4 not only changes the cellular cytoskeleton but the

cellular cytoskeleton is in turn also altering the TRPV4 channel

properties. On one hand TRPV4 regulates stability-instability of

the microtubules and reorganizes them, on the other hand

microtubule dynamics regulate the Ca2+-influx through TRPV4.

We now show that stabilization of microtubules by Taxol in vivo

results in reduction and delay in TRPV4-mediated Ca2+-influx.

Though the values are not statistically significant, these differences

show a clear trend of Taxol-mediated inhibition of TRPV4. This

result accords well with the fact that Taxol reduces TRPV4-

mediated currents in transfected CHO cells [70]. Along the same

line, evidence suggests that the actin cytoskeleton can also regulate

the TRPV4 channel activity as disruption of the actin cytoskeleton

impairs the TRPV4-mediated currents [70] and Ca2+-influx in

TRPV4 expressing cells in response to hypotonic shock [68].

However, the molecular mechanism underlying this inhibitory

effect of Taxol on TRPV4-mediated Ca2+-influx is not yet clear.

Unlike the response to microtubule destabilizers (like Nocodazole),

the integrity of microtubule cytoskeleton, microtubule-based

transport and membrane distribution of TRPV4 are not compro-

mised by this short-term Taxol application. We predict that this

modulation is most likely due to the conformational change of the

channel complex induced by the dynamic presence or absence of

the microtubule cytoskeleton and its associated components, which

correlates with either channel closure and/or desensitisation. In

agreement with this concept, it is important to note that activation

of single TRPV4 ion channel in response to heat is possible in whole

cell recordings but not in a cell-free inside-out patch clamp

experiments, suggesting that in the latter some cellular factor is

missing [83]. In this regard it is tempting to speculate an

involvement of microtubules there. While in the course of the

excision still some microtubules might be attached to the TRPV4

complex, later on it might disassemble easily as filamentous

microtubules are sensitive to dilution [84]. However, further single

channel electrophysiological investigations are required.

TRPV4 and cytoskeleton in the context of intracellular
pain signaling

Previously it has been shown that potentiation, spontaneous

activity and desensitisation of TRPV4 are Ca2+-dependent

processes, suggesting Ca2+-dependent signalling occurs [44,85–86].

Indeed, TRPV4 interacts with calmodulin in a Ca2+-dependent

manner [44]. In agreement with that, we also observed the

presence of CamKII in the complex formed by TRPV4-Ct, but

only in the presence of Ca2+ (Fig. 1c). This is in line with a

reported role of CamKII in pain [46]. It also indicates that

CamKII may regulate TRPV4 function. However, not all

signalling molecules associate with TRPV4 in a Ca2+-dependent

manner. PKCe, a Ca2+-independent kinase investigated in

various aspects of mechanical sensitization [39–42,87–88]

interacts with the C-terminus of TRPV4 in the presence as well

as absence of Ca2+. Our results are also in line with a recent

report demonstrating that TRPV4 phosphorylation at its N-

terminus is important for its activation and PKCs along with

PKA are important for this phosphorylation [45]. The same

report demonstrates that PKCs form a complex with the TRPV4

in the presence of AKAP proteins which function as scaffolds.

Considering the fact that AKAP proteins interact with tubulin

[89], our results suggest that the complex we identified has a

mechanistic function. Though, direct phosphorylation of the C-

terminus of TRPV4 by PKCe in vitro has not been shown so far,

but PKC-mediated potentiation of TRPV4 has been observed

[1,43] and PKCe-dependent activation of TRPV4 has been

described in vivo [90]. In our preliminary in vitro experiments too,

we failed to observe any phosphorylation mediated by recombi-

nant (and purified) PKCe when purified MBP-TRPV4-Ct was

used as a substrate (data not shown). However, a recent study has

demonstrated that in vivo condition, S824 position of the TRPV4

is phosphorylated by PKC [91]. However, this phosphorylation

might be mediated by other PKC isotypes and may not be by

PKCe. Based on our results and data from others, we believe that

PKCe most likely sequesters at the C-terminus of the TRPV4 in

order to phosphorylate the N-terminus and/or it needs other

factors. Nevertheless the complex we isolated in this work appears

to be of importance, as cytoskeletal components, CamKII, PKCe
and TRPV4; all are known to be involved in pain sensitization

[46,58,90].

