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Abstract

The rising incidence of alcohol-related liver disease (ALD) demands making urgent progress in 

understanding the fundamental molecular basis of alcohol-related hepatocellular damage. One of 

the key early events accompanying chronic alcohol usage is the accumulation of lipid droplets 

(LDs) in the hepatocellular cytoplasm. LDs are far from inert sites of neutral lipid storage; rather, 

they represent key organelles that play vital roles in the metabolic state of the cell. In this review, 

we will examine the biology of these structures and outline recent efforts being made to 

understand the effects of alcohol exposure on the biogenesis, catabolism, and motility of LDs and 

how their dynamic nature is perturbed in the context of ALD.
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1. Introduction

An estimated 2.4 billion individuals worldwide consume alcoholic beverages.1 Though the 

exact relationship between alcohol use and overall health is complicated, it is clear that the 

overconsumption of alcohol is inextricably linked to liver disease, resulting in an 

increasingly costly socioeconomic burden. It has been estimated that between 1 and 2 

million cirrhosis and chronic liver-related disease deaths occur each year, with more than 

half of cirrhosis deaths likely attributable to alcohol intake.2,3 The resulting financial impact 

on patients and the healthcare system is unclear, but estimates have suggested that in the 

United States alone, the total costs of alcohol abuse surpass $166 billion.4 Clearly, a better 

understanding of the biological connections between alcohol consumption and liver 

physiology are urgently required.
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Alcohol-related liver disease (ALD) encompasses a number of pathologies ranging from the 

benign accumulation of hepatic fat (simple steatosis) to alcoholic steatohepatitis (ASH), 

characterized by significant hepatic inflammation and defined histological features (e.g., 

hepatocellular ballooning and neutrophil infiltration). Severe cases may result in alcoholic 

hepatitis (AH), an acute form of ASH resulting in high short-term mortality with limited 

treatment options. In a certain percentage of patients, ALD may further progress to include 

the development of cirrhosis or even hepatocellular carcinoma (HCC). Liver transplantation 

is a viable intervention for these advanced stages of ALD; however, due to requirements 

related to sobriety, continued adherence to a plan of alcohol abstinence remains a concern 

for these patients.5

The consumption of alcohol results in myriad mechanisms of damage to hepatocytes. Many 

of the effects of alcohol result from secondary metabolites (i.e., acetaldehyde and acetate) 

rather than alcohol itself. Initially, exposure of the hepatocyte to alcohol results in the rapid 

oxidation of alcohol to acetaldehyde by alcohol dehydrogenase (ADH) and cytochrome 

P450 2E1 (CYP2E1). Acetaldehyde can then be subsequently converted to acetate via the 

enzymatic activity of various aldehyde dehydrogenase (ALDH) isoforms located within the 

mitochondria, endoplasmic reticulum (ER), and cytosol. The combined consequences of 

alcohol, acetaldehyde, and acetate exposure are numerous. For example, the ratio of 

nicotinamide adenine dinucleotide (reduced/oxidized) (NADH:NAD+) is significantly 

increased as a result of alcohol metabolism by both ADH and ALDH. One net effect of this 

disrupted balance is a rise in the activity of key lipogenic pathways (i.e., sterol regulatory 

element binding protein 1c (SREBP1c) activation) that are coupled to concomitant decreases 

in mitochondrial β-oxidation, a key catabolic pathway for the degradation of stored fatty 

acids.6,7 Another key consequence resulting from the production of these metabolites is the 

formation of adducts (i.e., aldehyde adducts and protein hyperacetylation) that can have 

profound effects on lipid, protein, and nucleic acid biochemistry. In addition to lipid and 

protein modification, the generation of reactive oxygen species (ROS) due to CYP2E1 

activity has considerable effects on the cell and can lead to not only apoptosis and ER stress, 

but also upregulation of lipogenic pathways as well. Finally, remnant acetate generated by 

ALDH activity that is not secreted into the bloodstream is likely to be converted to acetyl-

CoA, at least a portion of which can serve as an important substrate used to generate 

malonyl-CoA in the rate-limiting initial step of fatty acid biosynthesis.

