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Abstract: This paper proposes a fingerprint-based indoor localization method, named FPFE (fin-
gerprint feature extraction), to locate a target device (TD) whose location is unknown. Bluetooth
low energy (BLE) beacon nodes (BNs) are deployed in the localization area to emit beacon pack-
ets periodically. The received signal strength indication (RSSI) values of beacon packets sent by
various BNs are measured at different reference points (RPs) and saved as RPs’ fingerprints in a
database. For the purpose of localization, the TD also obtains its fingerprint by measuring the beacon
packet RSSI values for various BNs. FPFE then applies either the autoencoder (AE) or principal
component analysis (PCA) to extract fingerprint features. It then measures the similarity between the
features of PRs and the TD with the Minkowski distance. Afterwards, k RPs associated with the k
smallest Minkowski distances are selected to estimate the TD’s location. Experiments are conducted
to evaluate the localization error of FPFE. The experimental results show that FPFE achieves an
average error of 0.68 m, which is better than those of other related BLE fingerprint-based indoor
localization methods.

Keywords: autoencoder; Bluetooth; beacon; fingerprint indoor localization; principal compo-
nent analysis

1. Introduction

Indoor localization is a procedure of locating or positioning a target device (TD) in
indoor environments, such as buildings, houses, stores, and factories. It has become an
important aspect in wide-scale applications including the health, industry, commerce,
surveillance, and various sectors [1]. For example, in the health sector, indoor localization
can help the elderly, the handicapped and the visually impaired to navigate inside the hospi-
tal [2]. In another example, indoor localization can be used for assisting living applications
like behavioral monitoring and fall detection for elderly people and disabilities [3]. For
yet another example, indoor localization can also contribute to the industry, such as robot
navigation, asset tracking, and workpiece location monitoring for production control [4].

Indoor localization could be developed by using various categories of technologies
such as optics, infrared (IR), mechanical sensor (MS), and radio frequency (RF) technolo-
gies [5,6]. An optical or vision-based localization system takes advantage of a TD’s camera
and computing capacity. The interference from numerous factors such as strong light,
motion blur, and larger accumulative mistakes all contribute to the system’s poor per-
formance [6]. The IR technology was used at early indoor localization systems [7]. The
line-of-sight (LOS) restriction and limited device compatibility are significant drawbacks of
IR-based systems [8]. TD’s built-in mechanical sensors like the accelerometer, magnetometer,
and gyroscope can also be utilized to realize indoor localization. The fluctuations and errors
accumulated during the sensors capture data can degrade the localization accuracy espe-
cially in large location areas [9]. RF-based localization systems use RF signals to determine
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TD’s location [10]. Some types of RF signals can penetrate walls and obstacles, so RF-based
localization systems can have large coverage areas. Furthermore, many TDs incorporate RF
technologies by default, resulting in relatively low costs. Because of all the above-mentioned
advantages, this research focuses on localization methods using RF technologies.

Several RF technologies, such as Bluetooth low energy (BLE) [11], ultra-wideband
(UWB) [12], Wi-Fi [13], and cellular [14], have been used in indoor localization. Among
these technologies, the BLE technology is designed for short-range wireless communication
with low energy consumption, low cost, and easy deployment. Although UWB devices
consume very low energy as BLE devices do, UWB is not as widely supported. Wi-Fi is
as widely supported as BLE and has larger coverage than BLE and UWB, but it has much
more energy consumption than BLE. Cellular technology has a much larger coverage than
others, but it consumes more energy and requires vast investment in the infrastructure
of extensive base stations. This research thus focuses on applying the BLE technology
to develop indoor localization methods. Many BLE indoor localization methods [15–33]
have been proposed in the literature. Among them, BLE fingerprint-based methods have
comparably good localization accuracy. Hence, this research aims at developing BLE
fingerprint-based indoor localization methods.

For the purpose of locating a target device (TD), whose location is unknown, fingerprint-
based indoor localization methods deploy at proper locations some beacon nodes (BNs)
that periodically broadcast beacon packets containing the BN’s ID, location, and other
information [34]. Devices receiving beacon packets can easily obtain the received signal
strength indication (RSSI) values and other information of the packets. Fingerprint-based
indoor localization methods usually consist of two main phases: offline and online. The
offline phase is to collect beacon packet RSSI values from different BNs for each reference
point (RP) with a known location. These collected RSSI values are fingerprints of RPs.
They, along with corresponding RP locations, are stored in the database as the reference
fingerprinting map (RFM). The online phase is to collect beacon packet RSSI values of
different BNs as a TD’s fingerprint and compare it with those stored in the database. The
RPs having the most similar fingerprints with the TD’s are identified with a matching
algorithm. Then, the TD’s location is estimated based on the locations of the identified RPs.

Five BLE fingerprint-based indoor localization methods [16,22–24,27] that are most
related to our research are introduced below. Zuo et al. [16] adopted graph optimiza-
tion to perform indoor localization and produced an error of 1.27 m in the best case.
Martins et al. [22] performed indoor localization using Gaussian kernel-based fingerprint-
ing and achieved errors that are less than 1.5 m for approximately 90% of test cases.
Subedi et al. [23] employed an improved two-step fingerprint-based localization method,
resulting in a localization error of 1.05 m. Li et al. [24] predicted the TD location with an
eight-neighborhood template-matching mechanism and achieved a localization error of
1.0 m. Dinh et al. [27] proposed a lightweight and reliable fingerprint-based method using
pedestrian dead reckoning and trilateration, bringing about an average error of 0.81 m.

This paper proposes a fingerprint-based indoor localization method, named finger-
print feature extraction (FPFE), using the BLE technology. Four BLE BNs are deployed in
an indoor environment to emit beacon packets periodically. The beacon packet RSSI values
of the four BLE BNs are measured at different RPs and stored in the fingerprint database.
RSSI measurements have the problem that they are susceptible to interference, multipath,
signal noise, and so on. Feature extraction [35] can mitigate the RSSI measurement problem
by extracting representative features from RSSI measurements. It can also accelerate fin-
gerprint matching by using only a few features, instead of a lot of RSSI measurements, in
fingerprint matching. The FPFE method first uses either the autoencoder (AE) [36] or prin-
cipal component analysis (PCA) [37] for feature extraction of beacon fingerprints. It then
calculates the Minkowski distances [38] between the feature of a TD and the features of all
RPs. Afterwards, k RPs associated with the smallest Minkowski distances are selected and
their centroid is assumed to be the TD’s location. Experiments are conducted to evaluate
FPFE’s performance. FPFE is also compared with the most related methods [16,22–24,27]
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to show its superiority. Furthermore, a practical application using FPFE for smart living is
also introduced to show the applicability of FPFE.

The contributions of this paper are fourfold. First, it proposes the FPFE method
utilizing BLE, an RF technology that is inexpensive and energy-efficient and can be run on
smart mobile devices without costly deployment of wiring. Second, the proposed method
achieves submeter localization errors by using AE, PCA, and the Minkowski distance to
perform fingerprint-based indoor localization. Third, extensive experiments have been
conducted to show how the performance of FPFE is influenced by the setting of RPs. Fourth,
the proposed method is employed to realize a practical application to show its applicability.

