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Opioids and stimulants are often used in combination for both recreational and

non-recreational purposes. High-efficacy mu opioid agonists generally increase the

behavioral effects of stimulants, whereas opioid receptor antagonists generally attenuate

the behavioral effects of stimulants; however, less is known regarding the interactions

between stimulants and opioids possessing low to intermediate efficacy at the mu

receptor. The purpose of this study was to examine the role of an opioid’s relative

efficacy at the mu receptor in altering the behavioral effects of dextro(d-)amphetamine.

To this end, opioids possessing a range of relative efficacy at the mu receptor were

examined alone and in combination with cumulative doses of d-amphetamine on

a test of open-field, locomotor activity in male rats. Levorphanol, buprenorphine,

butorphanol, nalbuphine, (-)-pentazocine, (-)-metazocine, (-)-cyclazocine, (-)-NANM, and

nalorphine increased the locomotor effects of d-amphetamine in either an additive

or greater-than-additive manner according to an effect-additive model. Only the

selective, high-efficacy kappa agonist, spiradoline, and the non-selective opioid receptor

antagonist, naloxone, failed to increase the effects of d-amphetamine under the

conditions examined. These data indicate that opioids possessing a large range of

relative efficacy at the mu receptor, including those possessing very low relative efficacy,

significantly increase the locomotor effects of d-amphetamine.

Keywords: addiction, drug interaction, drug combination, pharmacotherapy, polydrug abuse

INTRODUCTION

Opioids and stimulants are often used in conjunction for both recreational andmedicinal purposes.
For instance, prescription and non-prescription stimulants are sometimes used in combination
with licit and illicit opioids under recreational conditions to increase the euphorigenic effects
and decrease the aversive effects of the other compound (1, 2). Human laboratory studies report
that stimulant-opioid combinations produce subjective effects of greater intensity than either
drug alone [(3–7)], and preclinical animal studies report that stimulant-opioid combinations are
selected more often than either drug alone in concurrent choice procedures (8, 9). Opioids are used
extensively for both acute and chronic pain conditions, whereas amphetamines are widely used in
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the clinical management of medical disorders such as obesity
and attention-deficit hyperactivity disorder. Importantly, these
types of conditions often co-occur with one another, and
it is not uncommon for an individual to use prescription
opioids and amphetamines simultaneously (10–12). Given the
frequency with which these drugs are co-administered in both
recreational and clinical settings, it is important to understand
the pharmacological mechanisms determining their interactions.

One factor determining the interactions between opioids and
stimulants is an opioid’s relative efficacy at mu receptors. Opioids
vary in their selectivity for and efficacy at the three primary
opioid receptors (mu, kappa, delta), and these pharmacological
properties determine their qualitative and quantitative effects
when combined with stimulants. For instance, opioids with
high efficacy at the mu receptor (i.e., full mu agonists)
typically increase the effects of cocaine, dextroamphetamine (d-
amphetamine), and other stimulants (13, 14), whereas opioids
with high efficacy at the kappa receptor (full kappa agonists)
and opioids with null efficacy at the mu receptor (i.e., mu
opioid antagonists) typically decrease or block the effects of
stimulants (15–17). Opioids with low to intermediate relative
efficacy at the mu receptor (i.e., partial mu agonists) may increase
or decrease the effects of stimulants, depending on the assay,
dependent measure, and experimental parameters [c.f. (18–
27)]. For instance, we previously reported that intermediate-
efficacy opioids with a large range of relative efficacy at the
mu receptor (e.g., buprenorphine, butorphanol, nalbuphine)
increase the effects of cocaine on locomotor activity, and only
opioids with very low relative efficacy at the mu receptor (e.g.,
nalorphine) fail to increase cocaine’s locomotor effects (28).
Cocaine is a dopamine reuptake inhibitor, and it is not known
whether intermediate-efficacy opioids produce similar effects
when combined with stimulants possessing other mechanisms of
action (e.g., promoting dopamine release).

