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A B S T R A C T   

The development of a datalogger for identifying Energy Poverty (EP) using thermal comfort 
monitoring is described in this work. There is not a uniform definition of EP, and no global 
recommendations indicating the thermal comfort characteristics that should be utilized to iden-
tify EP. Most Internet of Things (IoT)-based systems designed for EP identification measure en-
ergy consumptions (electricity and gas). There is a lack of works that use IoT-based systems to 
identify EP through the monitoring of thermal comfort parameters. To address the deficiencies 
discovered in the identification of EP from the perspective of thermal efficiency, an IoT-based 
monitoring system was designed, developed, and tested. A first pilot was installed in a house-
hold in Getafe. A full month of temperature, relative humidity, and CO2 concentration mea-
surements were utilized to evaluate the system, which was then compared to a commercial 
system. The results revealed that the new IoT-based approach was very dependable and may be 
used to accurately monitor EP-related parameters.   

1. Introduction 

There is no universally accepted definition of Energy Poverty (EP); however, it is commonly defined as the “inability to keep adequate 
levels of heating, cooling and lighting” in homes [1]. According to estimates from the European Union (EU) Energy Poverty Observatory 
[2], EP impacts more than 50 million homes across the European Union. Fig. 1 depicts the percentage of EU citizens that were unable to 
keep their homes warm enough in 2020. The EP circumstance within the European Nations changes: the most noteworthy rate of EP 
was come to in Bulgaria (27%). By contrast, Austria, Finland, Czechia, and the Netherlands showed the lowest EP rates (less than 2%). 
According to projections, the number of energy poor people in Europe will continue to rise because of recent occurrences such as the 
COVID-19 pandemic and the Russo-Ukrainian conflict [3,4]. 

The European Commission’s Policy Report “Energy poverty and vulnerable consumers in the energy sector across the EU: analysis of 
policies and measures” [6] published in 2015 evaluated how European Member States characterize the EP and vulnerable consumers, as 
well as the measures put in place to address the issue. As this document indicates, there are three key factors that define EP (in 
combination or isolation): low-income, high energy prices, and poor building thermal efficiency. Quantifying energy poverty at the 
household level requires a large amount of data, and the lack of a uniform definition and methodology for measuring it across EU 
countries adds to the problem’s complexity. Recent studies demonstrated that IoT-based dataloggers allows to measure and quantify 
the inequality of household energy behaviors and to identify hidden inequalities as well [7]. 

* Corresponding author. 
E-mail address: asuvargas@gmail.com (A. López-Vargas).  
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1.1. Related works on IoT applications for EP monitoring 

Smart technology, such as the Internet of Things, has positioned as a powerful tool for tackling EP [8]; IoT plays a key role in 
real-time monitoring. A bibliometric study on the IoT application on EP alleviation published literature was carried out in alignment 
with the Preferred Reporting Items for Systematic Reviews and Meta-analysis (PRISMA) 2020 statement [9]. Fig. 2 depicts the findings 
of the bibliometric analysis of the published literature in the IoT and Energy Poverty area for the last 10 years (from January’12 to 
December’21). It was identified that more that the 95% of the research works on this field were published in the last 5 years. According 
to this result, a revision of the state of the art published in the last 5 years on IoT-based systems for EP monitoring was carried out. It 
was found that the IoT applications focused on EP alleviation could split up mainly into two: energy consumption monitoring systems 
and thermal comfort monitoring applications. 

IoT can be used to improve energy efficiency, increase the share of renewable energy, and reduce the environmental implications of 
energy use via IoT-based applications focusing on energy consumption monitoring [10]. According to the European Commission report 
“Benchmarking smart metering deployment in the EU-27 with a focus on electricity” [11], in 2020 Member States committed to rolling 
out around 200 million of smart meters for electricity and 45 million for gas monitoring by carrying out several initiatives. Fig. 3 shows 
the electricity smart meter roll-out reached in the EU (connected to telecommunications networks). The roll-out reached by countries 
such as Finland, Sweden, Italy, and Spain are upper than 80%. The measurement of these smart meters provides key information that 
can be used for alleviating EP. Fergus, P., and Chalmers, C. [12] presented a new and foundational behavior assessment indicator in 
2021, which was aimed to quantify and monitor fuel poverty risks in households using smart meters to measure gas and electricity 
consumptions. They obtained data every 10 s for all energy consumed within the home at the aggregated level. Each sensor generated 
up to 30 readings per second and included a) voltage and equipment health monitoring, and b) outage voltage and reactive power 
management information. In 2020, William Hurst et al. [13] predicted whether an individual household was in an EP situation through 
the analysis of the gas consumption data captured by a smart meter. In 2020, [14] used gas smart meters data for detecting EP sit-
uations improving the wellbeing of occupants in residential properties. They analyzed data from 1033 anonymized residential 

Fig. 1. Energy poverty situation in Europe. 2020 data. Source [5].  
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premises between 2009 and 2011. Gas meter readings were gathered at a 30-min sample rate. 
In recent years, a large number of studies focusing on direct measures of thermal conditions for tackling EP were conducted. 