Note that this paper is an extended version of the research article [39]. This paper has
the following extensions. First, it demonstrates extensive experimental results of FPFE for
different RP settings. Second, an application using FPFE is introduced in this paper. Third,
this paper contains thorough discussions of FPFE and numerous research directions of
indoor localization using advanced technologies.

The rest of this paper is organized as follows. Section 2 introduces five fingerprint-
based indoor localization methods [16,22–24,27] using the BLE technology. The proposed
FPFE method is elaborated in Section 3. Section 4 describes experiment details of perfor-
mance evaluation and comparisons. Finally, the paper is concluded in Section 5.

2. Related Work

Zuo et al. [16] proposed an indoor localization method adopting the graph optimiza-
tion concept. The method is fingerprint-based; it is also range-based, meaning that it
relies on RSSI values to estimate the ranges (distances) between the TD and BNs. A TD
moving around a region collects inertial measurements and RSSI readings. Constraints of
adjacent TD’s poses (i.e., positions) are generated by processing the inertial measurements
with the pedestrian dead reckoning (PDR) mechanism. The RSSI readings are used as ID’s
fingerprints to generate other constraints of adjacent TD’s poses. The readings are also used
to generate distance constraints between BN locations and the TD’s poses. The constraints
are altogether adopted to form a cost function of a least-square form. The TD’s poses at
different times, the reference fingerprint map, and BN locations can be optimally estimated
by graph optimization. Specifically, graph optimization is the process of minimizing the
cost function and representing the relationships between variables associated with the
inertial and RSSI readings. Experiments are performed in an area of 90 m × 37 m with
different numbers of BNs, 24 BNs in a sparse mode, and 48 BNs in the dense mode. The
experimental results show that the accuracy of the errors are 2.26 and 1.27 m in the sparse
and the dense beacon environments, respectively.

Martins et al. [22] proposed a localization method using BLE RSSI fingerprints. The
proposed method was carried out on the Viseu Polytechnic Institute campus with hundreds
of students (users), each with a smartphone (i.e., TD) to navigate in a building. The method
relies on a database storing all beacons identifiers and wall (obstacle) conditions. The
TD uses received signals of BNs to search for matched BNs stored in the database. The
TD’s location is assumed to be unknown if there is no matched signal of known BNs.
However, if only one matched BN is found, then the distance between the TD and the BN
is calculated. If the distance is less than a threshold (specifically 2 m), then the method
returns the estimated position relative to the BN. On the other end, if the distance is larger
than the threshold, then the TD’s position is also assumed to be unknown. Suppose there
are two matched BNs, two probable locations are calculated, which correspond to the
intersections of two circles cantered on the two BNs, either with an estimated distance.
The method checks if the wall conditions hold. If so, the BN with the stronger RSSI is
chosen to determine the TD’s location. Furthermore, if there are three or more matched
BNs, then the BNs with the top three signal strength are chosen to determine the TD’s
location with the trilateration mechanism. Finally, by combining the Bayesian estimator
and the Gaussian kernel model and the concept of fingerprinting, the method determines
TD’s location during a user walk. Experimental results of the proposed method show
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that it achieves errors that are less than 1.5 m for approximately 90% of test cases in a
200 m × 40 m testbed floor plan.

To increase the indoor localization accuracy, Subedi et al. [23] presented an improved
two-step fingerprinting localization method using multiple fingerprint features. This
method transforms BLE RSSI to distance according to the propagation model and then
estimates the weighted centroid (WC) of nearby BNs. Instead of RSSI from all BNs, the
estimated WCs, signal strength, and rank of the nearby BNs are saved in the server database
for the purpose of localization. This method employs a variety of fingerprinting features to
improve localization accuracy and reduce the physical size of the database and the amount
of data communication. The method also utilizes affinity propagation clustering to reduce
the searching space of RPs and decrease computational costs. Furthermore, exponential
averaging is used for smoothing the noisy RSSI. Experimental results show that the method
can significantly reduce the radio-map database size and improve the positioning accuracy
with the best localization error of 1.05 m.

Li et al. [24] proposed an algorithm based on eight-neighborhood template matching
to solve BLE signal non-line-of-sight propagation and other issues that affect indoor local-
ization accuracy. The algorithm first divides the indoor environment into four quadrants
for each BN, called an access point (AP) in [12]. Then, the expected values of the RSSI
difference between the centre points and their eight-neighborhoods are calculated. The
values are used to calculate templates for RPs and the TD. Finally, template matching is
applied to choose the best RP whose template is most similar to that of the TD for the
estimation of TD location. By experiments performed in an 8 m × 8 m room, the method
can achieve a 1.0 m localization error.

Dinh et al. [27] proposed an indoor localization method using trilateration, pedestrian
dead reckoning (PDR), and fingerprinting. The trilateration and PDR mechanisms are used
to estimate the TD initial location and current location, respectively. The fingerprinting
mechanism is based on a lightweight and reliable fingerprint map to correct TD initial
location estimation errors and orbital drifts. The map is lightweight because the mechanism
produces the map by collecting data from only a small number of RPs, instead of dividing
the map into high-resolution grids with a huge number of RPs, therefore significantly
reducing the amount of time to deploy the system. The map is also reliable, it produces
good precision by using feature vectors and a matching algorithm to find three nearest RPs
based on each RP’s RSSI profile defined in the map. Finally, these three RPs coordinates are
combined and calculated through a particle filter to correct the PDR error. Experiments
were conducted in a 15 m × 25 m area to show the proposed method achieves an average
error of 0.81 m.

3. Proposed Method

The major steps of the proposed FPFE localization method are depicted in Figure 1.
The method starts with collecting RPs BLE beacon RSSI values to build a fingerprint
database. Note that RPs are assumed to be distributed over the whole localization area
with an irregular pattern (e.g., a random pattern) or with a regular pattern (e.g., a grid
pattern). Then, either the AE or PCA is applied for fingerprint feature extraction. The
Minkowski distance is used as the fingerprint similarity measurement to select k RP
candidates with the smallest distances. The TD location is then calculated by averaging
coordinates of the k selected RP candidates. Each major step is described in a separate
section below.

Figure 1. The major steps of the proposed FPFE localization method.
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3.1. Fingerprint Data Collection and Normalization

For each RP, 200 fingerprint data are collected. For example, Figure 2 shows the data
for reference point 1 (RP1), whose location is (0,6). In the figure, each row represents one
fingerprint containing four RSSI values for four BNs, BN1, BN2, BN3, and BN4. Bluetooth
enabled smartphones are used to measure the RSSI values which range from xmax (−20)
to xmin (−100). A smaller value indicates a weaker BN signal received. The min-max
scaling method is applied to the data for the purpose of normalization. The mathematical
formulation of min-max scaling is as follows:

xnorm = (x− xmin)/(xmax − xmin), (1)

where xnorm ranging from 0 to 1 is the normalization value, x is the original RSSI value, and
xmin and xmax are the minimum and maximum of RSSI values, respectively.