The purpose of this study was to examine the effects of opioids
possessing a range of relative efficacy at the mu receptor on
locomotor activity induced by d-amphetamine, a monoamine
releaser with a high affinity for the dopamine transporter. To
this end, various doses of opioids were examined alone and in
combination with cumulative doses of d-amphetamine in a test of
open-field, locomotor activity. The opioids tested varied in their
relative efficacy at the mu receptor, with an estimated rank order
of levorphanol> buprenorphine> butorphanol≥ nalbuphine>

(-)-metazocine≥ (-)-pentazocine≥ (-)-cyclazocine (29–31). The
selective high-efficacy kappa agonist, spiradoline, and the non-
selective opioid receptor antagonist, naloxone, served as negative
controls. We tested the hypothesis that an opioid’s ability to
enhance the effects of d-amphetamine would vary directly with
its relative efficacy at the mu receptor.

MATERIALS AND METHODS

Subjects
Male, Long-Evans rats were obtained from Charles River
Laboratories (Raleigh, NC, USA) and weighed ∼280 g upon
arrival. Subjects were housed individually in transparent cages in
a colony room maintained on a 12-h light/dark cycle (lights on

0500). Subjects were maintained at 300–350 g during behavioral
testing via light food restriction. Drinking water was available ad
libitum in the home cage, and environmental enrichment (e.g.,
bedding, gnaw sticks, plastic tubes) was provided throughout
the study. All rats were tested and maintained in accordance
with the guidelines of the Institutional Animal Care and Use
Committee of Davidson College and the Guide for the Care
and Use of Laboratory Animals (32). A total of 119 rats were
divided between 12 groups: time-course (n = 21; n = 5–6/dose),
levorphanol (n = 10), buprenorphine (n = 9), butorphanol (n =

10), nalbuphine (n= 9), (-)-pentazocine (n= 10), (-)-metazocine
(n = 10), (-)-cyclazocine (n = 10), (-)-NANM, nalorphine (n =

10), spiradoline (n= 10), and naloxone (n= 10).

Materials
All behavioral tests were conducted in an open-field, locomotor
activity chamber. The interior of the chamber was made of
plywood, measured 50 x 50 x 40 cm, and painted white with
high-gloss paint. The lid of the chamber was made of transparent
Plexiglas, which allowed all activity to be monitored by a video
camera suspended 1.5m above the apparatus. Heavy black lines
were drawn on the lower surface of the apparatus with indelible
ink that could easily be observed from the camera mounted
above. These lines divided the floor into a grid of 25 squares,
eachmeasuring 10 x 10 cm. A wire-mesh screen was permanently
suspended 2 cm above the bottom of the apparatus and served as
the floor of the apparatus during behavioral testing.

Behavioral Procedure
Prior to behavioral testing, rats in each group were habituated
to the testing environment by being placed into the activity
chamber for 300 s a day for five consecutive days. After these
initial habituation sessions, non-injection control tests were
conducted in which locomotor activity was measured across
multiple observation periods. During these control tests, each rat
was removed from its home cage and placed into the activity
chamber for 130 s and the number of locomotor activity counts
was recorded (see section Data Analysis). The first 10 s of this
interval served as an acclimation period, and thus only data
obtained during the final 120 s of the interval were used for
statistical analysis. Immediately after the observation period, the
rat was removed from the chamber and returned to its home
cage. Fifteen minutes later, the rat was again placed into the
chamber and locomotor activity was again measured. All control
sessions continued for two additional intervals (i.e., a total of four
intervals), with 15-min intervals separating each interval. Each
rat received only one non-injection control session.

Drug Administration and Locomotor
Activity Testing
The effects of d-amphetamine were examined under a cumulative
dosing procedure. In this procedure, each rat was initially
injected with saline and returned to its home cage. After a 15-
min pretreatment interval, the rat was placed into the activity
chamber for 130 s and the number of locomotor activity counts
was recorded. Again, the first 10 s of the interval served as
an acclimation period and only data from the final 120 s were
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used for statistical analysis. After the observation period had
elapsed, the rat was removed from the chamber, administered
the lowest dose of d-amphetamine, and returned to its home
cage. Fifteen minutes later the rat was again placed into the
chamber and locomotor activity was again measured. Each test
session continued for two additional intervals, with increasing
doses of dextroamphetamine administered at the beginning of
each subsequent interval. Cumulative doses of 0.18, 0.56, and 1.8
mg/kg dextroamphetamine were tested in all sessions.