However, most of the reviewed research works installed systems without internet connectivity, using local data storage (internal 
memories) or connecting data to external PCs [16,17]. These systems presented several shortcomings: high maintenance costs (because 
of an operator for collecting data is required), high hardware costs (PCs), and the impossibility of applying actions in real time. The use 
of IoT allows reducing maintenance costs and enabling real-time monitoring, so corrective actions to alleviate EP could be applied, and 
the performance of these actions followed up (without waiting for data a large period of time). However, a limited number of IoT-based 
applications aimed to monitoring thermal comfort for alleviating EP were found in the published literature. The result of the review 
carried out was that most of the IoT application for comfort monitoring were designed for other purposes and some parameters that are 
considered decisive for the EP detection and characterization were not subjected to monitoring. In 2020, A. Pollard et al. [18] studied 
the use of simple telemetry to reduce the health impacts of EP and living in cold homes. They installed thermometers inside a man-
ufactured bamboo brooch. Thermometers were placed within 34 households of United Kingdom during the 2016–2017 winter. Every 
30 min, temperatures were recorded in an automatic way; data were used to draw inference from questionnaire responses, particularly 
around health and well-being. They concluded that simple telemetry could play a role in the management of chronic health conditions 
in winter, helping healthcare systems become more sustainable. In 2018, M. Arnesano et al. [19] presented an initiative that included 
water metering, thermal metering, natural gas metering, comfort (thermal) and indoor air quality monitoring. However, this IoT 
system used RS485 bus for communicating and it was electricity-network dependent. These two dependencies preclude to install this 
system in energetic vulnerable homes because of the frequent lack of internet access and the high possibility of power outages. One of 
the main challenges is detecting Hidden EP (HEP) cases. This identification can be done through massive household monitoring [20], 
so the low cost of the system is an essential requirement. Several initiatives integrated IoT and Building Information Modeling (BIM) 
using low-cost systems, carried out the following up of parameters such as temperature, humidity, and air quality [21]. A high number 
of these initiatives used open-source hardware and open-source software for achieving the low-cost objective. 

1.2. Objectives and manuscript structure 

The final goal of this work has been to develop an IoT-based system aimed to overcome the shortcomings found in the Energy 
Poverty detection from the thermal comfort viewpoint. For this purpose, the EP scenario has been studied and relationships between 
thermal comfort monitoring and EP detection have been identified. The datalogger has been designed, developed, and tested. The main 
characteristics of the datalogger are: (a) low-cost, by integrating open-source tools, (b) super-low power consumption, with a 2-years of 
battery autonomy, (c) autonomous operation, independently of a computer or external HW, (d) high precision and (e) reliable. First 
prototype has been tested under real condition for identifying energy vulnerable households within the EPIU Getafe initiative [22]. 

Fig. 2. Number of research works published in the last 10 years related to the ‘IoT and Energy Poverty’ area using different scientific databases 
(Google Scholar, ScienceDirect and Scopus). 
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2. Requirements for the EP monitoring 

2.1. EP parameters subjected to monitoring 

There is a lack of global guidelines to select the parameters of thermal comfort that should be used for detecting EP. Fig. 4 shows the 
methodology followed for determining the selection of parameters to measure. First, the study of the existing thermal comfort stan-
dards was carried out. It was identified that the most applied thermal comfort standard was the ISO7730 [23], based upon the pre-
dicted mean vote (PMV) and predicted percentage of dissatisfied (PPD) thermal comfort indices [24]. Another widely employed 
standard was the ASHRAE Standard 55 [25] which specifies conditions for acceptable thermal environments, and it is intended for use 
in design, operation, and commissioning of buildings and other occupied spaces. Studies on EP [26] also applied standards related to 
other key parameters such as air quality indoor (ANSI/ASHRAE Standard 62.1–2019 “Ventilation for Acceptable Indoor Air Quality” 
[27] or ergonomics aspects (ISO/TC 159/SC 5 “Ergonomics of the physical environment” [28]. After that, a bibliometric study of the 
EP works which included the study of comfort parameters was carry out. The aim of this study was to identify the relationship between 
the comfort parameters established by the standards and the detection of EP. This strategy allowed to limit the number of variables to 
be measured and therefore the number of sensors, increasing the useful life of the battery and reducing the costs of the systems (both, 
construction and maintenance costs). 