A current focus with potential therapeutic implications has thus centered on the hepatic fat 

accumulation that almost universally accompanies chronic alcohol consumption and often 

precedes the development of more severe sequelae. Greater than 90% of individuals who 

chronically consume large amounts of alcohol will develop fatty liver.8 In all cells, this fat 

has been shown to accumulate in the form of lipid droplets (LDs), unique organelles that 

serve as repositories for neutral lipid. Under normal physiological conditions, LDs are 

constantly being synthesized and catabolized in a tightly regulated fashion that is largely 

dictated by the nutritional status of the cell. In this review, we will detail current research 

that has begun to address how alcohol exposure can impact the dynamic nature of hepatic 

LDs and result in their potentially detrimental accumulation with liver disease progression.
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2. LDs

The major storage form of neutral lipid within the hepatocyte (and indeed, all mammalian 

cells) is the cytosolic LD. These organelles are formed subsequent to the synthesis of neutral 

lipids (predominantly triacylglycerols (TAG) and cholesteryl esters (CE)) by numerous 

enzymes located within the bilayer of the ER. TAG synthesis primarily occurs through the 

activity of diacylglycerol:acyltransferases (DGATs) and CE biosynthesis occurs via the 

action of acyl-coenzyme A:cholesterol acyltransferases (ACATs). Following the formation 

of a lipid ‘lens’ within this membrane, the eventual distension of the cytoplasmic leaflet 

results in the sequestration of a hydrophobic mixture of TAG and CE within the ER-derived 

delimiting phospholipid monolayer. These structures bud directionally outward toward the 

cytoplasm in a biophysical process dependent on membrane phospholipid composition and 

asymmetry.9–11

Studding the surface of LDs are a plethora of proteins, many of which are thought to be 

specific to the LD surface. A subset of these proteins are thought to possess a function 

analogous to a structural barrier, preventing unwarranted access of cytosolic lipases to the 

neutral lipids stored within the LD. Amongst these coat proteins are the perilipins, all of 

which contain N-terminal amphipathic helices critical to binding the LD surface 

phospholipid monolayer.12,13 Aside from the perilipins, a number of additional proteins 

appear to be only transiently associated with the LD surface; the identity of and roles for 

these proteins in LD biology are only now beginning to come into focus.14–16 In the past two 

decades, it has become increasingly appreciated that the LD represents a bona fide organelle 

that undergoes constant remodeling in response to the nutritional status of the cell.17 As 

such, insights into the effects of perturbations to the composition of lipids and proteins 

comprising these organelles may be critical to better understanding the natural history of 

ALD.

3. Effects of alcohol on LD biosynthesis

One of the first, nearly immediate hallmarks of alcohol-induced liver damage is the 

accumulation of LDs within hepatocytes. This rapid increase in steatosis is ordinarily a 

trivial matter for the liver—the transient appearance of significant quantities of hepatic LDs 

occurs on a regular basis with normal physiological feeding/fasting cycles. However, 

continued chronic alcohol insult results in a persistent steatotic phenotype that appears to be 

a prerequisite for the development of advanced ALD. In response to chronic alcohol 

consumption, the hepatocyte retains progressively increased amounts of lipid within LDs. 

Upon histological examination, this increased lipid content can be in the form of relatively 

large LDs (macrovesicular) or take the form of an accumulation of small LDs 

(microvesicular steatosis). The underlying biological differences between the large and small 

LDs observed in these two phenotypes remain unclear. As stated above, there are a number 

of effects that alcohol has on lipogenic programming within the cell, all of which serve to 

increase the intracellular availability of free fatty acids (FFAs) that can be used for 

incorporation into the neutral lipids comprising nascent LDs.
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Largely under the control of transcriptional factors such as SREBP1c, critical lipogenic 

enzymes such as stearoyl CoA desaturase-1 (SCD1), acetyl-coA carboxylase (ACC), and 

fatty acid synthase (FASN) are all upregulated at the genetic level in response to alcohol 

consumption.7,18–22 Upregulation of SREBP1c at the transcriptional level appears to be 

mediated by one of the metabolites of alcohol metabolism, acetaldehyde.7,23 Furthermore, 

