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ABSTRACT

We report a new class of artifacts in DNA methy-
lation measurements from Illumina HumanMethyla-
tion450 and MethylationEPIC arrays. These artifacts
reflect failed hybridization to target DNA, often due
to germline or somatic deletions and manifest as in-
correctly reported intermediate methylation. The arti-
facts often survive existing preprocessing pipelines,
masquerade as epigenetic alterations and can con-
found discoveries in epigenome-wide association
studies and studies of methylation-quantitative trait
loci. We implement a solution, P-value with out-of-
band (OOB) array hybridization (pOOBAH), in the
R package SeSAMe. Our method effectively masks
deleted and hyperpolymorphic regions, reducing or
eliminating spurious reports of epigenetic silenc-
ing at oft-deleted tumor suppressor genes such
as CDKN2A and RB1 in cases with somatic dele-
tions. Furthermore, our method substantially de-
creases technical variation whilst retaining biolog-
ical variation, both within and across HM450 and
EPIC platform measurements. SeSAMe provides a
light-weight, modular DNA methylation data analy-
sis suite, with a performant implementation suitable
for efficient analysis of thousands of samples.

INTRODUCTION

The Illumina Infinium HumanMethylation BeadChips are
powerful tools for quantifying DNA cytosine modifications
in the human genome. The current generation, the Human-
MethylationEPIC (EPIC, or HM850) array, shares similar
design principles with its predecessor, the HumanMethy-
lation450 (HM450) array. These beadchips have been the
most popular platforms for genome-scale DNA methyla-
tion studies (1). The Cancer Genome Atlas (TCGA) (2)
alone has generated high-quality DNA methylation data on
more than 10,000 human samples with the HM450 plat-

form, in addition to more than 100,000 samples jointly
contributed by the research community on Gene Expres-
sion Omnibus (GEO). Quality control, preprocessing and
analytical tools for this beadchip have therefore attracted
much attention, and the success in this realm with contri-
butions of many research teams in turn further facilitated
the use of this popular technology. The past few years have
seen extensive application of this platform to epidemiolog-
ical association studies (epigenome-wide association stud-
ies, or EWAS) of human epigenetic alterations (3), focus-
ing on traits such as body mass index (4), obesity (5) and
the impact of periconceptional environment on genomic
imprinting (6). In addition, there has been a recent surge
in interest of identifying methylation-quantitative trait loci
(meQTL/mQTL) in various tissues with this platform (7–
9).

DNA methylation readouts from these arrays are
usually expressed in β values (10), defined as β =
Max(M, 0)/(Max(M, 0) + Max(U, 0) + α), in which M
represents the hybridization signal from a methylated ver-
sion and U represents the hybridization signal from an un-
methylated version of a cytosine nucleotide and α is a off-
set recommended by Illumina (default to 100), but this off-
set is unnecessary and later abandoned by common prepro-
cessing pipelines, and this equation is effectively reduced
to β = M/(M + U). It has been recognized that this β
value should only be reported when a true signal from DNA
hybridization (instead of background fluorescence) is de-
tected. Whether a signal is considered real is determined
by a detection P-value, representing the probability of a de-
tected signal being background fluorescence.

In GenomeStudio, the detection P-value is calculated with
the background fluorescence level modeled as a Gaussian
distribution parameterized by the negative control probes
included in the array, and it is recommended that data
points associated with P > 0.05 be excluded (GenomeStudio
Methylation Module v1.8 User Guide). minfi (11), a widely
used pipeline for Infinium array processing (1), calculates
the P-values in a similar parametric way, but with the M
and U probes combined into one foreground signal and one
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background distribution to calculate the Z-score. The back-
ground distribution is combined based on the color channel
of the corresponding probe (i.e. 2*green or 2*red for Type-
I and green+red for Type II). A P-value cut-off of 0.01 is
recommended per the user manual (version 1.27.1).

TCGA used a non-parametric approach to perform this
quality masking (2), fitting the empirical signal intensities
from the negative control probes. TCGA required only one
of M and U signals to be significantly above background, to
accommodate fully methylated or fully unmethylated situa-
tions, in which the other signal should be completely absent.
This approach has been implemented in methylumi (12). In
addition, the TCGA data (referred to as ‘TCGA Legacy
data’, as available on the NCI Genomic Data Commons
portal) employed the methylumi preprocessing pipeline, but
also implemented an experiment-independent masking at
the probe level, against probes overlapping single nucleotide
polymorphism (SNP) and repeats. We have recently de-
scribed criteria for experiment-independent masking based
on probe design (13). Two other important preprocessing
steps for this type of beadchips are dye-bias correction and
noob-based background correction. For the comparisons
done in this study, it is of note that minfi has adopted the
methylumi/TCGA approach in these two steps (14), except
for the slight difference in detection P-value calculation de-
scribed above.

Here we report that the common practices for detection
P-value calculation as described above incompletely flag ar-
tifacts associated with detection failure. We show that such
detection failures are usually attributable to insufficient
quantities of the target DNA, due to germline and/or so-
matic deletions or hyperpolymorphism, and that this prob-
lem can be further aggravated by cross-hybridization of
the probes to other sites in the genome in the absence of
competitive hybridization to the true template sequence, al-
lowing such probes to survive non-detection masking. We
show that these artifacts are present in existing datasets, in-
cluding those from TCGA. We implement a new method,
called pOOBAH (P-value with out-of-band (OOB) array
hybridization) in the software SeSAMe, that better ad-
dresses detection failure as part of a single-sample-based
pipeline for DNA methylation data processing. We also
show that by sufficiently masking measurements subject
to these non-detection failure artifacts, one can greatly re-
duce technical variations (the most well-known examples
being ‘batch effects’) (15), an analytical challenge for DNA
methylation. In addition, SeSAMe also substantially im-
proves the consistency between HM450, EPIC and whole
genome bisulfite sequencing (WGBS) platforms, and can fa-
cilitate combined analyses of HM450 and EPIC data. The
latter addresses a rising analytical need as a rich body of
data have been generated on the discontinued HM450 as
public resources, but new data will be generated with the
EPIC array.