According to the results obtained in Section 1.1., the number of articles studied was limited by published date: the study was 
focused on research works published in the last 5 years. The influence of each of the parameters described in the thermal comfort 
standards and their impact in the identification of EP was studied. A thorough database search of Google Scholar was conducted to 

Fig. 3. Electricity smart meter roll-out reached, 2017 data [15].  

Fig. 4. Methodology employed to design the thermal monitoring system for detecting EP.  
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retrieve and analyze the most cited articles in each topic. The topics were generated by combining thermal parameters jointly with the 
EP key “fuel poverty”. Fig. 5 shows the result of the bibliometric study carried out. According to the findings of this bibliometric study, 
the most used thermal-related parameters (indoor) for the detection of energy poverty are 3: air relative humidity (24.07%), air quality 
(29.73%) and air temperature (30.08%). 

The reviewed studies used the occupation of the dwellings to establish the comfort conditions. This necessitates the inclusion, in 
addition to the previously mentioned parameters, of a sensor that provides information on the occupants of the house. Among the 
methods to measure occupancy, the measurement of light allows following up ergonomic comfort as well. As a result, the most 
important metrics for monitoring IoT were revealed to be air relative humidity, air quality, air temperature, and light. 

2.2. Ranges of the EP measurements 

In this Section, the values of the thermal comfort sensors were established; these values determined the sensors selections 
(thresholds, resolutions, etc.). The relationship between air temperature indoor level and health has been studied profusely from 
different perspectives. When comparing healthy levels with comfort levels, several differences were found; generally, the values 
harmful to health are more extreme than the values in which people have a comfortable feeling at home. The standards recommend 
ranges around 23–26 ◦C in summer and 21–23 ◦C in winter [23,25]. The World Health Organization’s (WHO) recommends indoor air 
temperature ranges of 18–24 ◦C (according to the specific function of the room) for non-vulnerable population, and 20-24 ◦C in case of 
vulnerable households [29]. The ranges of the parameters also vary depending on the season of the year. In 2014, the Public Health 
England established the adequate minimum temperature threshold for homes in winter [30]: at least 18 ◦C in winter poses minimal risk 
to the health. [31] limited the upper temperature indoor threshold to 26 ◦C in summer and showed evidence of the impact of high 
temperatures in human health. Sometimes, the recommended indoor temperature ranges are outside the usual limits: i.e., for reducing 
sudden infant death syndrome (SIDS), the advice is that rooms in which infants sleep should be heated to between 16 and 20 ◦C [32]. 
Standards recommend relative humidity ranges of 30–60% [23,25]. Inadequate levels of relative humidity cause respiratory infections 
and allergies [33]. According to Ref. [33], relative humidity levels between 40% and 70% reduce the survival and infectivity of 
bacteria and viruses. CO2 level is another key parameter to measure in energy vulnerable households: This gas is produced by 
metabolic processes (i.e., respirations) and fossil fuels combustions. Indoor levels of CO2 are usually higher than in the open (300–400 
ppm) mainly due to the CO2 exhaled by households’ occupants. According to standards, the CO2 level should not exceed 2500 ppm, 
while 1000 ppm is the recommended value [23,25]. High levels of CO2 cause acidification of the blood with compensatory increase in 
rate and depth of breathing [34]. Light measurements provide key information on occupation as well as adequation lighting (inti-
mately linked to extreme EP cases). Safety visual performance requires adequate lighting levels. Light also plays an important role in 
regulating human physiological functions. Poor illumination has negatively consequences in health, linked to falls and depression. 
Around 200 lux is the level recommended for general household activities [35]. 

2.3. Sampling time fitting 

The duration of the measurement campaign of thermal comfort in the context of EP should be at least one year aimed to obtain data 

Fig. 5. Results of the bibliometric study using “Parameter” and “Fuel poverty” key. Google Scholar database was used and research works published 
from 2018 onwards were reviewed. 
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Fig. 6. Diagram of the final smart datalogger for following up thermal comfort in energy vulnerable households.  
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during the different seasons of the year. For this reason, the selection of the sampling time is a critical aspect of this application as it has 
direct consequences on the cost of the system: the higher the frequency of measurements, the shorter the long-life of the battery. The 
shortening of the long-life of the battery has a very negative effect on the final cost of the system, mainly due to the increase in 
maintenance costs. The objective was to adjust the sampling time to the minimum that did not affect the quality of the measurements. 
In 2020, William A. Gough [36] studied the range of sampling from hourly to twice daily and accurately determined the error 
introduced by different sampling times. They focused on less frequently sampling times than hourly using as a guide average and 
extrema temperatures. 24 h sampling remained the gold standard for determining daily mean temperature and the introduced error 
was around 0.1 ◦C. They also stated that bi-and tri-hourly sampling introduced an error of less than 0.2 ◦C whereas two even samples 
per day had an error near 1 ◦C. 