the NAD+-dependent deacetylase sirtuin1 (SIRT1), a suppressor of SREBP1c, is 

downregulated transcriptionally (via miR-217) and has reduced signaling (via lipin-1) 

following alcohol consumption.24–27

Carbohydrate-responsive element binding protein (ChREBP) represents a second important 

regulator of hepatic lipid synthesis that is also negatively affected by alcohol intake.28 In a 

murine model of acute alcohol treatment, significant LD accumulation was observed in the 

liver alongside enhanced ChREBP activity, likely attributable to alcohol-induced acetylation 

of ChREBP.28 Also upregulated is the pregnane X nuclear receptor (PXR), a key regulator of 

the expression of numerous metabolic enzymes and of transport of numerous small molecule 

compounds into the hepatocyte.29 Indeed, Pxr-null mice appear to have reduced lipogenic 

gene expression and reduced hepatic steatosis in response to chronic alcohol feeding.30

The species of fatty acids available for incorporation into the LD may also be altered by 

ethanol consumption. Nuclear magnetic resonance (NMR) analysis of the hepatic lipidome 

following administration of a Lieber-DeCarli diet to rats revealed significant alterations to 

the metabolism of cholesterol, triglyceride and phospholipids within the liver.31 These 

results showed substantial decreases in phosphatidylcholine levels, an important component 

of the LD monolayer and regulator of LD size, in agreement with previous observations.
32–34 Also affected by ethanol exposure are the levels of long-chain ceramides, both of 

which are increased in the livers of alcohol-fed mice and in patients with chronic ALD.35,36

Concomitant with the numerous alterations listed above that lead to increased substrate 

biosynthesis is a reduction in hepatic mitochondrial β-oxidation of these same FFAs.37,38 

This decrease in levels of β-oxidation is likely to be a direct result of downregulated 

components (such as carnitine palmitoyltransferase 1 (CPT1) α, acyl-coenzyme A oxidase 

(ACOX) 1, and peroxisome proliferator-activated receptor (PPAR) α). Experiments 

performed in an alcohol-metabolizing human hepatoma cell line (VL-17A) demonstrated 

that ethanol exposure can drive the accumulation of LDs, as determined by a substantial 

reduction in mitochondrial β-oxidation as well as increases in both triglyceride as well as the 

LD-specific surface protein perilipin 2 (PLIN2).39 Isolation of LDs from livers of a rat 

model of ALD showed similar increases in triglyceride and PLIN2, along with altered 

surface phosphatidylcholine:phosphatidylethanolamine ratios, suggesting a linkage between 

phospholipid identity on the LD surface monolayer and the nature of proteins able to be 

recruited to the LD.34 Interestingly, this effect could be ameliorated by exogenous addition 

of a short-chain ceramide (C2 ceramide) to cells, possibly via a PPARα-mediated 

mechanism. Consistent with the detrimental accumulation of PLIN2-coated LDs following 

alcohol exposure, use of a Plin2 knockout mouse resulted in evidence showing that 

elimination of this perilipin protein afforded protection against alcoholic steatosis as well as 

improved insulin resistance and glucose tolerance.40,41
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Finally, alcohol exposure also results in enhanced uptake of circulating FFAs directly into 

the hepatocyte.42,43 This increased transport of FFAs appears to be partially due to an 

upregulation in the expression of the cell surface FFA transporter CD36.44 Together, the net 

result is that the alcohol-damaged hepatocyte is primed for lipid storage. The numerous 

ways described above in which alcohol exposure results in increased FFA availability for LD 

production represent only one side of the equation, however. As will be discussed in the next 

section, alcohol exposure can also directly interfere in the normal ability of the hepatocyte to 

recoup these FFAs from storage within the LD in times of energetic deficit.

4. Effects of alcohol on LD catabolism by autophagy and lipolysis

Following packaging into the LD, the neutral lipid largely remains stably sequestered from 

the cytosol in an ‘oil-in-water immersion’ that shields the hepatocyte from the many 

cytotoxic consequences associated with cellular FFA overload.45,46 During times of 

increased metabolic demand, however, the LD itself can be readily catabolized (in a highly 

regulated manner) to release these energy-rich FFAs as required to fuel various biochemical 

processes. As might be expected, alcohol exposure can interfere in this aspect of LD 

dynamics as well.