MATERIALS AND METHODS

Data

DNA Methylation HM450 IDAT files for 749 normal
samples assayed in the TCGA project, together with self-
reported sex information, were downloaded from NCI Ge-

nomic Data Commons (GDC; https://gdc.cancer.gov/). In-
finium HumanMethylationEPIC IDATs were downloaded
from GEO with accession GSE86833 (16). Whole-genome
bisulfite sequencing data for 47 samples were also obtained
from GDC, with the experimental procedure described in
(17). DNA copy number segmentation from the same 749
TCGA normal samples (18) using an Affymetrix Human
SNP Array 6.0 were also downloaded from GDC. Somatic
mutation MAF files for 10,290 TCGA tumor samples were
downloaded from a previous study (19). We included mu-
tations independently called by more than two of the seven
variant callers (19).

A total of 281 HM450 technical replicates were included
in TCGA. These cell line samples were from the same lym-
phoblastoid cell line (Coriell’s GMO6990), but were inde-
pendently expanded at two separate institutes (Nationwide
Children’s Hospital [NCH], with the code TCGA-07-0227
and International Genomics Consortium [IGC] with the
code TCGA-AV-A03D), prior to being sent to a single data
production facility (USC Epigenome Center). One repli-
cate aliquot (either TCGA-07-0227 or TCGA-AV-A03D)
was assayed together with a batch of TCGA samples, over
the course of 5 years, yielding a total of 281 profiles. The
same replicate may be packaged into different cancer types
due to samples from multiple cancer types being assayed in
the same batch. We included only unique IDAT files in this
study.

Preprocessing infinium DNA methylation data using methy-
lumi

Signal intensities were extracted from IDAT files using R
package illuminaio (20). For each TCGA sample, we first
performed background subtraction and dye bias correction
across the entire array with methylumi (21), which was the
method referenced in TCGA projects (2). We confirmed
that for most TCGA packages downloaded from GDC,
the two datasets matched perfectly, proving that we re-
produced the TCGA preprocessing. However, for LUAD
(LUng ADenocarcinoma), the TCGA GDC Legacy data
reflected omission of the background correction step, an in-
consistency with other TCGA packages. Therefore, we used
our methylumi-processed data to represent TCGA GDC
Legacy data for comparison, to eliminate this difference.
(Therefore, note that the original, inconsistently processed,
GDC Legacy data would have exhibited even larger batch
effects in our comparison.).

Detection P-value calculation using out-of-band signals of
type-I probes

To better identify hybridization failure, we adopted a new
method of calculating P-value named pOOBAH (P-value
with OOB probes for Array Hybridization), where detec-
tion P-value is calculated using empirical cumulative dis-
tribution function (implemented in the ecdf function in
R stats package) derived from the OOB signal from all
Type-I probes. The method is implemented in our SeSAMe
pipeline. To compare with other methods, we reprocessed
all the TCGA samples and HumanMethylationEPIC array
data (described above) with our SeSAMe pipeline.

https://gdc.cancer.gov/
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Benchmarking SeSAMe detection calling against other tools

We used probes from chromosome Y and the GSTT1
germline deletion to evaluate detection calling from differ-
ent pipelines. We inferred the biological sex of these samples
using both chromosome X methylation and chromosome
X/Y signal intensity as implemented in SeSAMe and used
745 out of the 749 samples where inferred sex agreed with
self-reported gender. Detection from chromosome Y probes
(filtered by probe design quality first as described in (13)) in
male samples was considered true positive and lack of de-
tection in female samples true negative. Lack of detection
from GSTT1 probes in homozygous deletion samples was
considered true negative, and detection from either intact
diploid or heterozygous deletion cases true positives. Dele-
tion status for each Infinium HM450 probe was determined
by overlapping the probe coordinate with copy number seg-
ments established using Affymetrix Genome-Wide Human
SNP Array 6.0 (SNP6). Probes that did not fall in any seg-
ment were discarded. A Log R ratio cut-off of −0.8 from
SNP6 array was used to determine the GSTT1 genotype,
with <−0.8 considered homozygous deletion.

methylumi (version 2.26) and minfi (version 1.26) was
used for the comparison. No documentation of the exact
way to calculate the detection P-value in GenomeStudio
was available. A prior study (22) characterized it as such:
the detection P-value for CpG locus j is given by p j =
1 − �((Ij − μneg)/σneg)), where Ij is the sum of foreground
intensities, whereas μnegand σnegare the mean and stan-
dard deviation of signals of internal negative controls and
�(·) is the normal cumulative probability distribution func-
tion. We followed this description in simulating GenomeS-
tudio results. However, this seemed problematic as the back-
ground is double-counted in the foreground intensities. Illu-
mina’s manual also described variable detection P-value cal-
culation based on whether background subtraction is per-
formed. Therefore, actual GenomeStudio outputs can have
multiple versions and our comparison only represents one
scenario.