Drug Combination Testing
In separate groups of rats, drug combination tests were
conducted in which various opioids were administered in
combination with d-amphetamine. Testing procedures were
identical to those described above, with the exception that a
selected dose of an opioid was administered during the first
interval of the session in lieu of saline. Two doses of each opioid
were examined in a randomized order, with a minimum of 5–7
days separating each session. In subjects tested with levorphanol,
spiradoline, and naloxone, cumulative doses of d-amphetamine
were tested alone, both before and after drug combination tests,
to determine the stability of the dose-effect curve with repeated
testing. Doses of test drugs were selected on the basis of a
previous study in which these opioids were combined with
cocaine in tests of locomotor activity [(28); levorphanol: 0.3,
3.0 mg/kg; spiradoline: 1.0, 10 mg/kg; naloxone: 0.1, 10 mg/kg;
buprenorphine: 0.03, 0.1 mg/kg; butorphanol: 0.1, 0.3 mg/kg;
nalbuphine: 0.3, 1.0 mg/kg; (-)-pentazocine: 1.0, 3.0 mg/kg;
(-)-metazocine: 1.0, 3.0 mg/kg; (-)-cyclazocine: 1.0, 3.0 mg/kg;
(-)-NANM: 3.0, 10 mg/kg; nalorphine: 1.0, 3.0 mg/kg].

Time Course Testing
A series of time-course tests was conducted to measure the time
to peak effect and duration of action of d-amphetamine. In these
tests, different doses of d-amphetamine (0.18, 0.56, 1.8 mg/kg)
or saline (1 ml/kg) were administered at the beginning of the
session, and locomotor activity was measured 5, 15, 30, 60, and
120min later. Non-injection control sessions were not conducted
for time-course testing.

Drugs
Dextroamphetamine hemisulfate salt, levorphanol tartrate,
buprenorphine hydrocholoride, butorphanol tartrate,
nalbuphine hydrochloride, nalorphine hydrochloride, naloxone
hydrochloride, and spiradoline mesylate were obtained from
Sigma Chemical Co. (St. Louis, MO, USA). (-)-Pentazocine,
(-)-metazocine, and (-)-n-allylnormetazocine were a gift from
Dr. Mitchell Picker. All compounds were dissolved in saline and
administered via intraperitoneal injection in a volume of 1.0
ml/kg of body weight.

Data Analysis
Locomotor activity was scored by observers whowere blind to the
study’s hypotheses. Activity counts were measured by counting
the number of instances in which a rat entered a new 10 cm
x 10 cm square during the 120-s observation period. Entrances
were counted only if the rat crossed the grid line marking the

perimeter of the square with both forepaws. Only horizontal line
crossings were measured; stereotypies and pattern of movement
were not recorded. Except for the time-course tests, locomotor
activity was expressed as % non-injection control, with each rat
serving as its own control. These non-injection control values
were calculated individually for each rat by dividing the number
of activity counts observed during an interval of a test session
by that obtained in the corresponding interval of the non-
injection control session, and then multiplying by 100. Drug
interaction data were analyzed via two-way, repeated-measures
ANOVA, with dose of d-amphetamine and opioid pretreatment
serving as repeated measures. Time-course data were also
analyzed via repeated-measures ANOVA, with time serving as a
within-subjects factor and dose of d-amphetamine serving as a
between-subjects factor. Locomotor activity counts during non-
injection control tests were analyzed across intervals via one-way,
repeated-measures ANOVA. Similarly, the effects of each opioid
administered alone (as determined during the first interval of
drug combination tests) were examined via one-way, repeated-
measures ANOVA. d-Amphetamine was tested alone on two
occasions in groups tested with levorphanol, spiradoline, and
naloxone. These tests of d-amphetamine alone were conducted
before (Day 1) and after (Day 21) drug combination tests
to determine whether repeated testing altered the locomotor
effects of d-amphetamine. These data were analyzed via two-way,
repeated-measures ANOVA using dose and day as factors.

To characterize the effects of each dose of opioid in
combination with d-amphetamine, an effect-addictive model
was used. Tests of additivity were conducted using a two-way,
repeated-measures ANOVA comparing the observed effects of
the combination to that that predicted by an effect-additive
model using dose of d-amphetamine and model (observed
vs. predicted) as within-subject factors. The predicted effects
were calculated for each rat and each dose of d-amphetamine
by the following formula (all values depicted as % non-
injection control):

predicted effect = (observed effect of opioid alone

− observed effect of vehicle)

+ observed effect of d-amphetamine alone

The null hypothesis (i.e., the interaction conformed to an effect-
additive model) was rejected if a significant main effect was
obtained for the model factor.