4.1. Effects of alcohol on autophagy of LDs

One of the mechanisms used for the catabolism of hepatocellular LDs is a selective form of 

autophagy referred to as lipophagy.47 During lipophagy, a dedicated membrane 

(phagophore) encapsulates the LD, ultimately sequestering it within a double-membrane 

structure referred to as an ‘autophagosome’. These autophagosomes are recognized by the 

lysosomal compartment, which subsequently fuses with autophagosomes to form 

degradative organelles called ‘autolysosomes’. The acid lipases found within the lysosomal 

lumen are deposited into LD-containing autolysosomes, and by this mechanism, the neutral 

lipids at the core of LDs can be catabolized. Because of its potential in mediating the 

selective degradation of LDs, modulation of the autophagic pathway represents an attractive 

pathway that might be exploited for the resolution of the steatosis observed in early stages of 

ALD.48

The overall effects of alcohol exposure on autophagy of LDs appear to vary with the length 

of exposure to alcohol. In this sense, autophagy can thus be considered to be a 

hepatoprotective mechanism that can ultimately be undermined with continuous alcohol 

insult. For example, acute ethanol exposure seems to promote a large increase in 

autophagosomal biogenesis to promote the selective targeting of both mitochondria as well 

as LDs for autophagic degradation.49,50 In contrast, chronic alcohol consumption appears to 

have the opposite effect, preventing autophagic progression and eventually resulting in 

hepatic LD accumulation.51 This differential autophagic response appears to be related to 

alterations in the regulation of a key transcription factor, transcription factor EB (TFEB), 

that serves as a master regulator of lysosomal biogenesis and autophagy.51–53 Indeed, levels 

of TFEB were found to be increased in the nuclear fractions of livers from mice that were 

acutely exposed to ethanol but not in those chronically administered with ethanol.51
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Another group of proteins with potentially important roles in autophagy and ALD are 

members of a small guanosine triphosphatase (GTPase) family of Ras-related proteins—the 

Rab GTPases, many of which have well-established roles in membrane trafficking pathways 

as well in autophagy.54,55 Through various proteomic screens, numerous Rab GTPases (e.g., 
Rab7, Rab 10, and Rab18) have been localized to the surface of LDs, where they appear to 

moonlight on this compartment together with roles elsewhere in the cell.14,16,56–58 Rats fed 

an alcohol-containing Lieber-DeCarli diet for an extended period of time were found to have 

defects in the ability of one of these Rabs (Rab7) to respond as expected to starvation-

induced cues.59 As with other Rab GTPases, Rab7 is found in either a guanosine 

triphosphate (GTP)-bound (active) state or a guanosine diphosphate (GDP)-bound (inactive) 

state.54 Rab7 was previously shown to be abundant on the LD surface and to play critical 

roles in the autophagy-mediated catabolism of LDs under starvation conditions.60 The 

finding that alcohol exposure can interfere with the activation of this Rab warrants the future 

examination of GTP cycling amongst the other Rabs found on the LD surface. In addition to 

defective enzymatic function, the ability of these Rabs to associate with and populate the LD 

surface in the first place may also be compromised in ALD. For example, the levels of LD-

localized Rab18 appear to be significantly reduced with chronic alcohol feeding of rats.61 

The consequences of this finding remain unclear.

The lysosome itself may also be a direct target that is negatively affected by chronic alcohol 

intake. A recent study demonstrated that in mice, chronic ethanol feeding plus an acute 

binge resulted in significant decreases in hepatic lysosomal biogenesis, through interference 

with the TFEB transcriptional regulatory system.62,63 A consequence of reduced lysosomal 

biogenesis is an attenuation in hepatocellular autophagic flux (insufficient autophagy). This 

is consistent with findings showing that chronic alcohol hinders the proteolytic function of 

hepatic lysosomes.64 Further evidence for a role of TFEB was the finding that its 

overexpression led to an improvement in the expression of key fatty acid oxidation genes 

that are normally decreased in response to alcohol exposure (i.e., CPT1α, ACOX1, and 