Figure 2. BLE RSSI fingerprint data for a reference point. Adapted from ref. [39]. © IEEE 2021.

3.2. Fingerprint Feature Extraction with AE or PCA

Feature extraction is a process of dimensionality reduction. It can project an initial
set of data in high-dimension space to be data in low-dimension space without losing
critical information. It is useful for efficiently processing large datasets that require a lot of
computing resources.

The proposed method uses either the AE or PCA for feature extraction of beacon
fingerprint data. Note that fingerprint data for an RP are of the shape of 4 × 200. They are
transformed to be of the shape of 1 × 800 as the input of the AE or PCA.

3.2.1. AE Feature Extraction

An AE is a special artificial neural network (ANN) model that encodes higher-dimension
input features to be a lower-dimension internal representation called the code. An AE model
consists of three parts: the encoder, the code, and the decoder. The encoder processes the
input features to generate the code, and the decoder then processes the code to generate
the reconstructed input features as the output. Figure 3 is the AE structure adopted by the
proposed FEFE method. The encoder in the AE in Figure 3 takes 800 features as the input and
has three dense (i.e., fully connected) neural layers of 600, 400, and 200 neurons, respectively.
The code is a dense layer of 8 neurons. The decoder has three dense layers of 200, 400, and
600 neurons, respectively, and generates 800 features as the output.

Generally, the encoder and the decoder of an AE have several neural layers and have
symmetric structures, as exemplified by the AE in Figure 3. For the sake of simplicity, we
explain below the process of an AE whose encoder and decoder have only one neural layer.
When an input vector x is fed into the AE, it is transformed into a vector z as the code by
the first half part (i.e., the encoder part) of the neural network. Then, from the code vector
z, the last half part (i.e., the decoder part) of the neural network tries to reconstruct x as a
vector x’. Given the input vector x ∈ Rd and the encoded vector z ∈ Rd′ , the encoding and
decoding processes of the AE are mathematically formulated as follows:

z = σ(Wencoder x + bencoder), (2)

where σ is a nonlinear activation function, e.g., sigmoid, hyperbolic tangent, or rectified
linear unit (ReLU), and Wencoder ∈ Rd′×d and bencoder ∈ Rd′ are respectively the weights
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and the bias of the single neural layer of the encoder. The output x′ ∈ Rd of the AE is
formulated as follows:

x′ = σ(Wdecoder z + bdecoder), (3)

where σ is a nonlinear activation function, and Wdecoder ∈ Rd×d′ and bencoder ∈ Rd are
respectively the weights and the bias of the single neural layer of the decoder. The weights
of the AE are restricted by setting Wdecoder = Wt

encoder, where Wt
encoder is the transpose

of Wencoder, so the number of neural network weights is reduced by half. In general, an
AE model has the encoder and decoder, each with multiple symmetrical neural layers
of restricted weights. The difference between the input x and the output x’ (i.e., the
reconstruction of x) is regarded as the reconstruction error. Like other ANNs, the AE
model updates weights of the AE model by minimizing the reconstruction error with
the backpropagation algorithm. The AE model is ready for use after minimizing the
reconstruction error between the input and the output. The low-dimensional code can then
be used as a good extraction of the high-dimensional input of features.

Figure 3. The autoencoder structure adopted from the FPFE method.

As shown in Figure 3, the BLE BN RSSI values measured at an RP are used as the
input with the dimension of 800 × 1 in this research. The input is encoded as a code with
the dimension of 8 × 1, which in turn is decoded as the output with the dimension of
800 × 1. More specifically, the AE model uses the hyperbolic tangent (tanh) function as the
activation function, uses the adaptive moment estimation (Adam) as the optimizer, and
uses the mean squared error (MSE) as the loss function of the reconstruction error.

3.2.2. PCA Feature Extraction

PCA is a dimensionality reduction and feature extraction method to project data
in a higher dimensional feature space to be data in a lower dimensional feature space
without losing critical information. The basic concept of a PCA is to find the first, the
second, . . . , and the cth principal components that are orthogonal vectors on which data
are projected for achieving the largest variance, the second largest variance, . . . , and the
cth largest variance. PCA can be realized as follows. Given a set X = {x1, x2, . . . , xn } of
n original data in the d-dimension feature space, PCA is to find a d × c transformation
matrix (or projection matrix) W to project data into the c-dimension feature space such
that projected data have maximal variance totally, where c << d. The data mean and
standard deviation for each feature are derived to standardize the original data. The
standardized data are then used to derive a d × d covariance matrix. Afterwards, d
eigenvectors of the covariance matrix are derived, where each eigenvector is associated
with an eigenvalue. The eigenvectors are sorted according to the descending order of their
eigenvalues. Afterwards, the first c eigenvectors v1, v2, . . . , vc with eigenvalues e1, e2, . . . , ec
are selected as c principal components to be combined to construct the projection matrix W.
Note that the eigenvalue ei, 1 ≤ i ≤ c, associated with eigenvector vi is actually the variance
associated with vi when data are projected onto vi. According to Equation (4), the value of
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ρ is derived, where ρ is the ratio of the summation of the c eigenvalues over the summation
of the d eigenvalues. The ratio ρ is called the explained variance ratio or the cumulative
proportion. The explained variance ratio ρ should exceed a specific threshold θ (e.g., 0.9 or
0.95) so that the c principal components associated with the c eigenvectors can explain (or
represent) the total data variance well enough.

ρ =
∑c

i=1 ei

∑d
i=1 ei

(4)

Finally, each original d-dimensional data sample xi can be projected onto the c principal
components to be a new c-dimensional data sample x′i according to Equation (5). It
can be seen that the original d-dimensional data sample xi has d data features and the
new c-dimensional data sample x′i has c data features. In this way, the purpose of data
dimensionality reduction and data feature extraction is achieved.

(x′i)1×c = (xi)1×d (W)d×c, 1 ≤ i ≤ n (5)

3.3. RP Candidates Selection with Fingerprint Minkowski Distance

In this study, the Minkowski distance [38] is applied to calculate similarity between
features of a RP and features of a TD. Generally, the Minkowski distance is a similarity
measurement between two points in a normed vector space. Let x = (x1, x2, . . . , xc) and
y = (y1, y2, . . . yc) be two points in a normed c-dimensional space. The Minkowski distance
D(x, y) between x and y is defined by Equation (6).

D(x, y) =
(
∑c

i=1|xi − yi|p
)1/p

(6)

The Minkowski distance is also known as the Lp norm distance. When p = 1, it
becomes L1 norm, also known as the Manhattan distance. When p = 2, it becomes L2 norm,
or called the Euclidean distance.

In the FPFE methods using AE feature extraction, the p-value is 8, because the feature
extraction output of the AE has 8 features. When the PCA feature extraction is applied, the
p-value is 7, since the feature extraction output of PCA has 7 features. The p-value does not
need to match with the number of futures. Coincidently, taking the p-value as the number
of features has good performance in the FPFE method.

By calculating the Minkowski distance between features of the TD and all RPs, k
RPs with k smallest Minkowski distances are selected. They are called RP candidates
whose locations are used to estimate the TD’s location, which will be described in the
next subsection.