RESULTS

Time Course
Locomotor activity as measured by raw activity counts increased
as function of d-amphetamine dose and varied as function of
time (Figure 1). Acute doses of d-amphetamine (0.18, 0.56, and
1.8 mg/kg) dose-dependently increased locomotor activity [main
effect of dose: F3, 7 = 5.162, p = 0.010], with 0.56 and 1.8 mg/kg
significantly increasing locomotor activity relative to saline (p =
0.030 and p = 0.007, respectively). Locomotor activity peaked
15min after administration [main effect of time: F1, 17 = 45.943,
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FIGURE 1 | Time-course effects of acute doses of d-amphetamine on

locomotor activity. Vertical axis reflects locomotor activity expressed as raw

activity counts over 120-s observation period. Horizontal axis reflects time

after administration in minutes. All data points reflect the mean of 5–6 rats.

Vertical lines represent the SEM; where not indicated, the SEM fell within the

data point. Asterisk with horizontal line indicates significant effect of time.

Asterisk with vertical line indicates significant effect of amphetamine dose.

p< 0.001]; locomotor activity counts were significantly greater at
this time point than the 60- and 120-min time points (p < 0.001
for both time points).

Non-injection Control
Raw locomotor activity counts obtained during the non-
injection control sessions varied across groups (Table 1). This
was expected given that each group of rats was obtained from
separate cohorts over an 8-year period, and some genetic
drift in the stock population may have occurred (e.g., baseline
locomotor activity generally increased over the 8-year period).
There was some variability across intervals, but this was not
significant in 8 of the 10 groups tested. In groups tested
with butorphanol and nalbuphine, locomotor activity counts
significantly decreased across intervals of the session [main effect
of interval: F3, 27 = 5.419, p = 0.005; F3, 24 = 5.632, p = 0.005
respectively], suggesting within-session habituation in these
two groups.

Levorphanol, Spiradoline, and Naloxone
The selective, high-efficacy mu agonist, levorphanol, increased
locomotor activity when administered alone during the first
interval of the drug combination tests [F2, 18 = 4.580, p =

0.025]. This effect was biphasic at the two doses tested, with the
low (0.3 mg/kg) but not the high (3.0 mg/kg) dose increasing
locomotor activity relative to saline (Figure 2). D-amphetamine
dose-dependently increased locomotor activity [F2, 18 = 4.307,
p = 0.030], and this effect was increased by levorphanol [F2, 18
= 4.215, p = 0.032]. The low dose of levorphanol increased
the effects of d-amphetamine in a greater-than-additive manner
[F1, 9 = 17.124, p = 0.003], whereas the effects of a high dose
conformed to an effect-additive model. There was no change in
the locomotor effects of d-amphetamine alone due to repeated

TABLE 1 | Raw locomotor activity counts under non-injection control conditions.

Drug Mean SEM Interval Mean SEM

Levorphanol (-)-Pentazocine

Interval 1 110.7 7.6 Interval 1 79.2 7.9

Interval 2 100.3 10.7 Interval 2 79.4 6.4

Interval 3 114.6 11.1 Interval 3 74.3 7.2

Interval 4 101.8 9.1 Interval 4 76.0 9.4

Spiradoline (-)-Metazocine

Interval 1 87.0 5.4 Interval 1 79.8 6.2

Interval 2 96.1 7.3 Interval 2 88.0 10.4

Interval 3 92.4 9.2 Interval 3 88.8 8.3

Interval 4 98.5 7.6 Interval 4 86.7 6.6

Naloxone (-)-Cyclazocine

Interval 1 91.5 7.6 Interval 1 64.7 5.1

Interval 2 92.6 5.7 Interval 2 61.6 3.0

Interval 3 95.8 10.2 Interval 3 58.3 3.8

Interval 4 99.4 5.6 Interval 4 60.0 4.1

Buprenorphine (-)-NANM

Interval 1 62.3 4.4 Interval 1 75.9 7.9

Interval 2 58.9 4.9 Interval 2 78.0 7.2

Interval 3 56.3 4.4 Interval 3 69.7 6.7

Interval 4 55.4 2.6 Interval 4 72.8 5.6

Butorphanol Nalorphine

Interval 1 72.8 7.0 Interval 1 86.4 8.8

Interval 2 64.0 4.8 Interval 2 81.3 7.3

Interval 3 57.3 8.1 Interval 3 82.5 10.8

Interval 4 56.6 7.3 Interval 4 76.8 7.6

Nalbuphine Mean SEM

Interval 1 73.4 6.3

Interval 2 75.8 6.9

Interval 3 58.2 4.8

Interval 4 58.1 7.3

testing (planned comparison of Day 1 vs. Day 21: no main effect
of day or day x dose of d-amphetamine interaction).