Total signal intensity normalization and detection of germline
deletion

We summed the methylated and unmethylated signals for
each probe (referred to as total signal intensities from here
on). The total signal intensity readout from a particular In-
finium probe may be affected by the input DNA quality and
quantity, as well as differences in the probe design. To con-
trol for such covariates, we calculated the Z-score of the log
total intensity of a given probe with respect to other probes
of the same design type and same color channel in the same
sample. This within-sample Z-score was used to compute
the prior signal intensity probability for each probe.

To enhance the detection sensitivity of focal deletions, we
adopted a bottom-up approach using variations in total sig-
nal intensity from 749 normal samples to identify Infinium
probes subject to potential germline deletions in the human
population with relatively high minor allele frequencies. For
each probe, the within-sample Z-scores calculated (above)
in the normal samples constitute an empirical prior distri-
bution for the total intensity of that probe. We tested this Z-
score distribution for unimodality using the Hartigan’s dip

test statistics (23) and identified 14,160 significantly multi-
modal probes (P ≤ 0.05) covering 94% of the chromosome
Y probes and 76% of the chromosome X probes (equiva-
lent to heterozygous deletion in males), but only 1% of the
autosomal probes.

In some cases, probes interrogating intermediately-
methylated CpGs tend to have higher total intensity than
when the targeted CpGs are completely methylated or com-
pletely unmethylated (data not shown). This is due to the
saturation in signal intensity when the two alleles are either
both methylated or both unmethylated. In order to elimi-
nate multimodal probes due to true differential methylation
level, we computed the Pearson’s correlation between sig-
nal intensity and the deviation of β value from intermedi-
ate methylation (measured by | β − 0.5 |). We only retained
probes with a positive correlation (>0.2). Further filtering
probes having small variation in β value (SD < 0.1) and
probes previously identified to contain SNPs in the neigh-
borhood yields 441 autosomal multimodal probes (Supple-
mentary Table S1 and Figure S1 for β values plotted against
total signal intensities).

Detection of somatic deletion

Using an approach similar to the identification of germline
copy number changes, we derived, for each probe, an empir-
ical within-sample Z-score distribution from the TCGA ad-
jacent normal samples. We then evaluated the significance
(P-value) of the probe’s Z-score in the tumor sample with
respect to this empirical Z-score distribution. We studied
adjacent probes that showed co-reduction in total signal in-
tensities and consider them as potential candidates of so-
matic deletion.

RESULTS

Germline deletion causes artifactual DNA methylation read-
out

To explore how genomic DNA deletion impinges on DNA
methylation readouts, we investigated DNA methylation β
values together with the total signal intensities at the glu-
tathione S-transferase theta (GSTT1) locus (Figure 1A).
This locus is known to exhibit deletion polymorphism, with
roughly 20% of the human population carrying a homozy-
gous deletion (24). A cluster of samples at the top of the
heatmap displayed seemingly distinct DNA methylation
patterns within the deleted region. Many of the probes that
fell within this region, exemplified by P2, P4 and P5 (Figure
1A), displayed apparent intermediate levels of DNA methy-
lation. These samples also had substantially lower total in-
tensities in this region, and therefore likely represented the
homozygous deletion carriers. Comparison of the total in-
tensities of HM450 probes with copy number segmentation
using matched Affymetrix SNP 6.0 microarray data from
TCGA validated this deletion (Supplementary Figure S2).

Intriguingly, not all probes in the deleted region showed
this general intermediate methylation in samples carrying
homozygous deletions. A few exceptions included Probes
P1, P3 and P6 (Figure 1A). A low mapping quality score
observed for these probe sequences suggested that they
might be subject to cross-hybridization with other loci in
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Figure 1. Germline deletion causes low total intensity measurements and creates spurious epigenetic silencing patterns at the GSTT1 locus. (A) Heatmaps
showing β values (top) and total intensities (bottom) of HM450 probes at the GSTT1 locus (columns) in TCGA normal samples (rows). Lines connect
probes with actual genomic locations. Yellow box indicates the deleted region. Probe and sample orders are matched in the two heatmaps. Two clusters of
samples can be seen on these heatmaps (left sidebar), with black representing samples that carry homozygous GSTT1 deletions. Probes P1-P6 designate
example probes shown in Panel C. (B) Mapping quality of probes plotted in Panel A. Arrows indicate probes in the deleted region that did not exhibit
the signature intermediate methylation. Color of arrow indicates different combinations of methylation patterns at on-target and off-target sites (M -
methylated; U - unmethylated); (C) Expression (y-axis) plotted against β value (x-axis) for the six example probes as indicated in Panel A, showing various
spurious correlation patterns, including patterns strongly emblematic of epigenetic silencing. (D) Formular representation of how low signal intensities
lead to intermediate DNA methylation readout.

the genome. In that case, the DNA methylation level in
the samples with homozygous deletion of the target lo-
cus would reflect the DNA methylation state at off-target
loci. We verified this with TCGA WGBS data. For exam-
ple, the off-target locus of Probe P3 is methylated, giving its
higher observed β value in samples carrying homozygous
deletions of this region (data not shown). The presence of
cross-hybridization is also supported by (i) the existence of
a slightly higher DNA methylation level in the remaining
samples with undeleted GSTT1, relative to nearby probes,
and (ii) the existence of a slightly higher total signal inten-
sity of these probes relative to neighboring probes in the
cluster of samples with homozygous deletion. Other probes
that displayed non-intermediate DNA methylation in the
putative deletion region were attributable to different com-
binations of on-target and off-target DNA methylation pat-

terns as well (Figure 1B). DNA methylation readouts from
Infinium DNA Methylation BeadChips at these loci were
jointly determined by the presence or absence of target tem-
plates and by the DNA methylation status of the off-target
loci upon cross-hybridization.