3.4. TD Location Estimation with Locations of RP Candidates

The last step of the proposed FPFE method is to estimate the TD’s location based on the
locations of k RP candidates. Let (xi, yi), 1 ≤ i ≤ k, denote the location of ith RP candidate.
The TD’s location (x, y) is calculated simply as the centroid of the k RP candidates, as shown
in Equation (7). Different k values lead to different location estimations, as will be shown later.

(x, y) =
1
k

k

∑
i=1

(xi, yi) (7)

4. Experiments, Performance Evaluation, and an Application
4.1. Experimental Settings

Experiments are conducted in the A303 classroom of Engineering Building V of
National Central University. Four BLE BNs with coordinates (0,0), (0,8), (5,0), and (5,8) are
deployed at four corners on the ceiling in a 5 m × 8 m area, as shown in Figure 4. RPs are
specified right beneath the area. Five experimental scenarios with different RP settings are
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adopted to conduct experiments. The scenarios are 54 random RPs, 54 grid RPs, 93 random
RPs, 93 grid RPs, and 187 grid RPs, as shown in Figure 5. Furthermore, 12 arbitrary
locations are set as test points for evaluating FPFE performance (i.e., the localization error),
as shown in Figure 6. An Android application has been developed to measure RSSI values
of beacon packets sent by the BLE BNs. The Asus ZenFone 2 Laser smartphone (Asus,
Taipei, Taiwan) is used to run the application. The height of the phone is set as 1 m above
the floor since users in the room usually place their phones on the top of desks with about
1 m height.

Figure 4. The experimental environment for the FPFE method in a 5 m × 8 m area. Reprinted from
ref. [39]. © IEEE 2021.

Figure 5. Different experimental scenarios of (a) 54 random RPs, (b) 54 grid RPs, (c) 93 random RPs,
(d) 93 grid RPs, and (e) 187 grid RPs.
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Figure 6. The Illustration of 12 test points (TPs) and 4 beacon nodes (BNs).

Figure 7 shows an example of partial RSSI fingerprint data (signals) of 200 samples
recorded at two RPs, RP1 and RP2, for a specific BLE BN. It can be observed that the
signals are not stable. They fluctuate between −65 dB and −85 dB. This may be due to the
interference coming from surrounding environments. The instability of fingerprint data in
practice raises big challenges to fingerprint-based indoor localization methods.
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4.2. Performance Evaluation

The localization error of the FPFE method is evaluated for both the case using AE
feature extraction, denoted as FPFE-AE, and the case using the PCA feature extraction
denoted as FPFE-PCA. Figures 8–17 show the localization errors of FPFE-AE and FPFE-
PCA. Among the figures, Figure 8, Figure 10, Figure 12, Figure 14, and Figure 16 show
the cumulative distribution function (CDF) curves for the localization errors of FPFE-AE
and FPFE-PCA with k RP candidates, where k = 5, 6, 7, 8, 9, or 10. It can be observed
from these figures that FPFE-AE and FPFE-PCA have similar CDF curves, but FPFE-PCA’s
curves are usually on top of FPFE-AE’s. This means FPFE-PCA outperforms FPFE-AE.
However, FPFE-PCA’s curves usually cover wider error ranges than FPFE-AE’s. This
means FPFE-PCA has larger variances than FPFE-AE. This can also be observed from
Figure 9, Figure 11, Figure 13, Figure 15, and Figure 17, which show the localization error
box-whisker plots of FPFE-AE and FPFE-PCA for different k values, k = 5, 6, 7, 8, 9, or
10. In these box-whisker plots, the FPFE-PCA is usually taller (from the minimum to the
maximum) and has larger boxes (from the first quartile Q1 to the third quartile Q3) than
FPFE-AE. However, the FPFE-PCA usually has lower Q1 and Q2 (i.e., median) and usually
has a lower Q3 than FPFE-AE.
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where k = 5, 6, 7, 8, 9, and 10.
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Figure 13. The localization error box and whisker plots of FPFE with 93 random RPs for k RP
candidates, where k = 5, 6, 7, 8, 9, and 10.
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Figure 15. The localization error box and whisker plots of FPFE with 93 grid RPs for k RP candidates,
where k = 5, 6, 7, 8, 9, and 10.
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Figure 17. The localization error box and whisker plots of FPFE 187 grid RPs for k RP candidates,
where k = 5, 6, 7, 8, 9, and 10.
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Figures 18 and 19 show the localization error box-whisker plots and mean bar charts
of FPFE for different experimental scenarios with k = 7 RP candidates. It can be observed
from these two figures that FPFE-PCA is usually better than FPFE-AE under the same
experimental scenario, i.e., the identical number of RPs and the identical RP setting (random
or grid). It can also be observed that grid RPs result in better performance than random
RPs and that more RPs lead to better performance. Furthermore, more RPs achieve
better performance than fewer RPs. Or equivalently, smaller RP spacing leads to better
performance than larger RP spacing. That is to say, the scenario of 189 grid RPs allows
FPFE to achieve the best performance.

Figure 18. The localization error box and whisker plots of FPFE for different experimental scenarios
with k = 7 RP candidates.

Figure 19. The mean localization errors of FPFE for different experimental scenarios with k = 7
RP candidates.
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Table 1 shows the localization error statistics of FPFE-AE and FPFE-PCA under the
scenario of 187 grid RPs for different k values, k = 5, 6, 7, 8, 9, or 10. The statistics include
the maximum, median, mean, minimum, standard deviation, and variance. As shown in
Table 1, FPFE-AE usually has smaller variances than PFPE-PCA. FPFE-AE has the smallest
localization error of 0.09 m when k = 6, and it has the largest error of 1.67 m when k = 6.
FPFE-PCA has the smallest error of 0.08 m when k = 7, and it has the largest error of 2.13 m
when k = 5. Furthermore, FPFE-AE has the smallest mean (average error) of 0.70 m when
k = 8, whereas FPFE-PCA has the smallest mean of 0.68 m when k = 7.

Table 1. FPFE localization error statistics.

Methods Stats. k = 5 k = 6 k = 7 k = 8 k = 9 k = 10

FPFE-AE

Max 1.62 1.67 1.23 1.54 1.57 1.48

Median 1.08 0.87 0.85 0.61 0.71 0.68

Mean 0.98 0.90 0.73 0.70 0.76 0.80

Min 0.13 0.09 0.16 0.12 0.27 0.32

Std 0.58 0.46 0.37 0.41 0.42 0.37

Var 0.34 0.21 0.14 0.17 0.18 0.14

FPFE-PCA

Max 2.13 2.02 1.43 2.05 2.01 1.8

Median 0.56 0.59 0.71 0.51 0.59 0.49

Mean 0.79 0.77 0.68 0.73 0.74 0.74

Min 0.28 0.21 0.08 0.25 0.13 0.21

Std 0.56 0.53 0.41 0.49 0.49 0.50

Var 0.31 0.28 0.17 0.24 0.24 0.25

From the statistics in Table 1, as well as the CDF curves, box and whisker plots,
and mean bar charts in Figures 8–19, it can be observed that more RPs lead to better
performance. Under the scenario of 187 grid RPS, FPFE-AE is more stable than FPFE-PCA,
as FPFE-AE usually has smaller variances. Yet, PFE-PCA usually has better performance
than FPFE-AE in terms of the localization error. This is because the PCA is based on the
linear transformation that is effective when applied to a small dataset. On the contrary, the
AE is based on the nonlinear transformation that can generate more effective results when
applied to larger datasets. In experiments conducted in this research, the dataset fed into
the PCA and AE is small, as it has only 800 or less data items. This may account for the
better performance of FPFE-PCA. Furthermore, the AE model needs more time than PCA
for model training (or model construction). In summary, FPFE-AE is recommended when
stability is a major concern. However, FPFE-PCA is recommended to save computational
resources and to be used in environments with small datasets.