The selective, high-efficacy kappa agonist, spiradoline, did not
alter locomotor activity when administered alone (Figure 2). d-
Amphetamine increased locomotor activity in drug combination
tests [F2, 18 = 6.351, p = 0.008), but neither dose of spiradoline
altered the effects of d-amphetamine relative to saline. Similar
to that observed in levorphanol-treated rats, there was no
change in the locomotor effects of d-amphetamine alone due to
repeated testing.

The non-selective opioid antagonist, naloxone, did not alter
locomotor activity when administered alone and functionally
blocked d-amphetamine-induced increases in locomotor activity
(Figure 2). Moreover, the effects of d-amphetamine did not differ
from Day 1 to Day 21.

Intermediate-Efficacy Opioids
In drug combination tests with eight intermediate-efficacy
opioids, d-amphetamine significantly increased locomotor
activity regardless of the opioid administered (see Table 2 for a
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FIGURE 2 | Effects of cumulative doses of d-amphetamine when tested alone and when tested in combination with selected doses of levorphanol (LEV; n = 10),

spiradoline (SPIR; n = 10), and naloxone (NALOX; n = 10). Vertical axes reflect locomotor activity expressed as a percentage of non-injection control values.

Horizontal axes reflect dose of d-amphetamine in mg/kg. Points above “0” represent the effects of vehicle (saline) and various doses of opioids tested alone. Vertical

lines represent the SEM; where not indicated, the SEM fell within the data point. Single asterisk indicates significant effect of opioid alone. Asterisk with horizontal line

indicates significant effect of amphetamine dose. Asterisk with vertical line indicates significant effect of opioid pretreatment.

full ANOVA table listing all significant effects for tests conducted
with the intermediate-efficacy opioids). All intermediate-efficacy
opioids significantly increased the locomotor effects of d-
amphetamine (Table 2, Figure 3). The doses of opioids tested
varied in their locomotor effects when administered alone, and
whether they increased the effects of d-amphetamine in an
additive or greater-than-additive manner.

Neither dose of buprenorphine, butorphanol, nalbuphine,
(-)-pentazocine, (-)-NANM, or nalorphine increased locomotor
activity when administered alone; however, all six intermediate-
efficacy opioids increased the effects of d-amphetamine (Table 2,
Figure 3). All six opioids increased the effects of d-amphetamine
in a greater-than-additivemanner at the higher test dose, whereas
only buprenorphine, butorphanol, and nalorphine increased the
effects of d-amphetamine in a greater-than-additive manner at
the lower test dose. In all cases, opioid-induced increases in
d-amphetamine’s locomotor effects were dose-dependent and
quantitatively greater at the higher than lower test dose of
the opioid.

(-)-Cyclazocine and (-)-metazocine dose-dependently
increased locomotor activity when tested alone, and both
drugs significantly increased the effects of d-amphetamine
in a dose-dependent manner (Table 2, Figure 3). Both doses
of (-)-metazocine increased the effects of d-amphetamine
in a greater-than-additive manner, whereas both doses of
(-)-cyclazocine conformed to an effect-additive model.

DISCUSSION

The principal finding of this study is that eight structurally
and pharmacologically diverse intermediate-efficacy opioids
increased the effects of d-amphetamine in a manner that was

generally similar to the selective, high-efficacy mu agonist,
levorphanol. The only opioids that failed to increase the effects of
d-amphetamine were the selective, high-efficacy kappa agonist,
spiradoline, and the non-selective opioid receptor antagonist,
naloxone. The failure of spiradoline to enhance d-amphetamine’s
locomotor effects suggests that the effects of the intermediate-
efficacy opioids were not mediated by the kappa receptor.
Moreover, the finding that naloxone prevented d-amphetamine-
induced locomotor activity suggests that mere occupation of
opioid receptors is not sufficient to enhance d-amphetamine-
induced locomotion. Together, these data suggest that agonist
activity at the mu receptor is likely responsible for the ability
of intermediate-efficacy opioids to increase the locomotor effects
of d-amphetamine.