Downregulation of mRNA expression concomitant with
promoter DNA hypermethylation is usually deemed as ev-
idence of epigenetic silencing. However, deletion of a gene
will also register with a decrease in mRNA expression. Ex-
pression of GSTT1 was also reduced in the case of het-
erozygous DNA deletions. We plotted RNA expression of
GSTT1 against the DNA methylation readouts for the six
example probes shown in Figure 1A. Probes P2, P5 (repre-
senting most probes in this region), and P3 and P6 (rep-
resenting interactions with off-target sites) all displayed
strong negative correlation, a signature emblematic of epi-
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genetic silencing (Figure 1C). Of particular note, probe
P6 has been misinterpreted by several prior EWAS studies
as the best example of epigenetic silencing (25–28), which
caused GSTT1 (or GSTM1 under a similar rationale) to be
picked up as an epigenetically silenced gene and meQTL
(29,30). Figure 1D illustrates the principle of the observed
intermediate methylation pattern associated with detection
failure. When true signals in both M and U channels ap-
proach 0, foreground signals in both channels approaches
background and β value approaches 0.5.

Detection calling using out-of-band probes

Prior studies largely rely on negative control probes in-
cluded in the array to compute detection P-values. The lim-
ited number of negative control probes (N = 614 for HM450
array, N = 411 for EPIC array) constrains the precision of
the P-value and loses discriminating power when extreme
P-values are required, as discussed in the following analysis.
The default detection P-value cut-off is set to 0.05 in methy-
lumi. One recent study also suggested using an arbitrarily
chosen, stringent P-value cut-off at 1E-16 on the minfi P-
values for more accurate detection calling (31).

We developed a new method named pOOBAH (imple-
mented in the R package SeSAMe, see ‘Materials and
Methods’ section) using the empirical distribution of OOB
signals from Type-I probes. These OOB signals were shown
to be better representatives of the background fluorescence
in practice, and utilized to perform background subtraction
(21). This was used for TCGA data preprocessing (2) and in-
corporated into methylumi (12), and later also adopted by
minfi (14). We compared SeSAMe with minfi and methylumi
(used to generate TCGA Legacy packages) for their perfor-
mance on chromosome Y (chrY) probes (which should not
yield signals in female samples) as well as GSTT1.

We also evaluated the performance of SeSAMe masking
using probes mapped uniquely to chrY based on our prior
characterization of the EPIC probes (13). In female sam-
ples, as expected, most chrY probes exhibited low total in-
tensities, associated with the signature intermediate β val-
ues observed in the case of GSTT1 deletion. In male sam-
ples these probes were partitioned into methylated and un-
methylated groups, both supported by high total intensities
(Figure 2A, top). Using methylumi leaves a substantial num-
ber of low total intensity chrY probes not masked in female
samples (Figure 2A). These lowest intensity chrY probes
continued to display an intermediate level of DNA methy-
lation and almost completely disappeared under SeSAMe
masking. Masking with minfi P-value using an extremely
low threshold (1E-16) was the next most effective in remov-
ing spurious chrY intermediate measurements in TCGA fe-
male samples (Figure 2A, see Supplementary Figure S3 for
the full ROC curve) but with far higher false positive rate
than what the chosen P-value would indicate (Figure 2B).

Identification of germline deletion and hyperpolymorphism
from Infinium DNA methylation data

The impact of SNPs on the Infinium DNA methylation ar-
ray measurements has been extensively investigated (13,32),
and the exclusion of probes affected by SNPs from anal-
ysis is becoming increasingly recognized as an important
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Figure 2. SeSAMe effectively removes non-detection artifacts that survive
existing pipelines. (A) β values (y-axis) against total signal intensities of Y-
chromosome probes (x-axis) in TCGA normal primary tissue samples (376
males and 369 females), with raw data (top), TCGA Legacy β values (mid-
dle) and SeSAMe processed data (bottom). (B) Evaluation of false positive
and true positive rates of detection associated with different pipelines, us-
ing chromosome Y and GSTT1 deletion for benchmarking.

step in DNA methylation analysis (32). However, impact
from structural variations such as insertions and deletions
has only been sporadically studied. We set out to discover
such regions with germline polymorphism affecting array-
based DNA methylation measurement. To approach this,
one option would be to use SNP6 array copy number seg-
mentation to flag these regions, when such data are avail-
able. However, the boundary resolution using this approach
is limited by the distribution of probes on the SNP6 array.
For example, in TCGA samples with matched DNA methy-
lation and SNP6 data, the signal intensity at the GSTM1
locus followed a clear bimodal distribution, with samples
having lower intensities presumably harboring deletions of
the interrogated regions. However, a substantial fraction of
these deletions was missed in copy number segmentations
because of the moderate SNP6 probe density (Supplemen-
tary Figure S4A). Previous studies have shown that copy
number alterations could be directly profiled from Infinium
data (33–35), but, again, the segmentation algorithm relied
on dense probe coverage. Only two Infinium probes were
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uniquely mapped to the GSTM1 region (Supplementary
Figure S4B).