Below, the Minkowski distance similarity measurements of fingerprint features are
evaluated. As shown earlier, the Minkowski distance is also known as the Lp norm distance.
When p = 1, it is the Manhattan distance. When p = 2, it is the Euclidean distance. The
evaluation is for k = 7 RP candidates under the scenario of 187 grid RPs, as the FPFE method
has good performance for such a setting. Specifically, the evaluation is performed for the
Manhattan distance, Euclidean distance, and Minkowski distance with p = k = 7 (i.e., the L7
norm distance). The evaluation results are presented in Table 2. It can be observed that the
Minkowski distance with p = k = 7 (i.e., the L7 norm distance) makes both FPFE-AE and
FPFE-PCA achieve the best performance.
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Table 2. Evaluations for different distance similarity measurements for k = 7 RP candidates under the
scenario of 187 grid RPs.

Methods Manhattan Distance (m) Euclidean Distance (m) Minkowski Distance (m)

FPFE-AE 0.97 0.91 0.73
FPFE-PCA 0.91 0.80 0.68

4.3. Performance Comparison

The proposed FPFE method with k = 7 RPs is compared with five related BLE
fingerprint-based localization methods [16,22–24,27]. The comparisons are for the cases of
FPFE using AE feature extraction (FPFE-AE) and FPFE using the PCA feature extraction
(FPFE-PCA). The methods are compared in the aspects of the localization area size, the
number of BNs, and the minimum, the average, and the maximum localization errors. As
shown in Section 2, Zuo et al. [16] used graph optimization to achieve the best result of
1.27 m on average. Martins et al. [22] utilized a Gaussian kernel-based fingerprinting con-
cept to achieve errors that are less than 1.5 m for 90% of test cases. Subedi et al. [23] used a
two-step fingerprint-based localization approach, resulting in an average localization error
of 1.05 m. Li et al. [24] employed the eight-neighborhood template-matching mechanism to
achieve an average localization error of 1.0 m. Dinh et al. [27] proposed a lightweight and
reliable fingerprint-based method using PDR, bringing about the average and maximum
localization errors of 0.81 and 2.11 m, respectively. Table 3 shows the comparisons of
FPFE and other methods. By the comparison results, the proposed FPFE method achieves
the average localization errors of 0.74 m (for FPFE-AE) and 0.68 m (for FPFE-PCA) and
significantly outperforms the other related methods.

Table 3. Comparisons of FPFE-AE and FPFE-PCA with other fingerprint-based methods.

Research Method Area Size (m) Number of BNs Minimum Error
(m)

Average Error
(m)

Maximum Error
(m)

Zuo et al. [16]
Fingerprint-based and

range-based graph
optimization

90 × 37 24 1.27 3.07

Martins et al. [22] Fingerprint-based
Gaussian kernel 200 × 40 45 - 1.5 -

Subedi et al. [23] Fingerprint-based
weighted centroid 93.3 × 2.67 28 - 1.05 -

Li et al. [24]
Fingerprint-based

eight-neighborhood
template matching

8 × 8 4 - 1.0 -

Dinh et al. [27] Fingerprint-based PDR 15 × 25 8 - 0.81 2.114

This Research FPFE-AE 5 × 8 4 0.16 0.73 1.23

This Research FPFE-PCA 5 × 8 4 0.08 0.68 1.43

Since FPFE is based on the RF BLE technology, we compare, qualitatively, the BLE
technology with other RF technologies, as well as with the optical, IR, and MS technologies,
adopted by indoor localization methods. The comparison results in terms of the cost,
coverage, and public infrastructure requirement are shown in Table 4. Using optical or
vision-based TDs is medium cost since high-performance devices are needed to perform
image processing for indoor localization. The drawback of optical technologies is the
accuracy, and the coverage may be low because of the interference from numerous factors
such as strong light, and motion blur. IR devices have the LOS limitation, which makes
the coverage low, whereas the cost of IR devices is medium. MSs have low costs, whereas
their coverage is medium even though errors are accumulated over a distance. Wi-Fi access
points have medium costs, whereas they have medium coverage. The UWB technology
has a high setup cost, whereas its coverage is low since it is for short-range communica-
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tions. BLE devices have low cost, and their coverage is low as it is also for short-range
communications. Cellular technology has high coverage and has a high cost because it
needs to set up the costly public infrastructure of extensive base stations using licensed
frequency bands. Unlike cellular technology, other technologies need no pre-established
public infrastructure.

Table 4. Comparisons of RF technologies for indoor localization.

Devices Cost Coverage Public Infrastructure

Optical Medium Low No

Infrared Medium Low No

Mechanical sensor Low Medium No

BLE Low Low No

Wi-Fi Medium Medium No

UWB High Low No

Cellular High High Yes

4.4. An FPFE Application

This subsection describes a prototype application based on an FPFE for smart homes.
The application is under development and intended to be implemented in the form of
an Android app for assisting people to live smartly at home. A screenshot of the app is
shown in Figure 20. In the screenshot, the red indicator on the right side is the current user
location, and the blue dots are several latest locations of the user.

Figure 20. Screenshot of a smart home app prototype using FPFE.

With the aid of FPFE, the app offers convenient services to residents staying at home.
For example, FPFE can enable the app to make a home more energy-efficient and more
context-aware. When a user moves to a spot in the living room, the lamp near the spot will
be turned on. The lamp will be automatically turned off when the user moves far away
from the spot or leaves the living room for a long enough time. For another example, FPFE
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can enable the app to remind users if they forget to lock the door on leaving home. The
app can even lock the door on the request of users for the sake of security.

5. Conclusions

This paper proposes FPFE, a BLE fingerprint-based indoor localization method on
the basis of fingerprint feature extraction using either AE or PCA. FPFE also relies on the
Minkowski distance for measuring the similarity between the features of the TD and all
RPs to select k RP candidates for TD location estimation. FPFE is compared with other BLE
fingerprint-based methods [16,22–24,27] to show its superiority in terms of the location er-
ror. The compared methods are the fingerprint-based and range-based graph optimization
methods [16], the fingerprint-based Gaussian kernel method [22], the fingerprint-based
weighted centroid method [23], the fingerprint-based eight-neighborhood template match-
ing method [24], and the fingerprint-based PDR method [27]. Consequently, FPFE achieves
an average localization error of 0.7 m with AE feature extraction for k = 8, and an error of
0.68 m with PCA feature extraction for k = 7. An Android app for smart homes utilizing
FPFE is under development. The accurate localization results of FPFE enable the app to
make living at home more energy-efficient and more context-aware.