TRPV4 and microtubule cytoskeleton also share similarities in

terms of regulation by Sac tyrosine kinase, a pro-nociceptive

regulator at the plasma membrane. On a cellular level, Src

tyrosine kinase activity in response to mechanical force is localized

mainly at the membrane [53]. In accordance with that, Src

tyrosine kinase phosphorylates membrane-associated tubulin of

neuronal origin [92]. This kinase activity is important for TRPV4
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function [66] as it phosphorylates TRPV4 [43,93]. Thus

membrane-associated tubulin-TRPV4 complex seems to be

important for stimuli that activate Src-tyrosine kinase.

Microtubules and TRPV4 in pain sensitization
Involvement of cytoskeleton in pain sensitisation has been

anticipated for a long time, as microtubule-based chemothera-

peutics against cancer are known to induce severe long-lasting

neuropathic pain [94]. But, how these chemotherapeutics, like

Taxol and Vincristine alter pain sensitivity is not well understood.

Microtubules and mitochondrial structures develop abnormalities

in nociceptive neurons due to prolonged and systemic application

of these chemotherapeutics [95–97]. Even stabilization of

microtubules by short-term application of Taxol (30 min) exerts

an impact on pain sensitization [58]. It is important to mention

that disruption of microtubules by short-term (30 min) application

of Nocodazole abolishes/reduces pain sensitization [58]. These

suggest that the integrity of microtubules can indeed modulate

pain sensitivity [98]. TRPV4 has recently been considered as

essential for chemotherapy-induced neuropathic pain as mechan-

ical hyperalgesia induced by Taxol and Vincristine was strongly

reduced in trpv4 2/2 mice [30,66].

We established a direct physical, cell-biological and functional

relationship between cytoskeletal components and TRPV4, which

plays an important role in inflammatory, neuropathic and

chemotherapeutic-induced pain [30,58,66]. This gives a mecha-

nistic base to further study the role of the apparent dynamic

signalling complex formed by TRPV4 and its functional

implications in various physiological scenarios.

Materials and Methods

Reagents and antibodies
Taxol, Nocodazole, 4aPDD, bovine actin, tetramethylrhodamine

isothiocyanate-labelled IB4 from Griffonia simplicifolia, antibodies

against a-tubulin (clone DM1A), b-tubulin (clone D66), tyrosinated

tubulin (clone TUB1A2), polyglutamylated tubulin (clone B3),

acetylated tubulin (clone 611-B-1), phospho-serine (Clone PSR-45),

b-tubulin sub type III (clone SDL.3D10), neurofilament 116 kDa

(clone NN18) and the affinity purified rabbit polyclonal antibody

against C-terminal cytoplasmic domain of TRPV4 were purchased

from Sigma-Aldrich (Taufkirchen, Germany). Antibodies against

neurofilament 200 kDa (clone RT97) and detyrosinated tubulin were

purchased from Chemicon (Chandlers Ford, UK). The antibody

against actin (clone JLA20) was purchased from Oncogene (Cam-

bridge, MA, USA). Antibody against maltose-binding protein (MBP)

and the amylose resin were purchased from New England Biolab

(Beverly, MD, USA). Purified bovine muscle actin was purchased

from Sigma-Aldrich (Taufkirchen, Germany). Protein G-agarose was

purchased from Amersham Pharmacia Biotech (Munich, Germany).

For some experiments, another affinity purified rabbit polyclonal

antibody raised against TRPV4 (kind gift from Jon D. Levine) was

used [3]. Anti CamKII antibody was purchased from BD

(Heidelberg, Germany). Anti PKCe antibody (KP4) was a kind gift

from Dr Robert Messing, University of California San Francisco. All

secondary IgG antibodies (alexa-488-labelled anti-mouse, alexa-488-

labelled anti-rabbit, alexa-594-labelled anti-rabbit, alexa-594-labelled

anti-rat, Fura-2/AM, alexa-488- and alexa-594-labelled Phalloitoxin

were purchased from Invitrogen (Karlsruhe, Germany).