We normalized the total signal intensity for each probe
within each sample, stratified by design categories (‘Materi-
als and Method’ section). After this transformation, over-
all Z-score distributions were stable among all normal sam-
ples (Supplementary Figure S5). In addition, the Z-scores
were generally comparable between samples for each probe,
while different probes exhibited varying level of total in-
tensities, as expected (Supplementary Figure S6). This dif-
ference in probe intensity was likely associated with hy-
bridization efficiency, which could be measured by the melt-
ing temperature of the hybridized oligos. We observed that
GC content, a major determinant of the melting temper-
ature, was also strongly correlated with the Z-score of to-
tal intensity of the probe in a normal genome (Supple-
mentary Figure S7, Spearman’s ρ = 0.50, P < 2.2E-16).
Germline copy number alterations with high minor al-
lele frequency caused probes inside the alteration to have
a multi-modal distribution, with the lowest mode repre-
senting hybridization failure (Supplementary Figure S8 for
GSTT1). We took an approach of detecting probes multi-
modal in total signal intensity to identify germline dele-
tion probes (‘Materials and Method’ section). Visualization
of the multi-modality P-value in the GSTT1 and GSTM1
loci confirmed the effectiveness of this method in identi-
fying germline deletions (Supplementary Figure S9). We
compared total intensities of these probes with segmen-
tal Log R intensities based on the SNP6 array, and many
could be validated with this approach, with examples from
GSTT1, HLA-DRB6, LOC391322, SLC25A24, ADAM3A,
GSTM1, LCE1D, BTNL3, FAM66A, FLJ34503, RHD,
ALG1L2 (Supplementary Figure S10).

We merged probes into segments if two neighboring mul-
timodal probes (<20 kb) showed high correlation (Spear-
man’s correlation rho > 0.5) in total signal intensity. Most
of these probes were mapped to the sex chromosomes as ex-
pected. We also identified 40 autosomal segments that were
supported by multiple (n ≥ 2) highly correlated probes in
signal intensity Z-score (Figure 3 and Supplementary Table
S1). These segments include known germline deletions such
as GSTT1 (36), BTNL8-BTNL3 (37) together with germline
hyper-polymorphic regions such as the Human Leukocyte
Antigen (HLA) loci (38). Based on signal intensities, TCGA
normal samples were not clustered by tissue type at these
loci but strongly impacted by ethnicity (Figure 3), suggest-
ing a genetic, instead of epigenetic, source of the variations
observed. Our list provides probes/genes which should be
interpreted with caution in microarray-based DNA methy-
lation studies. We had already filtered out probes subject
to known SNP polymorphism based on our previous study
(13) hence the list here only reflects effects from deletion and
hyperpolymorphic region (discussed below).

It is of note that the HLA regions were recurrently picked
up in our screening as well (Figure 4), suggesting that
in addition to germline deletions, hyperpolymorphic sites
were also susceptible to this artifact. Many of the probes
in the HLA/MHC regions have been flagged in our pre-
vious annotation for overlapping a SNP that interfered
with DNA methylation measurement or for non-unique
mapping (‘masking’ track below the heatmaps) for system-

atic masking. This was expected for hyperpolymorphic re-
gions like HLA. However, there were probes not flagged for
this masking and still showed the artifactual intermediate
methylation, likely not attributable to a single CpG. With
SeSAMe masking, the intermediate methylation readouts
due to low signal intensities were more effectively dealt with
compared to TCGA legacy processing.

Identifying somatic deletion in cancer from infinium DNA
methylation data

We explored the extent to which somatic deletions in TCGA
cancers could be captured in the Infinium array data, along
with the effectiveness of SeSAMe in masking low intensity
probes in the case of somatic deletions. Following the ratio-
nale used in studying germline deletions, we used a probe-
specific empirical prior distribution in evaluating aberrant
fluorescent signal as a consequence of variation in the tar-
geted DNA (‘Materials and Methods’ section). We identi-
fied copy number alterations across almost all cancer types
affecting varying percentages of the genome (Supplemen-
tary Figure S11). We were able to pick up recurrent dele-
tions such as RB1 deletion in sarcoma (SARC, Figure 5)
and uterine carcinosarcoma (UCS), consistent with previ-
ous reports from TCGA (39,40). To investigate recurrent
arm-level aneuploidy in the tumor genome, we averaged the
log R ratio of all the copy number segments on each chro-
mosome arm in each tumor sample, weighted by the num-
ber of supporting probes. We use the order of the matched
samples from a previous study based on SNP array plat-
form (41). The gain and loss of the chromosomal arms mir-
rored what was captured from the SNP array data (Figure
6). Note that the detection sensitivity of somatic copy num-
ber alterations was also largely tempered by the proportion
of the non-tumor components in the assayed sample. We
segmented each tumor genome based on the P-value calcu-
lated above. As expected, the number of amplified or deleted
segments shrank with a lowering tumor purity (Supplemen-
tary Figure S12). The same association was seen in the num-
ber of probes with low signal intensity (Supplementary Fig-
ure S13), which also included effect from somatic point mu-
tations (‘Discussion’ section).