2.4. Location of the datalogger 

The measurement locations are established by the ASHRAE 55 [25] standard. According to the standard, the recommended location 
for measuring thermal comfort parameters is in frequented zones of the building at areas where the residents are known to or expected 
to spend their time. Depending on the role of the room, these sections might be workstations or sitting areas. Measurements should be 
collected at a representative sample of occupant locations scattered across the occupied zone in inhabited rooms. In vacant rooms, the 
evaluator should make a reasonable assessment of the most likely future occupant positions and take relevant measurements. If an 
estimation of the occupancy distribution is not possible, the following measurement locations must be used: a) in the room’s or zone’s 
center and b) in each of the room’s walls is 1.0 m inward from the center. The measuring position for external walls with windows is 
1.0 m inward from the center of the biggest window. In either instance, measurements should be done in areas where the most extreme 
values of the thermal parameters are predicted or observed. Near windows, diffuser outlets, corners, and entrances are all good in-
stances. Measurements should be taken far enough away from the occupied zone’s boundaries and any surfaces to allow for adequate 
circulation around measurement sensors in the places mentioned below. In any inhabited room or HVAC-controlled zone, a measure of 
absolute humidity (such as humidity ratio) should be obtained at just one site inside the occupied zone, provided that there is no reason 
to predict considerable humidity changes within that area. Otherwise, absolute humidity should be measured at all the 
above-mentioned places. 

2.5. Internet connectivity 

According to Ref. [37], by 2021, the share of EU households with internet access had risen to 92%, and as of the beginning of 2021, 
almost nine out of ten (89%) individuals in the EU (aged 16–74 years) used the internet. The internet access in rural regions (89%) is 

Fig. 7. General diagram of the telecommunications environment.  
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less than in urban areas (92%), being particularly strong this division in Bulgaria, Portugal, Greece, Croatia, and Romania. Recently, 
several studies on Internet Poverty were carried out [38]. In 2022, S. Wang et al. [39] studied the impact of EP on the internet 
perception. They found that energy poverty significantly reduces Internet use not only directly but also indirectly through the 
mediating effects of Internet perception. According to these results, the probability of lacking internet access is greater in households 
that suffer from EP. In addition, in case of extreme EP such as the Cañada Real with areas that does not have access to electricity, 
internet networks are not available [40]. Summarizing, due to the peculiarities of monitoring EP, the selection of the communication 
system for transmitting data is conditioned and the use of communications systems with no internet infrastructure dependency pro-
vides great advantages. 

3. Design of the IoT-based system for EP monitoring 

3.1. Description of the system 

The general diagram of the new EP monitoring system is depicted in Fig. 6. The basic distribution for monitoring EP households as 
well as the communications systems are shown. The smart datalogger follows up selected EP related parameters. Dataloggers send the 
measured information to the communication node via Wi-Fi. The communication node send data via 4G, and collected information is 
stored in a cloud server (a dedicated server could be also compatible). If the energy vulnerable households subjected to monitoring are 
close enough, several dataloggers could be connected to a single communication node. The ability to monitor energy-vulnerable 
households from any device or computer is enabled by the internet connection. 

3.2. Selection of the communication technology 

As stated in Section 2.5., the selection of the type of telecommunications is determined by the scope of application. After studying 
all the available technologies and network typologies, a combination of wireless technologies was selected as the most suitable option. 
Fig. 7 shows the communication network designed for monitoring EP. This network is composed by two types of nodes: the 
communication nodes (a mobile communication node acting as Gateway) and the households’ nodes (datalogger itself). Dataloggers 
use IEEE 802.11 protocol (Wi-Fi) for communications. The communication node creates a Wi-Fi-based local network for communi-
cating with dataloggers. The GSMA Report entitled “The State of Mobile Internet Connectivity Report 2021” [41] stated that around 
the 94% of the world’s population now have access to a broadband network. The high coverage was the reason for selecting mobile 
communications for sending data; this node allows the vulnerable households to be provided with connectivity regardless of the 
existing infrastructure. This system does not require prior installation. The dataloggers includes sensors and send data to the 
communication node using the Wi-Fi. This topology allows to connect several households to the same communication node (if distance 
is close enough). In addition, if Wi-Fi is available in the household subjected to monitoring, the communication node could be removed 
(without changing the design) and costs are reduced. 