Tiglao et al. [40] reviewed the state-of-the-art of smartphone-based indoor localiza-
tion. The authors mentioned ten open challenges in indoor localization: 3D localization,
hardware dependency, power consumption, accuracy, heading inference, heterogeneous
hardware, latency improvement, step counting, map generation, and multi-floor localiza-
tion. Our research contributes to improving the accuracy with low power consumption to
fill the gap between FPFE and other BLE indoor localization methods.

However, the proposed FPFE method still has room for improvement. For example,
FPFE takes about 2 min to collect fingerprint data for an RP, and a total of 6.2 h for 187 RPs.
Collecting RP’s fingerprint data is a time-consuming and labor-intensive task. In the future,
we plan to apply the ray tracing (RT) fingerprint estimation mechanism [41] to perform the
task to save time and labor. RT fingerprint estimation usually takes LOS, specular reflection
and diffraction, and diffusion scattering into consideration. However, we need to handle
significant discrepancies between measured fingerprints and RT-estimated fingerprints in
the situation of non-line-of-sight (NLOS) and high scattering complexity.

When the environment changes (e.g., the temperature varies or the TD alters), the
performance of FPFE degrades. For example, when the TD alters from an Asus phone
to a Sony phone, the mean localization errors become 2.07 m for FPFE-AE and 2.03 m
for FPFE-PCA. It is thus necessary to recollect fingerprint data and retrain PCA and AE
models. Using a desktop computer with a 3.4 GHz Core i5-7500 CPU and 16 GB RAM
to construct (or train) a PCA (resp., AE) model for extracting features of 187 RPs takes
around 2 s (resp., 7 min). The model training time should be reduced so that FPFE can
react to changes in the environment in less time. In the future, we plan to employ the
transfer learning concept [42] to train models for a target domain (i.e., a new environment)
by leveraging the models for the source domain (i.e., the old environment) with only a few
training data. By deep learning, we only need to collect fingerprint data of a few PRs for
training AE or PCA models. In this way, the time consumed in collecting fingerprint data
and training models can be significantly reduced.

FPFE is currently applied to a 5 m × 8 m indoor area for the purpose of localization.
The localization area should be enlarged so that FPFE can be applied to applications with
large localization areas. In the future, we plan to apply the FPFE method to large indoor
areas. Furthermore, we also plan to extend FPFE to continuously track the locations of the
TD that arbitrarily moves in a large indoor area with advanced technology, like Bayesian
inference and long short-term memory (LSTM) neural networks.

FPFE relies on BLE BNs to perform indoor localization. Since BLE BNs are powered
by batteries, they may sometimes fail, degrading FPFE performance and even preventing
FPFE from working. Therefore, we need to deal with BN faults to make FPFE fault-
tolerant. Carvalho et al. [10] considered two types of failures, momentary failures and
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permanent failures, and designed a fault-tolerant indoor localization system through
different recurrent neural networks (RNNs) such as simple RNN, gated recurrent unit
(GRU) neural network, and the long short-term memory (LSTM) neural network. In the
future, we plan to utilize novel neural networks such as the long short-term cognitive
network (LSTCN) [43] to make FPFE fault-tolerant.

The localization accuracy of FPFE using the BLE technology is sub-meter, which can
meet the requirements of some applications such as smart homes. In light of the research
result of reference [44], we plan to study the accuracy bound of FPFE and will try to push
it to the limit of the bound. Alternatively, we may need to use different RF technologies to
develop novel localization methods for specific location-based applications that require
centimeter or even sub-centimeter accuracy. In the future, we plan to investigate fingerprint-
based methods [45–55] using different RF technologies, as described below.

Many fingerprint-based localization methods rely on RF fingerprints to achieve the
submeter, centimeter, or even sub-centimeter level of localization accuracy. Those methods
use different RF technologies, including the Wi-Fi frequency-hopping approach [45], UWB
spatial signal prediction [46], IEEE 802.11ad mmWaves [47], 5G massive MIMO [48,49],
cellular time-reversal technique [50], Wi-Fi channel responses from multiple OFDM sub-
carriers [51], Wi-Fi time-reversal radio transmission [52], Wi-Fi ray tracing [53], BLE ray
tracing [41], and 6G reconfigurable intelligent surface (RISs) [54,55]. Three types of diver-
sities are adopted by the methods to ink fingerprints, which are spatial diversity [47–49],
spectral diversity [45,46,50–52], and configurational diversity [54,55]. Methods based
on different diversity to ink fingerprints need different hardware support and spectrum
allotment, causing various advantages and disadvantages. We plan to investigate the
advantages and disadvantages to find appropriate diversities for designing indoor lo-
calization methods achieving desirable localization accuracy with affordable resources
consumed. We have also noticed that the search [56] proposes using wave fingerprints
(WFPs) for localization in dynamic complex environments. It investigates the correlation of
WFRs and shows that WFP localization is possible even in a highly perturbed environment.
Using WFPs for indoor localization is thus a promising research direction.

Author Contributions: Conceptualization, J.-R.J. and H.-S.L.; funding acquisition, J.-R.J.; investiga-
tion, J.-R.J. and H.-S.L.; methodology, J.-R.J., H.S. and H.-S.L.; software, H.S. and H.-S.L.; supervision,
J.-R.J.; validation, J.-R.J., H.S. and H.-S.L.; writing—original draft, J.-R.J., H.S. and H.-S.L.; writing—
review & editing, J.-R.J. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Ministry of Science and Technology (MOST), Taiwan,
under the grant number 109-2622-E-008-028-.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Zafari, F.; Gkelias, A.; Leung, K.K. A Survey of Indoor Localization Systems and Technologies. IEEE Commun. Surv. Tutor. 2019,

21, 2568–2599. [CrossRef]
2. Bazo, R.; da Costa, C.A.; Seewald, L.A.; da Silveira, L.G.; Antunes, R.S.; Righi, R.D.R.; Rodrigues, V.F. A Survey About Real-Time

Location Systems in Healthcare Environments. J. Med. Syst. 2021, 45, 1–13. [CrossRef]
3. Witrisal, K.; Meissner, P.; Leitinger, E.; Shen, Y.; Gustafson, C.; Tufvesson, F.; Haneda, K.; Dardari, D.; Molisch, A.F.; Conti, A.; et al.