As in the case for homozygous germline deletions, ho-
mozygous somatic deletions could lead to similar spu-
rious DNA methylation measurements. We investigated
whether SeSAMe could mask these somatic homozygous
deletions in cancer samples and help reduce technical vari-
ation caused by low intensities. We studied the retinoblas-
toma (RB) gene, RB1, mutation of which is known to be
associated with osteosarcoma (42) and uterine and ovar-
ian carcinosarcomas (43). We studied 55 probes mapped
to the RB1 gene and its flanking region in 151 sarco-
mas (SARC, ABSOLUTE purity >0.7) included in TCGA.
Within TCGA legacy level 3 data, samples with somatic
RB1 deletion indeed exhibited spurious DNA methylation
measurement caused by the deletion, indicated by low to-
tal signal intensity and low mRNA transcription of the
RB1 gene (Figure 5, TCGA). SeSAMe was able to correctly
mask these data points (Figure 5, SeSAMe). Similar perfor-
mance of SeSAMe was observed at the CDKN2A locus in
bladder cancer where the deletions were more complicated
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(Supplementary Figure S14A). CDKN2A encodes two fa-
mous tumor suppressor genes (TSGs) p16INK4a and p14ARF

and therefore attracts a lot of research interests. In partic-
ular, p16INK4a was one of the canonical examples for epi-
genetic silencing of TSGs in cancer. Due to the complexity
of this locus, the vast majority of HM450 probes actually
do not interrogate the p16INK4a promoter. A single probe
(cg13601799) located in the p16INK4a promoter CpG island
was routinely used to determine the epigenetic silencing sta-
tus of this gene (44), and a cutoff of 0.2 was recommended
(45). With the TCGA Legacy bladder carcinoma (BLCA)
data, 52 out of 178 tumors with relatively high purity had
deep deletion of CDKN2A (segment/gene level; without
distinguishing p16INK4a and p14ARF exons) based on the

copy number array (GISTIC (18) score = −2), 10 of which
would have been identified as epigenetically silenced with
this existing standard for CDKN2A/p16INK4a. In contrast,
all ten data points were masked by the SeSAMe pipeline
(Supplementary Figure S14B). Measurement at exon 1�
unique to p14ARF appeared to be more affected by the
deletion (Supplementary Figure S14A) and again SeSAMe
masked the intermediate methylation data points in samples
for which the supporting total intensity was low.

In addition, we plotted the β values of chromosome 18
in COAD and READ samples (Supplementary Figure S15)
which were shown to be recurrently deleted (46,47). We se-
lected probes with the lowest total intensities and found the
same characteristic intermediate β value found in germline
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Figure 4. Examples for HLA loci including MHC class I (top row) and class II (bottom row) demonstrating germline hyperpolymorphism affecting DNA
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deletions. These spurious DNA methylation readouts were
mostly masked by SeSAMe. The same was observed for
the recurrent chromosome 10 deletion in glioblastoma/low-
grade glioma (48) (Supplementary Figure S16). These re-
sults again highlight the importance of being aware of copy
number alterations when interpreting DNA methylation
measurements from Infinium microarrays.

SeSAMe reduces inter- and intra-array technical variations

We hypothesized that variations in background fluores-
cence levels contribute substantially to between-batch dif-

ferences. To test whether our improved masking of non-
detection would reduce batch effects, we studied 281
HM450 technical replicates of a single lymphoblastoid cell
line, expanded in two different institutes prior to being pro-
filed in a single facility for DNA methylation profiles (‘Ma-
terials and Methods’ section). We reasoned that indepen-
dent cultures grown at NCH and IGC could contain minor
but real biological differences due to slightly different cul-
turing conditions and/or different population doubling lev-
els. Each replicate also carried microarray-based technical
variations associated with each TCGA batch but uncoupled
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Figure 5. SeSAMe masks probes with low total probe intensities caused by somatic deletions of the RB1 locus in cancer. β values (top and middle) and
total intensities (bottom) of 55 probes at RB1 locus plotted in 265 sarcoma tumor samples from TCGA. Four normal adjacent tissue samples were also
included on the top of each heatmap. SeSAMe preprocessing (middle) and contrasted against TCGA level 3 data (top). Tumor samples were clustered
based on TCGA preprocessing.

from where the samples were expanded (since samples from
both institutes were assayed in the same facility). Some of
these biological differences could be smaller than the tech-
nical variances, in which case they might only be revealed
if unwanted technical variances (49) were removed or re-
duced.

We studied the TCGA Legacy Level 3 β value (with de-
tection failure masked with methylumi; see ‘Materials and

Methods’ section) for the lymphoblastoid cell line dataset
mentioned above. We selected the top 5% most variable
probes based on cross-sample variations among all the tech-
nical replicates (Figure 7A). Many Type-II probes displayed
intermediate DNA methylation traced by low total signal
intensities (Supplementary Figure S17). SeSAMe masking
covered most of these intermediate methylation readouts
for Type-II probes, while retaining DNA methylation read-
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outs consistent across samples (Figure 7B). After new pre-
processing by SeSAMe, we again performed variance-based
feature selection and re-clustered the samples. As we had ex-
pected, these samples now regrouped according to the insti-
tute where the cell line was expanded (Figure 7C), indicat-
ing the variation was now being dominated by real biologi-
cal difference, rather than by technical noise. Indeed, prin-
cipal component analysis (PCA, Figure 7D) showed that
with SeSAMe preprocessing the very first PC was associ-
ated with the small biological variation (whether the cell
line was expanded at NCH or IGC), while in the TCGA
Legacy dataset reproduced by methylumi, only PC2 was as-
sociated with this variation. We also observed a reduction
in the within-institute variation of the DNA methylation
M value (50) with SeSAMe preprocessing compared to the
TCGA Legacy dataset, particularly for the Type II probes
(Supplementary Figure S18).