3.3. Hardware 

The most suitable HW was selected based on the use of open-source technologies, which allowed the final system to achieve the 
low-cost goal. The specific communication protocol of the dataloggers (Wi-Fi, see Section 3.2.) limits the search for microcontrollers. 
Among the many systems based on open-source hardware that are now available on the market, the ESP32 NodeMCU-based board 
stands out from the rest because to its communications features, low-cost, and developer community (including academic) [42]. 
NodeMCU is an open source IoT Platform and ESP32 is a powerful SoC (System on Chip) microcontroller with inbuilt Wi-Fi 802.11 
b/g/n, dual mode Bluetooth, and a range of peripherals. The board employs a Tensilica Xtensa LX6 microprocessor with a clock rate of 
240 MHz. It includes 36 GPIO pins, 16 PWM channels, and 4 MB of flash memory. The selected board supports SPI, I2S, I2C, CAN, 
UART, Ethernet MAC, and IR. The benefits of using this environment are its simple configuration and the great community support 
[42]. The software is free to download, and the hardware reference designs are available under an open-source license, allowing users 
to customize designs to their specific needs. A global development community works around this open-source platform, and help is 
accessible on various websites, including examples and libraries. The resolution, on the other hand, is one of the board’s major flaws. 
The board features 16 analog inputs and an ADC with a maximum resolution of 12-bits. 

Various HW improvements were carried out. Although the design includes digital sensors, the on-board ADC is used to monitor the 
state of battery charge. Testing determined that the ADC on the board was not accurate enough and gave inconsistent data. To solve 
this issue, an external ADC has been integrated. The ADC selected was MCP3202 from Microchip™. The MCP3202 is a successive 
approximation 12-bit converter with on-board sample and hold circuitry. The MCP3202 is programmable to provide a single pseudo- 
differential input pair or dual single-ended inputs. Differential Nonlinearity (DNL) is specified at ±1 LSB, and Integral Nonlinearity 
(INL) is offered in ±1 LSB [43]. Other HW improvements were developed to reduce power consumption on the board. One of the main 
requirements of the system is that it works independently of being plugged in, for that an external battery is integrated. The selected 
battery was the ER26500 Li–SOCl2 from EEMB [44], a C-battery with nominal voltage of 3.6 V and nominal capacity of 9000 mAh. The 
operating temperature range is − 55–85 ◦C and the discharge cut-off voltage is 2.0 V. In reduced power mode, the board consumed 9 
mA. After different tests, it was found that most of the board’s consumption came from the programmer (only required when loading 
the SW). The HW improvement consisted of eliminating the related programmer circuit during the measurement period, thus 
achieving a reduced power consumption of 1 mAh. 
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3.4. Selection of the EP sensors 

EP parameters selected for monitoring were relative air humidity, air temperature, air quality and occupancy (see Section 2). 
Table 1 shows a brief comparison of the most widely used low-cost temperature sensors. After studying the different options, the 
BME280 sensor from Bosch™ was selected because with a single sensor 3 parameters can be measured, the range of measurements 
covers the requirements (see Section 2.2.) and the error is very small. The use of the BME280 allows to obtain pressure, so it can be used 
as altimeter; this information could be useful for determining the influence of the floor and the thermal comfort. In addition, costs are 
reduced because of a) the number of sensors is lowered (1 sensor is purchased instead of 3) and b) the consumption of 1 sensor is lower 
than three it extends the useful life of the battery, which translates into a reduction in the costs of purchasing batteries and the 
maintenance costs derived from replacement. The reduction of sensors to the minimum number necessary also optimizes the system 
design by reducing the number of pins needed. 

[48] assessed the long-term performance of a datalogger under difficult environmental conditions, and degradation in sensors was 
identified as the most pernicious damage. The temperature-humidity sensors failed. The sensor successfully recorded temperature, but 
the humidity value was incorrect: even on bright days, the relative humidity was 100%. The temperature and humidity measurements 
are vital data for evaluating EP, so it was decided to integrate two sensors measuring the same parameters (temperature and relative 
humidity) in a redundant way. The redundant selected sensor was DHT22 from Aosong™. The installation of a redundant sensor avoids 
the loss of information and reduces the final costs because of the cost of a second sensor is less than the maintenance cost of replacing 
the sensor if broke. In addition, [49] found several difficulties when trying to have access to the individuals; reducing visits to a 
minimum is another of the objectives accomplished with the integration of redundant sensors. The air quality sensor selected was 
CM1106SL-NS from Cubic™ [50]. The main problem observed when measuring CO2 using low-cost sensors (such as MQs family 
sensors) was the high consumption. The CM1106SL-NS sensor is a low-cost and low-power consumption; it is a high-performance 
non-dispersive infrared (NDIR) battery-powered sensor that can follow up CO2 concentrations in indoor air using NDIR technol-
ogy. Its measurement range is 0–5000 ppm and the accuracy is ±50 ppm+(3–5) % of reading. Two communications modes are 
available: UART and I2C. UART was the mode implemented for this application. The light sensor selected was the BH1750 sensor from 
ROHM Semiconductors™, a digital ambient light sensor IC for I2C bus interface [51]. This sensor presents a wide and high-resolution 
range: 1–65535 lx. 