PPARα).63 Moreover, ethanol also appears to impair dynamin-2, a mechanochemical 

GTPase involved in endocytosis, but also playing roles in recycling of autolysosomal 

membranes following the conclusion of lipophagy in a process termed ‘autophagic 

lysosomal reformation’.65–68 Importantly, recent data in rats show that these effects may be 

mitigated by withdrawal of alcohol insult.69

Impaired autophagic removal of mitochondria also affects the ability of LDs to be 

catabolized. Knockout of Parkin, an E3 ubiquitin ligase that decorates the surface of 

damaged mitochondria during their selective autophagic turnover (in a process referred to as 

‘mitophagy’), resulted in enhanced LD content compared to wild-type mice in an acute-

binge model of acute alcohol exposure.70 Promotion of autophagy by treatment with 

mammalian target of rapamycin complex 1 (mTORC1)-inhibitory compounds (i.e., 

rapamycin) as well as carbamazepine improves hepatic steatosis as well as further liver 

injury in mice.71 These results suggest that the continued exploration of the connection 

between autophagy and LDs may yield important insights into alcohol-induced steatosis.
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4.2. Effects of alcohol on lipolysis

Another mechanism involved in the catabolism of LDs is that of lipolysis. Much of our 

understanding of the principles of cytosolic lipolysis stems from studies performed in 

adipocytes, which contain a single large unilocular LD (compared to the smaller 

multilocular phenotype of numerous LDs observed in hepatocytes). During hormone-

stimulated lipolysis, soluble lipases are recruited to the surface of the LD to catalyze the 

removal of FFAs from the neutral lipid stored within LDs. Adipose triglyceride lipase 

(ATGL), hormone-sensitive lipase (HSL), and monoglyceride lipase (MGL) sequentially 

remove individual fatty acid moieties, releasing FFAs that can be immediately utilized in the 

mitochondria (for β-oxidation) or released into the bloodstream by adipocytes and later 

taken up in the liver by hepatocytes.

Exposure of mice to chronic alcohol feeding results in clear increases in lipolysis in the 

adipose tissue. As a consequence, the significant release of FFAs into the bloodstream and 

uptake in the liver results in substantial hepatic steatosis following conversion to 

triglyceride.43 During lipolysis, AMP-activated protein kinase (AMPK) can be inactivated 

by chronic alcohol consumption.72 Lipolysis within hepatocytes can also be inhibited in 

response to alcohol exposure.73 This effect appears to arise due to inhibition of β-adrenergic 

receptor stimulation of hepatocellular lipases (and inhibition of the cyclic AMP/protein 

kinase A (cAMP/PKA) pathway), the net result being decreased LD turnover. Acetaldehyde, 

the metabolite resulting from ethanol metabolism also appears to play a role in modulation 

of cytosolic lipolysis. Whereas acetaldehyde appears to suppress the PPARα transcriptional 

network (resulting in decreased β-oxidation), it also suppresses PPARγ, resulting in 

enhanced lipolysis and biasing the adipose tissue-liver axis towards hepatic fat accumulation 

(Fig. 1).74

5. Effects of alcohol on LD motility

As reported above, the chronic administration of ethanol to rats resulted in decreased 

activation of the small GTPase Rab7.59 This appears to be a partial explanation for the 

accumulation of hepatic LDs. Hepatocytes derived from these same animals also exhibited 

reduced lysosomal motility, implying that ethanol likely has broad effects on cytoskeletal 

trafficking networks. This is consistent with the findings of others that alcohol 

administration impairs microtubules; a clear consequence of an impaired microtubule 

network is that LD mobilization can be significantly attenuated. As intracellular organelles, 

LDs rely on an intact cytoskeletal network of microtubules to be transported from sites of 

synthesis to locations in the cell where they can be metabolized or interact with other 

compartments of the cell.75,76 Linkages of LDs to the microtubule network is well 

established, with motor proteins such as kinesin-1 recruited to the LD surface to facilitate 

transport of LDs to the smooth ER for secretion as very low-density lipoprotein (VLDL) 

particles.77 As stated above, acetaldehyde and acetate, byproducts of alcohol metabolism 

can form adducts to numerous proteins; among these proteins are soluble and polymeric 

tubulin.78,79 Alcohol exposure results in enhanced microtubule acetylation of α-tubulin (on 

lysine 40) in polarized WIF-B cells as well as the ethanol-metabolizing VL-17A cell line.
80,81 These alterations of the central network used by LDs for intracellular motility represent 
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a third factor (along with enhanced lipogenesis and decreased LD breakdown) that together 

contributes to the steatosis that almost universally appears following alcohol consumption.

