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Deep learning is one of the most popular artificial intelligence techniques used in the medical 
field. Although it is at an early stage compared to deep learning analyses of computed 
tomography or magnetic resonance imaging, studies applying deep learning to ultrasound 
imaging have been actively conducted. This review analyzes recent studies that applied deep 
learning to ultrasound imaging of various abdominal organs and explains the challenges 
encountered in these applications.
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Introduction

Artificial intelligence has been applied in many fields, including medicine. Deep learning has recently 
become one of the most popular artificial intelligence techniques in the medical imaging field, and 
it has been applied to various organs using different imaging modalities. In the abdomen, the main 
imaging modality is computed tomography (CT) for most organs [1]; however, deep learning research 
regarding abdominal ultrasonography (US) is ongoing. In this article, I review the current status of the 
application of deep learning to abdominal US and discuss the challenges involved.

Liver

US is one of the most commonly used imaging modalities for evaluating liver disease. In particular, it 
is used to screen for liver tumors, to evaluate liver status in patients with chronic liver disease, and to 
evaluate hepatic steatosis. 

Diffuse Liver Disease
Ten studies applying deep learning to liver US imaging aimed to evaluate diffuse liver disease, 
especially hepatic fibrosis and steatosis [2-11]. These studies are summarized in Table 1.

In terms of the type of data used, B-mode image data is the most common. This is likely because 
B-mode images are the simplest, making it easier to acquire data. However, to evaluate liver fibrosis, 
some studies have used elastography. Wang et al. [6] used the full two-dimensional (2D) shear 
wave elastography (SWE) region of interest and included additional B-mode imaging areas from 
the surrounding area, and demonstrated that the deep learning method was more accurate than 
2D-SWE measurements for assessing liver fibrosis. Xue et al. [2] reported that deep learning using 
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both B-mode and 2D-SWE images showed better performance than 
using only one of the two types of images. These results suggest 
that an analysis of the heterogeneity of intensity and texture of 
colored 2D-SWE and B-mode images can improve the accuracy of 
the assessment of liver fibrosis. The study of Han et al. [4] was the 
only one that used radiofrequency (RF) data (Fig. 1). RF signals are 

raw data obtained from US equipment that are used to generate 
B-mode images; however, some information is lost or altered during 
the conversion. Therefore, RF data contain more information than 
B-mode images and are less dependent on system settings and post-
processing operations, such as the dynamic range setting or filtering 
operations. These characteristics of RF data may be advantageous 

Fig. 1. Deep learning using radiofrequency data. The yellow outline indicates the region of interest for deep learning analysis. The 
radiofrequency signals corresponding to the blue line are downsampled. The downsampled signal values are used as input values to a 
convolutional neural network. RF, radiofrequency; CNN, convolutional neural network.

Sampling

RF signal Input layer for CNN

Table 1. Summary of studies applying deep learning to diffuse liver disease

Study Task
Data used for deep 

learning
US system

Total no. of images 
(total no. of patients)

No. of validation 
set images 

(no. of patients)
Ground truth Method

Xue et al. (2020) [2] Fibrosis B-mode+elastography One 2,330 (466) 510 (102) Pathology CNN
Lee et al. (2020) [3] Fibrosis B-mode ≥4 14,583 (3,975) 300 (266) for 

internal validation 
1,232 (572) for 
external validation

Pathology, 
elastography, clinical 
diagnosis

CNN

Wang et al. (2019) [6] Fibrosis Elastography One 1,990 (398) 660 (132) Pathology CNN
Treacher et al. (2019) [7] Fibrosis B-mode elastography 

image
One 3,500 (326) 524 (N/A) Shear wave velocity CNN

Byra et al. (2018) [8] Fibrosis B-mode One 550 (55) Leave-one-out 
cross-validation

Pathology CNN+SVM

Meng et al. (2017) [11] Fibrosis B-mode N/A 279 (279) 77 (77) Clinical diagnosis CNN
Liu et al. (2017) [10] Fibrosis B-mode One 91 (91) 3-fold cross-

validation
Clinical diagnosis 
(Child-Pugh 
classification, CT, US)

CNN+SVM

Han et al. (2020) [4] Steatosis RF US data One 2,560 RF signals per 
participant (204)

2,560 RF signals per 
participant (102)

MRI-derived proton 
density fraction

CNN

Cao et al. (2020) [5] Steatosis B-mode One 1,092 (N/A) 240 (240) US scoring system CNN
Biswas et al. (2018) [9] Steatosis B-mode One 63 (63) 10-fold cross-

validation
Pathology CNN

US, ultrasonography; CNN, convolutional neural network; N/A, not available; SVM, support vector machine; CT, computed tomography; RF, radiofrequency; MRI, magnetic 
resonance imaging.
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in terms of the generalizability of a deep learning model developed 
from RF data. However, further research is needed to determine 
whether using RF data will actually help.