3.5. Software description 

The algorithm has been coded using C/C++ based subset language, using the Arduino™ IDE (open-source software). Fig. 8 
summarizes the flow diagram including the main processes carried out by the microcontroller. First, the internet connection is created 
at the start; this process is repeated every time the routine is started, or the reset button is hit. Hourly sampling allows to extent the 
long-life of the battery with a minimum error (see Section 2), so parameters are measured every 60 min, and after that, data trans-
mission and storage activities are carried out. Throughout the development of the system, the reduction of consumption has been 
essential. As was the case with HW measurements, SW strategies have been developed to suspend the microcontroller at minimum 
consumption. After transmitting data, the power reduction mode starts by enabling a deep sleep mode. The establishment of the 
internet connection, the connection with the server and the sleeping period are the processes that could have a greater impact on the 
long-life of the battery. 

Different tests have been carried out to adjust these times. 25 cycles of measurement were recorded and studied for fitting the time 
for waiting reconnection and sleeping. Table 2 summarizes the results including the different times (minimum, average and maximum) 
for each process. After studying, 10 s was the maximum time selected for establishing the internet connection. Each cycle, the mi-
crocontroller works less than 10 s (in worst case) consuming around 100 mAh; 99.72% of the time the microcontroller is sleeping, and 
the consumption is extremely low (less than 1 mAh). According to the consumptions worked out, the expected long-life of the battery is 
197 days (in average). 

Table 1 
Comparison between low-cost temperature-humidity sensors available in the market.  

Characteristic Temperature-humidity sensor model 

BME280 [45] DHT11 [46] DHT22 [47] 

Measures Temperature, humidity, and pressure Temperature and humidity Temperature and humidity 
Communication protocol I2C, SPI 1-wire 1-wire 
Supply voltage [VDC] 1.7–3.6 3.3–5.5 3.3–6 
Operating range − 40 to +85 ◦C 

0–100% rel. humidity 
300-1100 hPa 

0 to +50 ◦C 
0–100% rel. humidity 

− 40 to +80 ◦C 
0–100% rel. humidity, 

Consumption 3.6 μA (measurement) 
0.1 μA (sleep mode) 

0.3 mA (measurement) 
60 μA (standby) 

1.5 mA (measurement) 
50 μA (standby) 

Accuracy (at 25◦C) ±3% RH 
±0.5 ◦C 
<1.7 hPa 

±5% RH 
±2 ◦C 

±2% RH 
±0.5 ◦C 

Price [€] 8,67 6.04 6,36  
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A HTTPS petition establishes the connection between the microcontroller and the server. The data transmitting procedure begins 
when the datalogger and server have established a connection. InfluxDB [52] was the cloud platform selected for storing data. Influx 
DB is ranked number one in the list” DB-Engines Ranking ranks database management systems according to their popularity” as of 
May’22 [53]. InfluxDB is an open-source schemeless time series database created by InfluxData with optional closed-source compo-
nents. It’s developed in the Go programming language, and it has a query language that’s like SQL. Every InfluxDB database has a time 
column that maintains discrete timestamps that relate to specific data. Each field is composed by a field key and a field value. 4 EP 
parameters are measured (from 4 sensors). 11 fields are transmitted every cycle: air temperature (TH22) and air relative humidity 
(HH22) from the DHT22 sensor; gas concentration (CO2); air temperature (TBME), air relative humidity (HBME), altitude (ABME) and 
pressure (PBME) from the BME280 sensor; light (LBH) from the BH1750 sensor; the board current (ADC0) and the battery voltage 
(ADC1); the number of cycles without reboots (bootCount). 

Fig. 8. Flow diagram of the EP monitoring system.  

Table 2 
Results of 25-cycle periods for studying the impact of the internet connection time in the long-life of the battery.  

Measurement Time of entire cycle [ms] Time for Wi-Fi connection [ms] 

Minimum 5271 3190 
Average 5791.12 3530.76 
Maximum 8373 6178  
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4. Experimental setup 