The intermediate-efficacy opioids tested vary in structure,
with multiple morphinans (e.g., levorphanol, butorphanol,
nalorphine) and benzomorphans [e.g., (-)-pentazocine,
(-)-metazocine, (-) cyclazocine] represented. Moreover,
these opioids differ in their relative selectivity for mu vs.
kappa receptors, and included both mu-preferring (e.g.,
buprenorphine) and kappa-preferring [e.g., (-)-pentazocine]
opioids (33, 34). Most importantly, the opioids differ in their
relative efficacy at the mu receptor, with an estimated rank order
of levorphanol > buprenorphine > butorphanol ≥ nalbuphine
> (-)-metazocine ≥ (-)-pentazocine ≥ (-)-cyclazocine ≥

nalorphine > naloxone (29–31).
These findings are consistent with a previous study

demonstrating that many of these same opioids increase
the effects of cocaine under similar conditions (28). In that
study, all intermediate-efficacy opioids except nalorphine (i.e.,
the opioid with the lowest estimated relative efficacy at the mu
receptor of those tested) increased the effects of cocaine. Similar
to the present study, the ability of an intermediate-efficacy opioid
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TABLE 2 | ANOVA table for intermediate-efficacy opioids.

Drug Pretreatment

(opioid alone)

Drug combination Effect-additive model

Opioid dose d-Amp dose Opioid: low Opioid: high

Buprenorphine

dffactor, dferror 2, 16 2, 16 1, 8 1, 8

F 15.889 3.700 12.56 13.38

P NS <0.001 0.048 0.008 0.006

Butorphanol

dffactor, dferror 2, 18 2, 18 1, 9 1, 9

F 6.943 18.503 13.836 15.36

P NS 0.006 <0.001 0.005 0.004

Nalbuphine

dffactor, dferror 2, 16 2, 16 1, 8

F 10.862 31.093 44.533

P NS 0.001 <0.001 NS <0.001

(-)-Pentazocine

dffactor, dferror 2, 18 2, 18 1, 9

F 12.058 7.996 19.223

P NS <0.001 0.003 NS 0.002

(-)-Metazocine

dffactor, dferror 2, 18 2, 18 2, 18 1, 9 1, 9

F 24.378 3.658 62.645 31.903 9.453

P <0.001 0.046 <0.001 <0.001 0.013

(-)-Cyclazocine

dffactor, dferror 2, 18 2, 18 2, 18

F 14.115 15.329 7.534

P <0.001 <0.001 0.004 NS NS

(-)-NANM

dffactor, dferror 2, 18 2, 18 1, 9

F 14.41 11.82 51.517

P NS <0.001 0.001 NS <0.001

Nalorphine

dffactor, dferror 2, 18 2, 18 1, 9 1, 9

F 18.972 7.257 13.22 8.134

P NS <0.001 0.005 0.005 0.019

NS indicates non-significant main effect. No significant interactions for the drug combination data (opioid dose × d-amphetamine dose) or the model data (model × d-amphetamine

dose) were obtained. In the 2 × 2 ANOVA for model, a main effect for dose of d-amphetamine was observed under all conditions but are not shown in the table.

to increase the effects of cocaine was shared by levorphanol, but
not by spiradoline or naloxone. The concordance between these
studies demonstrates that the effect of opioids on stimulant-
induced locomotion are consistent across stimulants with
different mechanisms of actions (i.e., dopamine releasing agent
vs. dopamine reuptake inhibitior).

d-Amphetamine-induced locomotor activity is mediated by
the release of striatal dopamine, primarily in the nucleus
accumbens. The cell bodies of dopamine-releasing nerve
terminals in the nucleus accumbens are located in the ventral
tegmental area (VTA). These dopamine-releasing neurons are
under tonic inhibitory control by GABAergic neurons also
located in the VTA. These GABAergic neurons, in turn, are under
tonic inhibitory control by endogenous opioid peptides that bind
to mu receptors on the cell surface. Activation of these mu opioid
receptors by mu receptor agonists represents one mechanism by

which high-efficacy mu agonists increase the locomotor effects of
psychomotor stimulants (35). In general, opioid antagonists are
more effective in blocking the effects of dopamine releasers like
amphetamine than reuptake inhibitors like cocaine [e.g., (36)].
These findings have been interpreted to suggest that endogenous
opioid release may contribute to some effects of d-amphetamine,
which has several implications for the present study.