Non-linear dye bias correction

We implemented other functionalities in the SeSAMe pack-
age, including improvement on dye bias correction. Dye
bias correction is needed for Type II probe preprocessing
(21), as Cy3 and Cy5 are directly linked to the methyla-
tion status. Both methylumi and minfi adopt a linear scal-
ing based on normalization control probes on both color
channels, with a single ratio fit from the median fluorescence
for such probes for the two channels. However, we noticed
that (i) there was a nonlinear dependence of dye bias on
the signal intensities (exemplified by Supplementary Figure
S19A) and (ii) the range of intensities for the normalization

control probes only captured the lower end while failed to
reflect the dye bias in the higher range (blue dots in Sup-
plementary Figure S19A). A substantial portion of Type II
probes had higher fluorescence far higher than those of the
normalization control probes (Supplementary Figure S19B
and C). As a result, after applying the current linear scaling
method for dye-bias equalization, Type I probes exhibited
worse dye bias in the higher range, while the color channel
is not linked to methylation states for this group of probes
(Supplementary Figure S19D). We implemented a quantile
interpolation-based method that takes advantage of the in-
band signal from the Type-I probes. Without prior knowl-
edge of which channel bears the correct signal distribution,
we regressed both the Type-I green and red quantile distri-
bution to the mid-point (Supplementary Figure S19E). We
applied this regressor to all probes on this platform. Type I
probes showed equal distribution as expected (Supplemen-
tary Figure S19F). For Type II design since the color was
linked to methylation status and therefore not expected to
show the same distribution even without dye bias, we chose
to evaluate the performance on SNP probes, which are of
Type II design and should have a ‘β value’ of 0.5 for het-
erozygous SNPs in the absence of dye bias. Indeed, our non-
linear dye bias correction method, when compared with lin-
ear equalization of mean intensities of the two channels,
left the β value measurement of heterozygous SNP probes
(which are of Type II design) closer to 0.5 in each of the
five largest TCGA cancer types investigated (Supplemen-
tary Figure S19G–K).
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Figure 8. SeSAMe reduces inter-platform discrepancies. (A) Distribution
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SeSAMe improves between platform consistency

We next investigated whether the SeSAMe pipeline can help
improve consistency with WGBS data. On 19 samples with
matching HM450 and WGBS data, we first studied the de-
viation of measured β values between the two platforms
(minimum depth on cytosine of 10 reads for WGBS). We
found that probes with signal masked by SeSAMe indeed
had greater deviations in β values from WGBS measure-
ment (Figure 8A), suggesting that SeSAMe helps eliminate
technical discrepancies between WGBS and HM450 plat-
form. Compared to probes not masked by either approach
(methylumi or SeSAMe), probes only masked by SeSAMe
are more likely (∼3.5×) to have zero read coverage (suggest-
ing likely deep deletions) in the matched WGBS experiment
(Supplementary Figure S20). This comparison suggests the
improvement is achieved partly by masking deleted probes
and low-intensity probes that in general yielded unreliable
results.

With the recent switch from HM450 to the EPIC plat-
form, a need will rise to combine data generated from both.
We investigated whether SeSAMe improves between plat-
form correlations. On all four colorectal samples profiled
on both platforms (one sample profiled with two techni-

cal replicates on the EPIC platform), SeSAMe improved
the consistency between the two platforms, compared to
methylumi/TCGA legacy (default P = 0.05 cut-off) and
minfi (with P = 0.01 cut-off as suggested in the pack-
age vignette) (Figure 8B–F). As previously discussed, minfi
and methylumi/ TCGA legacy employ the same prepro-
cessing pipeline (noob + dye-bias correction) except for
the detection P-value-based masking step. Therefore, the
two methods had similar performance with the difference
boiling down to this one single aspect. Between SeSAMe
and the other two pipelines, the distributions of abs(EPIC-
HM450) were significantly different (P < 2.2e-16 in all
cases, Kolmogorov–Smirnov test).

DISCUSSION

Modern ‘omics’ studies employ integration of different
molecular data types (51). The interplay between the
epigenome and genome in human diseases such as can-
cer (52) has garnered much attention in recent years, in
the hope of finding novel pathways and therapeutic targets.
DNA methylation was included as a core measurement in
large consortium-based cancer studies such as TCGA and
ICGC, while EWAS for population-based studies for phe-
notypic traits has become increasingly popular. However,
non-detection artifacts have not received enough attention
in the literature, partly due to the existence of detection P-
value designed to safeguard against such effects (but fail to
sufficiently do so), and a lack of understanding of the conse-
quences of non-detection as a cause to false-positive methy-
lation and epigenetic silencing calls. In addition, these arti-
facts could confound integrative analysis combining DNA
methylation data and other data types, as the genetic alter-
ations often confounds observed correlations between cer-
tain SNPs and DNA methylation, or between DNA methy-
lation and RNA expression.