6. Future perspectives

How LDs respond to perturbations of the cellular environment is becoming an area of 

intense research interest. Because these organelles play central roles as sites of readily 

available energy storage, an understanding of their metabolic regulation is essential to 

understanding diseases such as obesity, diabetes, and fatty liver. We are still learning a great 

deal about the molecular machinery that controls many aspects of LD biology. For example, 

a number of recent studies have identified important roles for machinery that regulates the 

influx of triglyceride from the ER bilayer and into nascently forming LDs. One protein that 

appears to be involved in this process, Seipin, appears to stabilize ER-LD contact sites to 

allow for the unidirectional flow of neutral lipid into the LD during biogenesis.82–85 Might 

alcohol exposure be involved in promoting these early stages of Seipin-driven LD synthesis?

Additionally, recent genetic data suggests that advanced liver disease may involve a number 

of genes that are intimately tied to LD dynamics. For example, the genetic mutation patatin-

like phospholipase domain containing 3 (PNPLA3; I148M) has been recently identified to 

play a role in hepatic lipid accumulation. This variant (rs738409) was found to be strongly 

associated with both ALD as well as alcohol-related cirrhosis in various populations.86,87 

The mechanism whereby this mutant appears to influence LD biology is via defective 

ubiquitination of the mutant. Normally, PNPLA3 can be extracted from the LD surface and 

turned over by the proteasome. The I148 M mutation, however, renders the protein unable to 

be ubiquitinated, and as a consequence, it accumulates on the surface of the LD.88 A side 

effect of this accumulation appears to be the inability of LDs to undergo turnover by 

cytosolic lipases. Intriguingly, a truncation variant in the gene encoding another LD-

associated protein, HSD17B13, is thought to confer protection against the development of 

advanced ALD.89,90 Future experiments addressing the mechanisms whereby this occurs are 

paramount.

Clearly, there is a complex interplay between alcohol and fat accumulation in ALD. As such, 

it is more urgent than ever to tease apart the molecular basis for the effects of alcohol 

consumption on the dynamics of LDs within the hepatocyte. Aside from diet/lifestyle 

modifications or bariatric surgery, which can reduce steatosis and associated inflammation/

fibrosis, no approved pharmacological treatments are available to reduce LD content 

directly. A number of compounds that target lipid biosynthetic pathways and steatosis are 

currently in various stages of development, however, highlighting the ongoing interest in 

developing mechanisms of therapy related to LD biology for the treatment of ALD.91
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Fig. 1. Effects of chronic alcohol exposure on LD dynamics.
The effects of chronic alcohol consumption have numerous effects on hepatic LD dynamics 

including: (i) elevated FA substrate availability due to increased lipogenesis and decreased 

mitochondrial β-oxidation; (ii) inhibition of canonical LD catabolic pathways such as 

lipolysis and lipophagy; and (iii) reduced LD and lysosomal motility due to alterations of the 

microtubule network on which these organelles are trafficked throughout the cell. 

Abbreviations: FFA, free fatty acid; FA, fatty acid; SIRT1, sirtuin1; SREBP1c, sterol 

regulatory element binding protein 1c; ChREBP, carbohydrate-responsive element binding 

protein; SCD1, stearoyl CoA desaturase-1; ACC, acetyl-coA carboxylase; FASN, fatty acid 

synthase; LD, lipid droplet; CPT1α, carnitine palmitoyltransferase 1α; ACOX1, acyl-

coenzyme A oxidase 1; PPARα, peroxisome proliferator-activated receptor α; TFEB, 

transcription factor EB; ATGL, adipose triglyceride lipase.
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