Getafe is a southern city of Madrid, Spain, located at 622 m.a.s.l., with a maximum average temperature of 32 ◦C in summer and 
lowest average temperature of approximately 1.5 ◦C in winter. The yearly average temperature is around 15 ◦C [54]. EP affects up to 
30% of individuals in Getafe, and there are 156 receivers of the Integration Minimum Income for every 10,000 residents [22]. The 
situation is much worse in Getafe’s “Las Margaritas” and “La Alhóndiga" areas (both designated as Urban Regeneration Areas by the 
Spanish Government [55]). According to the Getafe Municipality Report developed in 2018 [56], the area Las Margaritas – La 
Alhóndiga comprises a total of 207 buildings and 4814 homes in two areas: about half of these homes lack heating systems, and 
approximately 235 households need aid to pay for basic supplies and rent [22]. The areas of ‘Las Margaritas’ and ‘La Alhóndiga’ were 
built in the second half of the 20th century, before the creation of the of NBE-CT 79 [57] standard on thermal conditions in buildings 
(the first modern standard requiring thermal insulation in Spain). Therefore, a large part of the households does not meet the 
requirement established in the thermal insulation legislation. Fig. 9.a shows the vulnerable area of Getafe “La Alhóndiga”; Fig. 9.b 
depicts one of the neighborhood’s typical structures. 

The UIA “EPIU Getafe Hogares Saludables” [58] proposes to identify and eliminate EP in Getafe, (Spain), by utilizing new tech-
nologies such as IoT and AI. The first pilot of the datalogger was installed under the EPIU Getafe project in one of the households 
participating in the initiative. Some of the households have been selected because they meet some of the typical indicators of suffering 
energy poverty, others do not. This last category will serve as the basis for identifying cases of hidden energy poverty through 
monitoring. 

Fig. 10 shows the aerial view of the entire Urban Regeneration Area “La Alhóndiga”, including the location of the first protype 
installed. The building is composed by 5 floors, the household subjected to monitoring is located on the first floor of the building, with 
East orientation. The datalogger was installed in the main room, at 1.5 m high and far away from any heat/cold sources. 

5. Experimental results 

The final prototype of the new low-cost datalogger placed in Getafe is shown in Fig. 11a. Fig. 11b shows the encapsuled datalogger. 
The first pilot of the datalogger was installed in 16th june’22. Since that day, the developed system has carried out all measurement 
cycles without internal errors (counted by an internal counter developed by SW for measuring fails in the measurement process and 
rebooting). 

One entire month was used for the pilot evaluation. This period includes two heat waves: a heat wave in mid-June’22 that lasted a 
week and was said to be the earliest recorded in almost 40 years and the second wave in mid-July’22 with temperatures surpassing 
40 ◦C. The findings of the testing period revealed that the new EP datalogger successfully monitored with a 0.7564% of unavailability, 
so it was confirmed that the datalogger is highly reliable. These fails were due to connection failure or server access failure. For 
evaluating the quality of the measurements, the new EP datalogger was compared to a commercial monitoring system that acted as a 
pattern. This pattern commercial monitoring system was an Imbuilding™ datalogger. Table 3 includes technical characteristics of the 
pattern datalogger. Every 15 min, this commercial datalogger measured and recorded the same parameters as the EP datalogger. 

5.1. EP measurements: comparison with commercial datalogger 

Fig. 12 shows an example of the daily variations of the air temperature measured by three different sensors: 2 integrated in the 
developed datalogger and the third one of the commercial datalogger. The 18 June’22 Madrid melts under the earliest heat wave in 
over 40 years due to a cloud of hot air from North Africa [59]. Both dataloggers were located in the same place. The temperature 
measured by the datalogger using low-cost sensors under real conditions shown in Fig. 12 demonstrate the correct functioning of the 
EP datalogger. Related to the DHT sensor, the daily mean error of the air temperature measurements was − 0.099 ◦C with a variance of 
0.285 ◦C compared to the commercial datalogger. In the case of the BME sensor, the daily mean error was − 0.328 ◦C with a variance of 

Fig. 9. Aerial view of the vulnerable area of Getafe “La Alhóndiga” (a) and typical buildings of the neighborhood (b). Source [56].  
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0.0717 ◦C. 
In the same way, the air relative humidity was measured using 2 sensors of the EP datalogger and another one belonging to the 

commercial datalogger. Fig. 13 shows the daily collected data. Related to the DHT sensor, the daily mean error of the relative humidity 
measurements was − 0.454% relative humidity with a variance of 3.951% (compared to the commercial datalogger). In the case of the 
BME sensor, the daily mean error was − 0.093% with a variance of 0.500% relative humidity. 

Fig. 14 shows the performance of the CO2 sensor calibration. Uncalibrated sensors showed a high dispersion in medium and high 
values of CO2 concentrations because of the dependence between error and measured value. After calibrating, the results showed that 
the dataloggers measure close values in all ranges (according to the bias line). 

Fig. 15 shows the daily variations of CO2 concentration measured by the pilot installed in a household of Getafe. The indoor air 
quality was measured with the commercial datalogger and the EP datalogger. The daily mean error of the relative humidity mea-
surements was 25.89 ppm. 

Fig. 10. Urban Regeneration Area “La Alhóndiga” with the location of the first prototype installed [56].  