High-Accuracy Localization for Assisted Living: 5G systems will turn multipath channels from foe to friend. IEEE Signal Process.
Mag. 2016, 33, 59–70. [CrossRef]

4. Rácz-Szabó, A.; Ruppert, T.; Bántay, L.; Löcklin, A.; Jakab, L.; Abonyi, J. Real-Time Locating System in Production Management.
Sensors 2020, 20, 6766. [CrossRef]

5. Sakpere, W.; Oshin, M.A.; Mlitwa, N.B. A State-of-the-Art Survey of Indoor Positioning and Navigation Systems and Technologies.
S. Afr. Comput. J. 2017, 29, 145–197. [CrossRef]

6. Geok, T.K.; Aung, K.Z.; Aung, M.S.; Soe, M.T.; Abdaziz, A.; Liew, C.P.; Hossain, F.; Tso, C.P.; Yong, W.H. Review of Indoor
Positioning: Radio Wave Technology. Appl. Sci. 2020, 11, 279. [CrossRef]

7. Want, R.; Hopper, A.; Falcão, V.; Gibbons, J. The active badge location system. ACM Trans. Inf. Syst. 1992, 10, 91–102. [CrossRef]
8. Arbula, D.; Ljubic, S. Indoor Localization Based on Infrared Angle of Arrival Sensor Network. Sensors 2020, 20, 6278. [CrossRef]

[PubMed]

http://doi.org/10.1109/COMST.2019.2911558
http://doi.org/10.1007/s10916-021-01710-1
http://doi.org/10.1109/MSP.2015.2504328
http://doi.org/10.3390/s20236766
http://doi.org/10.18489/sacj.v29i3.452
http://doi.org/10.3390/app11010279
http://doi.org/10.1145/128756.128759
http://doi.org/10.3390/s20216278
http://www.ncbi.nlm.nih.gov/pubmed/33158151


Sensors 2021, 21, 5434 21 of 22

9. Subbu, K.P.; Gozick, B.; Dantu, R. Locate Me: Magnetic-fields-based indoor localization using smartphones. ACM Trans. Intell.
Syst. Technol. 2013, 4, 1–27. [CrossRef]

10. Carvalho, E.C.; Ferreira, B.V.; Filho, G.P.R.; Gomes, P.H.; Freitas, G.M.; Vargas, P.A.; Ueyama, J.; Pessin, G. Towards a Smart Fault
Tolerant Indoor Localization System Through Recurrent Neural Networks. In Proceedings of the International Joint Conference
on Neural Networks (IJCNN 2019), Budapest, Hungary, 14–19 July 2019; pp. 1–7.

11. Dian, F.J.; Yousefi, A.; Lim, S. A practical study on Bluetooth Low Energy (BLE) throughput. In Proceedings of the IEEE 9th
Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON 2018), Vancouver, BC, Canada,
1–3 November 2018; pp. 768–771. [CrossRef]

12. Tiemann, J.; Wietfeld, C. Scalability, Real-Time Capabilities, and Energy Efficiency in Ultra-Wideband Localization. IEEE Trans.
Ind. Inform. 2019, 15, 6313–6321. [CrossRef]

13. Ma, Y.; Zhou, G.; Wang, S. WiFi sensing with channel state information: A survey. ACM Comput. Surv. 2019, 52, 1–36. [CrossRef]
14. Huang, S.; Zhao, K.; Zheng, Z.; Ji, W.; Li, T.; Liao, X. An Optimized Fingerprinting-Based Indoor Positioning with Kalman Filter

and Universal Kriging for 5G Internet of Things. Wirel. Commun. Mob. Comput. 2021, 2021, 9936706. [CrossRef]
15. Jiang, J.-R.; Subakti, H.; Chen, C.-C.; Sakai, K. PINUS: Indoor Weighted Centroid Localization with Crowdsourced Calibration. In

Communications in Computer and Information Science; Springer Science and Business Media LLC: Berlin/Heidelberg, Germany,
2019; pp. 433–443.

16. Zuo, Z.; Liu, L.; Zhang, L.; Fang, Y. Indoor Positioning Based on Bluetooth Low-Energy Beacons Adopting Graph Optimization.
Sensors 2018, 18, 3736. [CrossRef]

17. Li, G.; Geng, E.; Ye, Z.; Xu, Y.; Lin, J.; Pang, Y. Indoor Positioning Algorithm Based on the Improved RSSI Distance Model. Sensors
2018, 18, 2820. [CrossRef]

18. Giovanelli, D.; Farella, E.; Fontanelli, D.; Macii, D. Bluetooth-Based Indoor Positioning Through ToF and RSSI Data Fusion. In
Proceedings of the International Conference on Indoor Positioning and Indoor Navigation (IPIN 2018), Nantes, France, 24–27
October 2018; pp. 1–8.

19. Tegou, T.; Kalamaras, I.; Votis, K.; Tzovaras, D. A low-cost room-level indoor localization system with easy setup for medical
applications. In Proceedings of the 11th IFIP Wireless and Mobile Networking Conference (WMNC 2018), Prague, Czech Republic,
3–5 September 2018; pp. 1–7.

20. Mussina, A.; Aubakirov, S. RSSI Based Bluetooth Low Energy Indoor Positioning. In Proceedings of the IEEE 12th International
Conference on Application of Information and Communication Technologies (AICT 2018), Almaty, Kazakhstan, 17–19 October
2018; pp. 1–4.

21. Mackey, A.; Spachos, P.; Plataniotis, K. Enhanced Indoor Navigation System with Beacons and Kalman Filters. In Proceedings of
the IEEE Global Conference on Signal and Information Processing (GlobalSIP 2018), Anaheim, CA, USA, 26–29 November 2018;
pp. 947–950.

22. Martins, P.; Abbasi, M.; Sá, F.; Celiclio, J.; Morgado, F.; Caldeira, F. Intelligent beacon location and fingerprinting. Procedia Comput.
Sci. 2019, 151, 9–16. [CrossRef]

23. Subedi, S.; Gang, H.-S.; Ko, N.Y.; Hwang, S.-S.; Pyun, J.-Y. Improving Indoor Fingerprinting Positioning With Affinity Propagation
Clustering and Weighted Centroid Fingerprint. IEEE Access 2019, 7, 31738–31750. [CrossRef]

24. Li, M.; Zhao, L.; Tan, D.; Tong, X. BLE Fingerprint Indoor Localization Algorithm Based on Eight-Neighborhood Template
Matching. Sensors 2019, 19, 4859. [CrossRef] [PubMed]

25. Malekzadeh, P.; Mohammadi, A.; Barbulescu, M.; Plataniotis, K. STUPEFY: Set-Valued Box Particle Filtering for Bluetooth Low
Energy-Based Indoor Localization. IEEE Signal Process. Lett. 2019, 26, 1773–1777. [CrossRef]

26. Mouhammad, C.S.; Allam, A.; Abdel-Raouf, M.; Shenouda, E.; Elsabrouty, M. BLE Indoor Localization based on Improved
RSSI and Trilateration. In Proceedings of the 7th International Japan-Africa Conference on Electronics, Communications, and
Computations, (JAC-ECC 2019), Alexandria, Egypt, 15–16 December 2019; pp. 17–21.

27. Dinh, T.-M.T.; Duong, N.-S.; Sandrasegaran, K. Smartphone-Based Indoor Positioning Using BLE iBeacon and Reliable
Lightweight Fingerprint Map. IEEE Sens. J. 2020, 20, 10283–10294. [CrossRef]

28. Kluge, T.; Groba, C.; Springer, T. Trilateration, Fingerprinting, and Centroid: Taking Indoor Positioning with Bluetooth LE to the
Wild. In Proceedings of the IEEE 21st International Symposium on “A World of Wireless, Mobile and Multimedia Networks”
(WoWMoM 2020), Cork, Ireland, 31 August–3 September 2020; pp. 264–272.