Constructs
Full-length TRPV4 (NCBI accession number AF263521) in

pCDNA3.1 vector was a kind gift from Prof. Jon D Levine [3]. For

expression of C-terminal cytoplasmic domain (amino acid residue

718 to 871) of TRPV4-fused with MBP, the corresponding cDNA

region of TRPV4 (NCBI accession number AF263521) was

amplified by using forward primer (59TGACGAATTCATG-

GGTGAGACCGTGGGCCA39) and reverse primer (59TGA-

CAAGCTTCTACAGTGGTGCGTCCTCCG39). The ampli-

fied cDNA was sub cloned into the EcoRI and HindIII restriction

site of the pMALc2x vector (NEB, Beverly, MD, USA) and

verified by automated nucleotide sequencing. TRPV4-GFP

construct (cloned in pEGFPN3 vector) used in this study was

kindly provided by Prof. J. Berreiter-Hahn [10]. Tubulin-cherry

construct was a kind gift from Prof. R. Y. Tsien [99]. RFP-actin

construct was purchased from Clontech (Heidelberg, Germany).

Cells and transfection
F11 cells [38] were cultured in Ham’s F12 medium (Sigma

Aldrich) supplemented with 20% fetal bovine serum (Sigma

Aldrich). Cos7 [100] and HaCat [101] cells were maintained in

Dulbecco’s modified Eagle’s medium (Sigma Aldrich) with 10%

fetal calf serum. CHO-K1 cells [3] stably transfected with TRPV4

(CHO-K1-TRPV4) and the negative control cell line (CHO-K1-

MOCK) [3] was cultured in F12 Ham’s (Sigma Aldrich) medium

supplemented with 5% fetal bovine serum (FBS) and L-glutamine.

These two cell lines were kindly provided by Prof. J. D. Levine [3].

All media were supplemented with streptomycin (100 mg/ml) and

penicillin (100 mg/ml) (Invitrogen). Cells were maintained in a

humidified atmosphere at 5% CO2 and 37uC. For transient

transfection, Lipofectamine (Invitrogen) was used according to the

manufacturer’s instructions.

Ethics Statement
Cell biological experiments were performed in cultured DRG

neurons from male Sprague-Dawley rats (200–300 g; Harlan

Winkelmann, Borchen, Germany). Care and use of animals were

in accordance with the European Communities Council Directive

of 24 November 1986 (86/609/EEC) and were approved by the

LaGeSo, Berlin. All efforts were made to minimize the number of

animals used and their suffering.

DRG neuronal culture and neurite out growth
Dissociated rat DRG neurones were prepared from adult male

rats (200–300 g) as recently described [32]. Neurons were grown

in 24-well plates at 37uC in 5% CO2 and were grown for a total of

72 h. At that time most untreated neurons grow numerous and

long neurites. In some experiments neurons were treated with

4aPDD (0.1 mM for the last 36 hour) before they were fixed with

2% PFA. Subsequently the neurons were visualized for bIII-

tubulin (antibody dilution 1:1000) and IB4-lectin (1:15000).

Immunoprecipitation
For immunoprecipitation, approximately 50 ml of 50% protein

G beads-slurry equilibrated with IP buffer (1% sodium dodecyl

maltoside, PIPES 50 mM (pH 6.8), 100 mM NaCl, 1 mM EGTA,

0.2 mM MgCl2 and complete protease inhibitors (Roche) was used

for each IP. Affinity purified rabbit polyclonal TRPV4 antibody

(Sigma Aldrich) (7 mg per IP condition, antibody obtained from

Sigma-Aldrich) was used. In control, total serum IgG from rabbit

(7 ml which is equivalent to 20 mg of antibody) was used as non-

specific antibody. For co-immunoprecipitation, CHO-KI-TRPV4

cells grown for 2 days and then scraped off from the dishes. Cells

were harvested by centrifuging (Hettich Rotanta/T, 5 min at

100 g). Cells were washed with PBS once and centrifuged again at

the same conditions. Cells were resuspended in 2 ml of IP buffer

and homogenized (10 strokes) with a glass-Teflon homogenizer
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(Kontes glass, Germany). Cell extract was further centrifuged at

16 K (25000 g) for 30 minute at 4uC and the clear supernatant

was used for IP. Similarly, DRG tissues (L1-L6) from 2 male rats

were isolated, homogenized in IP buffer. The lysate was

centrifuged at 25.000 g, 30 min at 4uC and the clear extract was

used for the further IP. Clear cell extract (800 ml equivalent to

1 mg of protein) and the corresponding antibody were applied to

the equilibrated protein G beads. The mixture was incubated at

25uC for 4 hours on a shaker. After that the beads were washed 3

times, each time with 400 ml of IP buffer. A Hamilton syringe was

used for all washing steps. Finally the beads were taken in 100 ml of

IP buffer and 50 ml of 5x Laemmli sample buffer was added. The

samples were boiled and used for western blot analysis.