Deep learning is basically a data-driven method. Deep learning 
can extract and learn nonlinear features from data; it does not 
extract features using domain expertise. In order to avoid over-
fitting, developing a deep learning model requires a large amount of 
data. The amount of data used in the studies included in this review 
is relatively small compared to the large challenge databases of 
optical images such as the ImageNet Large Scale Visual Recognition 
Challenge. However, recently published studies have tended to use 
a larger amount of data. For example, in the study of Lee et al. [3], 
14,583 total images were used to develop and validate a deep 
learning model for the evaluation of liver fibrosis. 

Careful and meticulous confirmation of the clinical performance 
and utility of a developed model is required for it to be adopted in 
clinical practice. This involves more than just the completeness of a 
model or its performance evaluation during development. Robust 
clinical confirmation of a model’s performance requires external 
validation. Furthermore, for the ultimate clinical verification of 
developed models, their effect on patient outcomes needs to be 
evaluated [12]. Of extant studies in this field, only Lee et al. [3] 
conducted external validation. In particular, it is desirable to perform 
external validation of a model’s performance in a clinical cohort 
that represents the target population of the developed model using 
prospectively collected data [12]. However, Lee et al. [3] performed 
external validation using retrospectively collected data in a case-
control group. 

Focal Liver Disease
Several studies have applied deep learning to liver US imaging to 
detect or characterize focal liver lesions [13-17]. These studies are 

summarized in Table 2.
Compared to the number of studies applying deep learning to 

diffuse liver disease, the number of studies applying it to focal liver 
disease is small. The amount of available image data for focal liver 
disease is relatively small compared to that available for diffuse 
liver disease, and the US imaging findings of focal liver lesions often 
overlap. Additionally, in clinical practice, US imaging is usually used 
as a screening tool, not as a tool for disease confirmation. These 
factors likely explain why there is less activity in deep learning 
research targeting focal liver disease than there is in targeting 
diffuse liver disease. 

In terms of the type of data used, contrast-enhanced US (CEUS) 
was used to develop deep learning models in three studies 
[13,15,17]. Among them, Liu et al. [17] and Pan et al. [15] used a 
3D-convolutional neural network (CNN). CEUS imaging incorporates 
information regarding space as well as time. A 2D-CNN can only 
analyze the spatial features, such as texture and edge, from one 
frame of CEUS cine images, but a 3D-CNN can analyze temporal 
features as well (Fig. 2).

Schmauch et al. [16] used the dataset that was provided during 
a public challenge during the 2018 Journées Francophones de 
Radiologie in Paris, France. Although their model was tested on 
the dataset by the challenge organizers, no detailed information 
was provided as to how the dataset was collected or what lesions 
it contained. Except for this one study, external validation has not 
been performed in any other study that applied deep learning to 
focal liver disease. 

Prostate

Most studies applying deep learning to prostate US imaging 
have focused on detecting and grading prostate cancer and the 

Table 2. Summary of studies applying deep learning to focal liver disease

Study Task
Data used for 
deep learning

US system Total no. of images
No. of validation set 

images
Ground truth Method

Liu et al. (2020) [17] TACE response 
prediction

CEUS Three 130 CEUS datasets 41 CEUS cine sets mRECIST on 
CT/MRI

3D-CNN

Pan et al. (2019) [15] Classification CEUS N/A 4,420 images from 
242 tumors

10-Fold cross-
validation

N/A 3D-CNN

Guo et al. (2018) [13] Classification CEUS One 93 CEUS datasets 5-Fold cross-validation Pathology, CT, MRI DCCA-MKL
Schmauch et al. (2019) 
[16]

Detection and 
classification

B-mode N/A 544 images 3-Fold cross-validation 
177 Images for external 
validation

N/A ResNet50

Hassan et al. (2017) 
[14]

Detection and 
classification

B-mode N/A 110 images 10-Fold cross-
validation

Unsupervised 
learning

SSAE+SVM

US, ultrasonography; TACE, transarterial chemoembolization; CEUS, contrast-enhanced ultrasonography; mRECIST, modified Response Evaluation Criteria in Solid Tumor; 
CT, computed tomography; MRI, magnetic resonance imaging; 3D, three-dimensional; CNN, convolutional neural network; N/A, not available; DCCA-MKL, deep canonical 
correlation analysis-multiple kernel learning; SSAE, stacked sparse auto-encoders; SVM, support vector machine.
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abnormalities of the kidney and urinary tract. Kuo et al. [33] and 
Yin et al. [34] used deep learning with kidney US imaging to predict 
kidney function and to segment the kidney, respectively.