One implication of the present findings is that the endogenous
tone of these mu receptors is low, given that opioids possessing
very low efficacy at the mu receptor were able to increase the
effects of d-amphetamine in either an additive or greater-than-
additive manner. A second and similar implication is that the
enhancement of d-amphetamine-induced locomotion by opioids
has a very low efficacy requirement, and this assay provides
a very sensitive endpoint of mu-opioid activation. Additional
studies showing the effects of these intermediate-efficacy opioids
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FIGURE 3 | Effects of cumulative doses of d-amphetamine when tested alone and when tested in combination with selected doses of buprenorphine (BUP; n = 9),

butorphanol (BUT; n = 10), nalbuphine (NALB; n = 9), (-)-pentazocine (PENT; n = 10), (-)-metazocine (MET; n = 10), (-)-cyclazocine (CYC; n = 10), (-)-NANM (NANM;

n = 10), and nalorphine (NALOR; n = 10). Vertical axes reflect locomotor activity expressed as a percentage of non-injection control values. Horizontal axes reflect

(Continued)

Frontiers in Psychiatry | www.frontiersin.org 7 January 2022 | Volume 12 | Article 790471

https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychiatry#articles


Smith et al. Interactions Between Opioids and Dextroamphetamine

FIGURE 3 | dose of d-amphetamine in mg/kg. Points above “0” represent the effects of vehicle (saline) and various doses of opioids tested alone. Vertical lines

represent the SEM; where not indicated, the SEM fell within the data point. Single asterisk indicates significant effect of opioid alone. Asterisk with horizontal line

indicates significant effect of amphetamine dose. Asterisk with vertical line indicates significant effect of opioid pretreatment.

are reversible with mu-selective neutral antagonists would offer
additional support for this possibility.

We have presented evidence that intermediate-efficacy mu
opioids increase the locomotor effects of both a dopamine
releaser (i.e., d-amphetamine; present study) and a dopamine
reuptake inhibitor [i.e., cocaine (28)]. The only relevant
difference between these studies is that the very low efficacy
mu agonist nalorphine increased the locomotor effects of d-
amphetamine at doses that did not alter the locomotor activity
of cocaine. We are hesitant to make cross-study comparisons
across studies conducted years apart, but it is notable that the
locomotor effects of both drugs were very sensitive to opioid
administration. Consequently, one final implication of these data
is that intermediate-efficacy mu opioids can increase stimulant-
induced locomotor activity under conditions that are dependent
on neuronal activity and cell firing (in the case of the reuptake
inhibitor, cocaine) and under conditions that are independent
of neuronal activity and cell firing (in the case of the dopamine
releaser, d-amphetamine).

Several limitations of the present study should be
acknowledged. First, the study only used male rats, and we
emphasize that future studies must be conducted in females to
test the hypothesis that these findings can be generalized across
biological sex. Second, the study only measured locomotor
activity for 120 s, which is much shorter than most studies
examining locomotor activity that measure behavior for 60min
or longer. Our time-course data mitigates this concern to
some extent, showing that the effects observed during 2-min
“snapshots” are similar to those obtained over extended and
continuous testing periods [e.g., (37, 38)]. Third, only two
doses of each opioid were tested. Although at least one dose
of each opioid increased the effects of d-amphetamine, some
opioids did not alter locomotor when administered alone at the
doses tested. Testing a wider dose range would reveal whether
higher (or lower) doses would increase locomotor activity in
the absence of d-amphetamine. Finally, drug interactions were
quantified using an effect-additive approach. This approach has

several limitations relative to a dose-additive approach (39), and

any conclusions regarding “synergistic” interactions between

opioids and d-amphetamine should be made with an abundance

of caution.

The translational relevance of this study is that intermediate-
efficacy opioids with diverse chemical and pharmacological
properties all increase the effects of d-amphetamine, including
those opioids with very low efficacy at the mu receptor.
These findings imply that potentially problematic dopamine-
mediated effects may be observed in recreational and
clinical settings when these drugs are combined. Similar to
locomotor activity, the abuse-related effects of mu opioids
and d-amphetamine are mediated by dopaminergic activity
in the nucleus accumbens. Consequently, substitution of
high-efficacy mu agonists for lower-efficacy agonists may
not mitigate the abuse liability of these opioid-stimulant
drug combinations.
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