Expression and purification of MBP-fusion proteins
Expression and purification of MBP-TRPV4-Ct (C-terminal

cytoplasmic domain of TRPV4 fused with MBP) as well as of

MBP-LacZ (LacZ fused with MBP) was based on a protocol

described previously [36]. In short, the expression constructs were

introduced into the Escherichia coli (E. coli) strain BL21DE3 by

transformation heat shock method. Fusion protein expression was

induced by addition of isopropyl thiogalactoside (IPTG) for 2 h.

Cells were lysed by repeated freeze-thaw cycles in lysis buffer

(20 mM Tris–HCl, pH 7.4, 150 mM NaCl, 0.1% Tween 20,

lysozyme, benzonase and protease inhibitor cocktail). The lysed

extracts were cleared by centrifugation (100000 g in a TFT 45

rotor for 2 h) and applied to amylose resin. The resins with bound

proteins were washed thoroughly and finally the proteins were

eluted with 10 mm maltose in elution buffer (50 mM PIPES,

pH 6.8, 100 mM NaCl, 1 mM EGTA and 0.2 mM MgCl2).

Pull down assays
MBP-LacZ and MBP-TRPV4-Ct constructs were expressed in

E. coli; the cleared cell lysates were applied to amylose resin (NEB),

and incubated for 1 hour at RT (25uC) followed by washing. The

amylose resin with bound proteins was resuspended in PEM-S

buffer (50 mM PIPES, pH 6.8, 100 mM NaCl, 1 mM EGTA and

0.2 mM MgCl2). Approximately 50 ml of amylose resin per tube

with the bound fusion protein was used for pull-down experiments.

Depending on the respective experiment, the resin with coupled

fusion protein was incubated with either 50 ml of soluble tubulin

(1 mg/ml protein), 20 ml of soluble actin (0.1 mg/ml), 500 ml of

soluble brain extract (1 mg/ml), or 500 ml of soluble F11 extract

(1 mg/ml) for 1 hour at RT in the presence or absence of Ca2+

(2 mM). This was followed by three washes with 200 ml PEM-S

buffer. The proteins were eluted by 10 mm maltose in 100 ml

solution. Eluted samples were analysed by 10% sodium dodecyl

sulphate polyacrylamide gel electrophoresis (SDS–PAGE).

Co-sedimentation assay with polymerised actin, Taxol-
stabilized microtubules (MT) and analysis for microtubule
stability

For experiments aimed at understanding the association of

TRPV4-Ct with polymerised actin filaments, purified MBP-

TRPV4-Ct alone was subjected to centrifugation at 70000 g/

30 min/4uC to exclude any aggregates. The soluble MBP-

TRPV4-Ct was further processed for all co-sedimentation assays.

Either 5 mg of purified MBP-TRPV4-Ct or MBP alone in total

50 ml of PEM-S buffer or only 50 ml of PEM-S buffer was added

to a saturated actin solution (50 mg actin in total 50 ml) in

centrifuge tubes. ATP at a final concentration of 2.5 mM was

added to each tube. The reaction tubes were incubated at 37uC
for 30 minutes followed by centrifugal separation of pellet

(polymerised actin filaments) and supernatant (free dimer) at

70000 g/30 min/37uC.

Approximately 100 mg of purified ab-tubulin dimer in a total

volume of 100 mL were incubated in modified PEM buffer

(20 mm PIPES, pH 6.8, 0.2 mm MgCl2 and 1 mm EGTA

supplemented by 1 mm Taxol and 5 mm GTP) for 30 min at

37uC, to form MTs. After that the MT were isolated by

centrifugation at 70 000 g/30 min/37uC. Purified MBP-TRPV4-

Ct or MBP only (each 5 mg) were incubated with Taxol-stabilized

MT for 40 min at 37uC followed by centrifugal separation of pellet

(MT) and supernatant (free dimer) at 70 000 g/30 min/37uC.