Other Abdominal Organs

There are no reports of deep learning being applied to US imaging 
of other abdominal organs such as the pancreas or the spleen. 

Challenges Applying Deep Learning to 
Abdominal US Imaging

Compared to CT or MRI, abdominal US imaging faces several 
challenges regarding the application of deep learning. First, US 
imaging is highly operator-dependent, both in terms of image 
acquisition and interpretation. In particular, obtaining images of 
abdominal US, in which the target organs are located deep inside 
the body, is more operator-dependent than US of other organs 
located superficially. Second, it is difficult to image organs that are 
found behind bone and air. Due to the rib cage and the air normally 
present in the bowels, abdominal US imaging windows are often 
limited, and it is therefore often difficult to obtain an image of an 
entire organ or even a good-quality image. Lastly, there is variability 
across US imaging systems from different manufacturers, and even 
those from the same company have version-specific variability. These 
various challenges make it difficult to standardize US images. 

To overcome the challenges in applying deep learning to 

segmentation of the prostate gland. 
In the field of prostate cancer detection and its grading, a group 

of researchers has conducted several studies [18-24]. They used 
multi-parametric magnetic resonance imaging (MRI) data of the 
prostate gland, CEUS imaging data of suspicious lesions in multi-
parametric MRI, and histopathologic results of MRI and transrectal 
US (TRUS)-fusion guided targeted biopsies. They applied deep 
learning to CEUS imaging data to classify prostate lesions or grade 
prostate cancers [18,19,21]. In one study, they integrated multi-
parametric MRI and CEUS imaging data for the detection of prostate 
cancer [24]. 

TRUS is commonly used as a guiding imaging modality for 
prostate biopsies and for therapy of prostate cancer. An accurate 
delineation of the boundaries of the prostate gland on TRUS 
images is essential for the insertion of biopsy needles or cryoprobes, 
treatment planning, and brachytherapy. In addition, accurate 
prostate segmentation can assist in registration and image fusion 
of TRUS and MRI images. Manual segmentation of the prostate 
on TRUS imaging is time-consuming and often not reproducible. 
For these reasons, several studies have applied deep learning to 
automatically segment the prostate using TRUS imaging [25-31]. 

Kidney

Very few studies have applied deep learning to kidney US 
imaging. Zheng et al. [32] evaluated the diagnostic performance 
of deep learning to classify normal kidneys as well as congenital 

Fig. 2. A three-dimensional (3D) convolutional neural network (CNN) for contrast-enhanced ultrasound (CEUS). Using a 3D-CNN has the 
advantage of analyzing not only the spatial information of CEUS, but also the temporal information. In the 3D-CNN, multiple CEUS images 
arranged in temporal order form the input layer. In the 3D-CNN, a 3D kernel is applied. The kernel is not only applied to two-dimensional 
(2D) images as a 2D sliding convolution of a 2D-CNN, but also applied over consecutive images simultaneously in a 3D-CNN. As a result, the 
temporal correlation between each image could be captured by this 3D convolution.

3×3×3
3D kernel

Input layer for CEUS

Time
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abdominal US imaging, efforts to reduce operator and system 
differences and to improve imaging technology are needed. In this 
respect, certain studies are worth noting. As mentioned previously, 
Han et al. used US RF data, and using RF data is expected to reduce 
the variability among US systems. Camps et al. [35] applied deep 
learning to automatically assess the quality of transperineal US 
images in a way that may help to reduce the variability in image 
acquisition between operators. Finally, Khan et al. [36] proposed 
a deep learning-based beamformer to generate high-quality US 
images.

Summary

In this review, recent articles that applied deep learning to US 
imaging of various abdominal organs are analyzed. Many studies 
used databases of only a few hundred images or datasets; only a 
few studies surveyed used thousands of images. Most studies were 
case-control studies at the proof of concept level. Although several 
studies have conducted external validation, none have done external 
validation on prospective cohorts. Overall, the application of deep 
learning to abdominal US imaging is at an early stage. However, I 
expect that deep learning for US imaging will continue to progress, 
because it has many advantages compared to other imaging 
modalities and efforts are being made to overcome the existing 
challenges. 
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