Fig. 11. Final design of the EP datalogger final pilot (a) and the integration of the board in the protector capsuled (b).  

Table 3 
Pattern datalogger characteristics.  

Parameter Accuracy 

Air temperature 0.2 @0–65 ◦C 
Air relative humidity 2% @ 10–90% 
CO2 level 30 ppm + 3% reading @ 400–50000 ppm  
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5.2. Visualization of the measurements 

As the main novelty of this work, the remote visualization of the data in real time via web stands out, due to the incorporation of 
connectivity to the system. Fig. 16 shows the visualization of temperature data measured and sent to the cloud from 17/06/2022 to 22/ 
06/2022 in Getafe. The open cloud platform selected, InfluxDB™, allows to monitor selected parameters. 

6. Estimation of the initial prototype’s costs 

The final purpose of this project was to create a low-cost, accurate, and self-contained IoT-based datalogger prototype that le-
verages a mobile communication transmission technology for monitoring EP. The monitoring system’s budget is shown in Table 4. 

The new prototype’s total cost, including sensing and connectivity, was around 91 euros. This cost is lower than that of commercial 
systems with similar characteristics [60]. When mass manufactured and brought into the market, total costs might be significantly 
lowered. The budget for the communication node is around 45 euros. The budget for the total system (including datalogger and 
communication node) was 136 euros. Due to the usage of a 4G SIM card, this monitoring system includes a maintenance fee (around 35 
€ per year). 

7. Conclusions 

When detecting EP, there are two main issues that could be addressed by installing the datalogger developed in this work: a) the 
lack of aggregated data for identifying EP and b) the lack of monitoring of thermal comfort in energy poor households. The novel 
datalogger for identifying EP via thermal comfort monitoring in real-time and remote way has been designed, built, and tested 
incorporating wireless technology in it, along with IoT. The installation of the developed datalogger allows revealing HEP situations, 
cases that are very difficult to detect by other mechanisms that do not include direct measurements. 

The developed system has been designed ad-hoc to measure air temperature, air relative humidity, air quality and lighting. The IoT 
application developed do not required access to electric network, with a 2 years of power independence. 1 h sampling rate has been set 

Fig. 12. Air temperatures measured in Getafe (18th June 2022) using the EP dataloggers (BME and DHT temperatures) and the commer-
cial datalogger. 
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Fig. 13. Relative humidity measured in Getafe (18th June 2022) using the EP dataloggers (BME and DHT humidity levels) and the commer-
cial datalogger. 

Fig. 14. Dispersion diagram of the performance of the CO2 sensor calibration.  
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Fig. 15. CO2 level measured in a household of Getafe (18th June 2022) using the EP dataloggers (BME and DHT humidity levels) and the com-
mercial datalogger. 

Fig. 16. InfluxDB visualization of parameters (temperatures) measured by the monitoring system located in Getafe.  

Table 4 
Budget for the IoT-based application for EP (Datalogger).  

Component Price [€] 

1 x Open-source platform 7.60 
1 x Li- battery 3,6V 6.75 
1 x battery holder 4.5 
1 x CO2 sensor 19.48 
1 x Temperature-humidity sensor 6.40 
1 x Temperature-humidity-pression sensor 3.996 
1x Light sensor 2.80 
Electronic components (connectors, regulators, ADCs, etc.) 14.99 
1 x Electrical enclosure box, 155 × 95 × 60 mm, IP54 17.30 
PCB 6.53 
Total 90.346  
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for obtaining low errors in measurement and extending the long-life of the battery. Redundant sensors of the key parameters for 
identifying EP (air temperature and air relative humidity) have been integrated for avoiding the loss of data in case of sensors failure. 

The relationship between Internet Poverty and EP has been studied determining the selection of the communication technology 
because of in the presence of EP, the probability of suffering Internet Poverty is higher. The communication system has been designed 
by combining two wireless technologies: Wi-Fi and mobile communications. This communication model allows to install individual 
datalogger and create small networks without including changes. Mobile communications have been used for accessing Internet 
(communications node) and the dataloggers communicate with the communication node by using Wi-Fi. Several dataloggers located 
close enough could share a unique communication node reducing costs. On the other hand, if the home to be monitored has Wi-Fi 
network, the IoT-based system could be connected directly to this network (without using any communications node). In case tele-
communication infrastructure is not available, the system would also transmit data through mobile communications. This commu-
nication system would allow to digitize houses giving access to Wi-Fi and combating energy poverty and internet poverty at the same 
time. The final cost of the entire system is less than 140 euros. If the communication node is not required, the new prototype’s total 
cost, including sensing and connectivity, is around 91 euros. The system first pilot was installed in Getafe and results showed that the 
datalogger is accurate, highly reliable and totally power independent. 
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