In another experiment, MT was formed under Taxol-free

conditions. Tubulin dimer (100 mg) with purified MBP-TRPV4-Ct

or MBP only (5 mg each) were taken in total 100 ml PEM-S buffer

with 5 mm GTP in the absence of Taxol and incubated for

30 min at 37uC. After that the MT and bound proteins were

separated by centrifugal separation of pellet (MT) and supernatant

(free dimer) at 70000 g/30 min/37uC.

For experiments aimed at understanding the effect of TRPV4-

Ct on MT stabilization, either 5 mg of purified MBP-TRPV4-Ct

or MBP alone in total 50 ml of PEM-S buffer or only 50 ml of

PEM-S buffer was added to a tubulin solution (5 mg tubulin in

total 50 ml) in centrifuge tubes. Depending on the experimental

conditions, MT-depolymerizing agent Nocodazole (final concen-

tration 10 mM), Ca2+ (final concentration 0.1 mM) or both

Nocodazole and Ca2+ was added to the tubes. GTP at a final

concentration of 2.5 mM was added to each tube. The reaction

tubes were incubated at 37uC for 30 minute s followed by

centrifugal separation of pellet (MT) and supernatant (free dimer)

at 70000 g/30 min/37uC.

Purification of tubulin
ab-tubulin dimers were purified from porcine brain as described

previously [36]. In brief, from soluble brain extract tubulin was

enriched by two cycles of polymerization in the presence of

glycerol and GTP and depolymerization by cold temperature (ice

cold), which were then followed by chromatography on phospho-

cellulose.

Immunocytochemistry
For immunocytochemical analysis, cells were washed once with

PBS and fixed with 2% PFA/PBS if not mentioned otherwise.

Alternatively, where mentioned, an equal volume of 4% PFA was

carefully added to the medium without disturbing the cell culture

within the incubator to avoid morphological changes due to the

PBS wash. The cells were fixed with PFA for 5 minutes at room

temperature (25uC). For experiments aimed to explore the

integrity of the cytoskeleton after TRPV4 activation, soluble

components were removed by digitonin extraction as described

before [31]. Briefly, after activation the cells were extracted with

an isotonic cell membrane-permeabilization buffer (digitonin

(50 mg/ml), PIPES (50 mM pH 6.8), EGTA (1 mM), MgCl2
(0.2 mM) and complete protease inhibitors (Roche) that perforates

the cell membrane and allow all the soluble cellular proteins to

diffuse out while insoluble cytoskeleton and cell morphology

remain intact. After extraction the cells were quickly fixed with 2%

PFA. Fixed cells were permeabilized with 0.1% Triton X-100 in

PBS (5 min) and subsequently blocked with 5% normal goat

serum or 5% BSA.

For co-immunostaining of TRPV4 and tubulin, a rabbit

polyclonal anti TRPV4 antibody (Sigma Aldrich) and a rat

monoclonal anti-tyrosinated tubulin antibody (clone YL1/2) were

used. For staining of actin filaments, either alexa-594 or alexa-488

labelled Phalloidin (molecular probe) was used. Alexa 594-labelled
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anti rat antibody and/or alexa 488 labelled anti rabbit antibody

were used as secondary antibodies. For labeling IB4-positive

neurons, tetramethylrhodamine isothiocyanate-labelled IB4 from

Griffonia simplicifolia was used at 1:15000 dilutions in PBST

supplemented with 0.2 mM CaCl2, 0.2 mM MgCl2 and 0.2 mM

MnCl2 and incubated for 30 minutes. All images were taken on a

confocal laser-scanning microscope (Zeiss Axiovert 100 M) with a

63x-objective and analyzed with the Zeiss LSM image examiner

software.

TRPV4 activation and live cell imaging
For visualizing the effect of TRPV4 activation, F11 cells were

seeded on glass cover slips. Two days after transfection with

TRPV4, the cells in either complete medium or in HBSS buffer

were imaged at RT. Where indicated, TRPV4-GFP was co-

expressed with either RFP-Actin or Tubulin-cherry. In experi-

ments aiming to activated TRPV4, its agonist 4 a-phorbol 12,13-

didecanoate (4aPDD) was used at a final concentration of 1 mm, if

not stated otherwise [22].

Calcium imaging
For measuring the TRPV4 channel activity; Ca2+-imaging was

performed using Cos7 cells at room temperature (25uC). Cos7 cells

plated on glass cover slips and transiently transfected with TRPV4

and a yellow fluorescent protein (YFP) reporter plasmid. Cells

transfected with only YFP reporter plasmid were used as controls.