Most importantly, in the case of EWAS or
mQTL/meQTL studies, where (i) mixed tissues are used
(implication for this was discussed by Jaffe and Irizarry
(53)) and (ii) there often lacks a clonal expansion as in
the case of cancer, real ‘signal’s are often of a lower scale
than the effect size of these artifacts and these artefacts
often surface as top hits. As discussed in the results section,
GSTT1 was often picked up as a top hit in such studies,
likely due to a combination of the germline deletion and
off-target hybridization, leading to a strong ‘epigenetic
silencing’ pattern (Figure 1C, P6). Most of these studies
did not provide data from the original IDATs, and we
could not verify that the observed effects were indeed
completely caused by non-detection artifacts, but the
probes highlighted and patterns of correlation fit what we
report in this manuscript. Our analysis also highlights the
importance of access to signal intensities in addition to β
values. In light of this, SeSAMe implements easy access
to signal intensities based on the ‘SigSet’ class. This also
facilitates copy number inference with DNA methylation
microarray data. In TCGA, the IDATs are provided as
Level 1 data, but for other studies, more often than not
only summarized β values are made available. Accessibility
to the IDATs may be necessary to assess a study and also
to facilitate use of the data.
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Aside from probe design issues (addressed in (13)), the
most common cause of these artifacts is germline and so-
matic genomic deletion. Cancer samples often display ane-
uploidy (54) with accompanying broad and focal copy num-
ber changes (55). On average, 16% of a typical cancer
genome is deleted (56). In the TCGA data, we estimate ∼2–
3% of the DNA methylation data points are affected by a
deletion deep enough to cause detection failure (Supple-
mentary Figure S21). This number is higher for cancer types
with more prevalent copy number variations, such as OV
and UCS. Within the same cancer type, the subtypes with
more copy number alterations also have a higher number of
detection failures. For example, within UCEC, serous-like
tumors had a higher failure rate than non-serous tumors
using SeSAMe preprocessing (Supplementary Figure S22).

A previous study (57) investigated the relationship be-
tween DNA methylation readouts and copy number alter-
ations with the GoldenGate platform, the predecessor to
the HM450 and MethylationEPIC arrays, and noted that
deletion could cause DNA methylation measurement bias
in cancer. However, it was concluded that copy number had
little impact on DNA methylation measurements in general.
We observe that deletions often cause quite substantial bi-
ases when not dealt with properly. In addition, when com-
bined with off-target cross-hybridization, the methylation
readout will be from irrelevant sites, as the original target is
missing. The effect of DNA amplification is more obscure
due to the complexity of dissecting the observed β values
into contributions from different added copies. Copy num-
ber increase is also less detectable with the DNA methyla-
tion array because of potential template saturation on the
probe. How somatic deletions and amplifications impact
DNA methylation readouts are also governed by the frac-
tion of cell populations bearing these abnormal genotypes.
For example, when the tumor purity is low, the measure-
ment at sites deleted in cancer cells comes from normal cells
present in the tumor. The observation also holds for so-
matic point mutations, as suggested by comparing known
somatic SNVs identified in TCGA with the signal intensi-
ties of probes neighboring them. Studying 47,476 mutations
close to the 3′-end of an Infinium HM450 probe (including
the extension base) revealed that both the total signal inten-
sities and the probe-wise Z-scores were lower in presence
of somatic mutations in the targeted tumor sample, most
significantly when mutations were of high variant allele fre-
quency (Supplementary Figure S23).

Another source of this type of artifact is germline hy-
perpolymorphism, which has attracted even less attention
from the DNA methylation analysts using hybridization-
based arrays. Examples identified in our study included
MHC/HLA and olfactory receptor loci. Previous stud-
ies show that HLA loci, such as HLA-A (58) and HLA-
DQ (59), were candidates for DNA methylation-mediated
epigenetic control. Our observations suggest that the In-
finium platform might not be an appropriate tool for study-
ing DNA methylation in these regions due to hyperpoly-
morphism. Even polymerase chain reaction-based methods
should be aware of the genetic variations and alternative
contigs present in this region before drawing any conclusion
about the methylation patterns in this region.

Aside from the interaction between non-detection ar-
tifacts and probe design and tumor cellularity discussed
above, these artifacts can also interact with technical factors
often associated with analytical batches (such as reagent,
scanner setting etc; often referred to as ‘batch effects’) which
influence background fluorescence levels. The best prac-
tice for normalizing Infinium microarray data has been a
topic of debate (60). Many of the earlier normalization
methods were inherited from the gene expression commu-
nity and thus often have assumptions that do not hold for
DNA methylation (61). It has been noted that between ar-
ray normalization of DNA methylation data must be han-
dled with care. Most methods bring no or little benefit
and actually decrease data quality (62). In fact, correcting
for known sources of technical variance (including back-
ground and dye bias) yields the safest and best implicit
between-array normalization. Indeed, in a recent compar-
ison for EPIC normalization methods, the minfi authors
showed that preprocessing with noob (single-sample imple-
mentation, dubbed ssNoob) and dye-bias correction out-
performed explicit normalization methods exemplified by
funnorm (63). Here we showed that after addressing false
detection artifacts with SeSAMe, residual technical varia-
tions (‘batch effects’) in the TCGA dataset (using noob com-
bined with dye-bias correction) were greatly reduced (Fig-
ure 7) revealing minor biological differences. In addition, we
demonstrated that the SeSAMe outperformed the existing
best standards in improving cross-platform consistency.

Previous studies have shown that Infinium microarrays
can also be used to profile copy number alterations (33).
Although we focused here on eliminating false positive dis-
coveries primarily due to deletion, our method can also be
applied to infer copy number variations, adding to previ-
ous methods by deriving a probe-specific prior distribution
from normal data. The rediscovery of the same recurrent
aneuploidies using the Infinium microarray (Figure 7) con-
firmed that this platform can cross-validate or partially re-
place the functionality of SNP arrays in profiling copy num-
ber alterations. Because probes with aberrant signal inten-
sities were identified with higher accuracy and merged from
bottom up in our approach, focal deletions or copy number
of regions with sparse probe coverage may be better cap-
tured. The Infinium DNA methylation array could serve as
a complementary platform to SNP arrays in that it more
densely covers regulatory elements and gene promoter re-
gions and may have greater power of detecting local copy
number changes in these regions (33).
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