The transfected cells were used for the experiments at around

48 hour later transfection. Cells were loaded with 3 mM Fura-2

AM and placed in a recording chamber that allowed direct

application of buffer at controlled temperature (27 to 30uC).

Loading of Fura-2 AM dye and the fluorescence measurements

were done in calcium imaging buffer (140 mM NaCl, 4 mM KCl,

2 mM CaCl2, 1 mM MgCl2, 5 mM Glucose, 10 mM HEPES,

pH 7.4). Cells were activated by 4aPDD (1 mM) for 10 seconds

after first 30 seconds of imaging. Images were captured in every 2

seconds for a total of 3 minutes. 10 minutes after the 1st round of

activation (1st pulse of 4aPDD) and imaging, cells on the same

cover slips were imaged again for the next round (2nd pulse of

4aPDD). In experiments aimed to analyze the effect of

microtubule stabilization, Taxol (1 mM) was maintained through-

out the experiment in all solutions used, i.e. during the dye

loading, during activation by 4aPDD and in between when

running calcium-imaging buffer was applied. Ratiometric calcium

imaging was performed and analyzed using Tillvision software

(Till Photonics, Germany). Fluorescence was measured at

excitation wavelengths alternating between 340 nm and 380 nm.

Following subtraction of background fluorescence the ratio of

fluorescence at 340 nm and 380 nm was calculated. For

determination of total Ca2+-influx, we measured the total area of

the graph each cell formed after stimulation. Microsoft Excel and

Origin software were used to calculate and plot the graphs. All

significance tests were performed at the ,0.05 level (one sample t-

test).

Supporting Information

Figure S1 Prediction of tubulin-binding region located within

the C-terminus of TRPV4. a. Identification of amino acid

stretches located within the TRPV4-Ct with high isoelectric point

(pI) values. The C-terminal overhanging region of tubulin contains

highly acidic residues and most of the tubulin-binding proteins

contain amino acid stretches which have high pI due to the

presence of basic residues. Therefore, the C-terminus of TRPV4

(amino acid residues 718 to 871) was analyzed for its isoelectric

points. Similarly, different fragments of TRPV4-Ct, each shorter

by 10 amino acids from the extreme C-terminal end were also

analyzed. This analysis indicates that there are two areas which

contain positively charged residues (indicated by shaded area). The

corresponding pI of each fragment is mentioned in the right most

side. In below, the secondary structure prediction is provided (red

indicates helical structure, green arrow indicates beta strand and

black line indicates unstructured coil region. Note that the arrows

do not indicate the directionality of the strands). All theoretical pI

values of the fragments were calculated by using available software

(http://www.expasy.org/tools/pi_tool.html). All secondary struc-

ture prediction was done by using Advanced Protein Secondary

Structure Prediction Server available at http://imtech.res.in/

raghava/apssp/. b. Amino acid residues 746 to 779 contain

multiple positively charged amino acids which can potentially

form an alpha-helix. The PyMol programme was used to build this

peptide structure. Blue and red colours indicate the positive and

negative charges at the surface respectively. Notably all the

positively charged amino acids (indicated by arrows) are located in

one side of the helix and can be important for interaction with the

tubulin/microtubule (which contain negative charges at the

surface). c. These predicted and important basic charges (indicated

by blue) are conserved throughout the evolution. The NCBI

accession numbers are indicated. TRPV4, Homo sapiens (NP_

067638.3); TRPV4, Canis lupus familiaris (XP_543434.2); TRPV4,

Bos taurus (XP_001253150.1); TRPV4, Mus musculus (NP_071300.1);

TRPV4, Rattus norvegicus (NP_076460.1); TRPV4, Gallus gallus

(NP_990023.1); TRPV4, Danio rerio (NP_001036195.1); Putative

uncharacterized protein, Ailuropoda melanoleuca (PANDA_020862);

Putative uncharacterized protein, Ailuropoda melanoleuca (PAN-

DA_018294), Chromosome 12 SCAF14999, Tetraodon nigroviridis

(GSTENG00029525001).

Found at: doi:10.1371/journal.pone.0011654.s001 (7.95 MB TIF)

Figure S2 TRPV4 pulls down cytoskeletal components and

nociceptive regulator kinases from F11 cell extract. MBP-TRPV4-

Ct (lane 2–3) but not MBP-LacZ (lane 4–5) forms specific complex

when incubated with soluble F11 extract (lane 1), both in presence

(lane 2 and 4) or absence (lane 3 and 5) of Ca2+ (1 mM). Presence

of actin, tubulin and PKCe are observed only in lane 2 and 3

whereas CamKII is present only in lane 2.

Found at: doi:10.1371/journal.pone.0011654.s002 (8.31 MB TIF)

Figure S3 TRPV4 co-localizes with actin cytoskeleton. Shown

are the confocal images of neuronal and non-neuronal cells

expressing TRPV4. Cells were stained for TRPV4 (green) and

actin (red). Presences of TRPV4 specifically in actin-enriched

structures (indicated by arrows) are shown. Enlarged views of

filopodial structures developed from HaCat cell (upper panel) and

F11 (lower panel) cell are shown.

Found at: doi:10.1371/journal.pone.0011654.s003 (0.92 MB TIF)

Figure S4 TRPV4 activation can influence the neuritic

morphology. Shown are the time-series confocal images of a

neurite developed from a F11 cell expressing TRPV4-GFP (green)

and Tubulin-cherry (red). This neurite produces varicosities

(indicated by arrows) after adding 4aPDD due to disassembly of

MT. Note that all the varicosities are formed simultaneously (at

5th minute in this case), indicating a global disassembly of

microtubules all over this neurite. Tubulin Cherry construct was a

kind gift from Prof. R. Y. Tsien (Shaner et al. 2004).

Found at: doi:10.1371/journal.pone.0011654.s004 (0.85 MB TIF)

Figure S5 Activation of TRPV4 results in microtubule disas-

sembly. a. F11 cells were mock activated with buffer or activated

with 4aPDD (1 mM) followed by detergent extraction with isotonic
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buffer and fixed. Cells were immunostained for TRPV4 (green)

and tubulin (red). In absence of activation, TRPV4 expressing cells

retains all the microtubules (upper panel, i-iii), but lost all the distal

microtubules if activated with 4aPDD (middle panel, iv-vi). The

stable MTOC region is marked with an arrow. Note that non-

transfected cells retain all the microtubules even after addition of

4aPDD (lower panel). b. CHO-KI cells expressing TRPV4 (green)

were activated with 4aPDD (1 mM) and were further extracted

with detergent in isotonic buffer and fixed. Under this condition,

nontransfected cells show microtubules all over the cells, while

transfected cells contain very little microtubules.

Found at: doi:10.1371/journal.pone.0011654.s005 (1.67 MB TIF)

Figure S6 TRPV4 localization at membrane is not affected by

Taxol. Shown are the confocal images depicting the distribution

and co-localization of TRPV4 (green) and tubulin (red) in Cos7

cells. Cells expressing TRPV4 were fixed under control condition

(i), fixed after incubation with Taxol for 30 minute (ii) or

incubation with Nocodazole for 30 minutes (iii). Cells were

immunostained for TRPV4 (green) and tubulin (red). The white

line indicates the periphery of the cell. All these images were

acquired at an identical laser power and gain value.

Found at: doi:10.1371/journal.pone.0011654.s006 (1.62 MB TIF)

Figure S7 Microtubule stabilization by Taxol does not alter the

surface distribution of TRPV4. To confirm that Taxol-treated cells

still contain TRPV4 at the cell surface, we performed surface

biotinylation of TRPV4-GFP expressing Cos7 cells that were

either treated with Taxol (1 mM, 30 minutes) or left untreated. We

isolated TRPV4-GFP by immunoprecipitation and found that

TRPV4-GFP is similarly labelled with biotin in both conditions.

These results confirm that short-term Taxol application does not

alter the distribution of TRPV4 in the membrane. Total cell

extract in control condition (lane 1) or under Taxol-stabilized

condition (lane 2), TRPV4 immunoprecipitates from control

condition (lane 3) or from Taxol-stabilized condition (lane 4) were

blotted with TRPV4 antibody (upper panel) and with HRP-Avidin

(lower panel). Arrow indicates the position of biotinylated TRPV4.

Found at: doi:10.1371/journal.pone.0011654.s007 (1.19 MB TIF)
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