29. Li, Z.; Cao, J.; Liu, X.; Zhang, J.; Hu, H.; Yao, D. A Self-Adaptive Bluetooth Indoor Localization System using LSTM-based
Distance Estimator. In Proceedings of the 29th International Conference on Computer Communications and Networks (ICCCN
2020), Honolulu, HI, USA, 3–6 August 2020; pp. 1–9.

30. Pakanon, N.; Chamchoy, M.; Supanakoon, P. Study on Accuracy of Trilateration Method for Indoor Positioning with BLE Beacons.
In Proceedings of the 6th International Conference on Engineering, Applied Sciences and Technology (ICEAST 2020), Chiang
Mai, Thailand, 1–4 July 2020; pp. 1–4.

31. Kotrotsios, K.; Orphanoudakis, T. Accurate Gridless Indoor Localization Based on Multiple Bluetooth Beacons and Machine
Learning. In Proceedings of the 7th International Conference on Automation, Robotics and Applications (ICARA 2021), Prague,
Czech Republic, 4–6 February 2021; pp. 190–194.

http://doi.org/10.1145/2508037.2508054
http://doi.org/10.1109/iemcon.2018.8614763
http://doi.org/10.1109/TII.2019.2892727
http://doi.org/10.1145/3310194
http://doi.org/10.1155/2021/9936706
http://doi.org/10.3390/s18113736
http://doi.org/10.3390/s18092820
http://doi.org/10.1016/j.procs.2019.04.005
http://doi.org/10.1109/ACCESS.2019.2902564
http://doi.org/10.3390/s19224859
http://www.ncbi.nlm.nih.gov/pubmed/31703444
http://doi.org/10.1109/LSP.2019.2945402
http://doi.org/10.1109/JSEN.2020.2989411


Sensors 2021, 21, 5434 22 of 22

32. Zhu, Y.; Luo, X.; Guan, S.; Wang, Z. Indoor Positioning Method Based on WiFi/Bluetooth and PDR Fusion Positioning. In
Proceedings of the 13th International Conference on Advanced Computational Intelligence (ICACI 2021), Chongqing, China,
14–16 May 2021; pp. 233–238.

33. Hu, Q.; Wu, F.; Wong, R.K.; Millham, R.C.; Fiaidhi, J. A novel indoor localization system using machine learning based on
bluetooth low energy with cloud computing. Computing 2021, 1–27. [CrossRef]

34. Nessa, A.; Adhikari, B.; Hussain, F.; Fernando, X.N. A Survey of Machine Learning for Indoor Positioning. IEEE Access 2020, 8,
214945–214965. [CrossRef]

35. Kunang, Y.N.; Nurmaini, S.; Stiawan, D.; Zarkasi, A.; Firdaus; Jasmir, F. Automatic Features Extraction Using Autoencoder in
Intrusion Detection System. In Proceedings of the International Conference on Electrical Engineering and Computer Science
(ICECOS 2018), Bangka, Indonesia, 2–4 October 2018; pp. 219–224.

36. Wang, Z.; Zhang, X.; Wang, W.; Shi, L.; Huang, C.; Wang, J.; Zhang, Y. Deep Convolutional Auto-Encoder based Indoor Light
Positioning Using RSS Temporal Image. In Proceedings of the IEEE International Symposium on Broadband Multimedia Systems
and Broadcasting (BMSB 2019), Jeju, Korea, 5–7 June 2019; pp. 1–5. [CrossRef]

37. Zhang, L.; Tan, T.; Gong, Y.; Yang, W. Fingerprint Database Reconstruction Based on Robust PCA for Indoor Localization. Sensors
2019, 19, 2537. [CrossRef]

38. Khaldi, B.; Harrou, F.; Cherif, F.; Sun, Y. Improving robots swarm aggregation performance through the Minkowski distance
function. In Proceedings of the 6th International Conference on Mechatronics and Robotics Engineering (ICMRE 2020), Munich,
Germany, 10–12 February 2020; pp. 87–91.

39. Subakti, H.; Liang, H.-S.; Jiang, J.-R. Indoor Localization with Fingerprint Feature Extraction. In Proceedings of the IEEE Eurasia
Conference on IOT, Communication and Engineering (ECICE 2020), Yunlin, Taiwan, 23–25 October 2020; pp. 239–242.

40. Tiglao, N.M.; Alipio, M.; Cruz, R.D.; Bokhari, F.; Rauf, S.; Khan, S.A. Smartphone-based indoor localization techniques: State-of-
the-art and classification. Measurement 2021, 179, 109349. [CrossRef]

41. Renaudin, O.; Zemen, T.; Burgess, T. Ray-Tracing Based Fingerprinting for Indoor Localization. In Proceedings of the IEEE 19th
International Workshop on Signal Processing Advances in Wireless Communications (SPAWC 2018), Kalamata, Greece, 25–28
June 2018; pp. 1–5. [CrossRef]

42. Agarwal, N.; Sondhi, A.; Chopra, K.; Singh, G. Transfer Learning: Survey and Classification. In Advances in Intelligent Systems and
Computing; Springer Science and Business Media LLC: Berlin/Heidelberg, Germany, 2020; pp. 145–155.

43. Nápoles, G.; Grau, I.; Jastrzebska, A.; Salgueiro, Y. Long Short-term Cognitive Networks. arXiv 2021, arXiv:2106.16233.
44. del Hougne, M.; Gigan, S.; del Hougne, P. Deeply Subwavelength Localization with Reverberation-Coded Aperture. Phys. Rev.

Lett. 2021, 127, 043903. [CrossRef] [PubMed]
45. Chen, C.; Chen, Y.; Han, Y.; Lai, H.-Q.; Liu, K.J.R. Achieving Centimeter Accuracy Indoor Localization on WiFi Platforms: A

Frequency Hopping Approach. IEEE Internet Things J. 2016, 4, 111–121. [CrossRef]
46. Steiner, C.; Wittneben, A. Efficient Training Phase for Ultrawideband-Based Location Fingerprinting Systems. IEEE Trans. Signal

Process. 2011, 59, 6021–6032. [CrossRef]
47. Vari, M.; Cassioli, D. mmWaves RSSI indoor network localization. In Proceedings of the IEEE International Conference on

Communications Workshops (ICC 2014), Sydney, Australia, 10–14 June 2014; pp. 127–132.
48. Savic, V.; Larsson, E.G. Fingerprinting-Based Positioning in Distributed Massive MIMO Systems. In Proceedings of the IEEE

82nd Vehicular Technology Conference (VTC2015-Fall), Boston, MA, USA, 6–9 September 2015; pp. 1–5.
49. Vieira, J.; Leitinger, E.; Sarajlic, M.; Li, X.; Tufvesson, F. Deep convolutional neural networks for massive MIMO fingerprint-

based positioning. In Proceedings of the IEEE 28th Annual International Symposium on Personal, Indoor, and Mobile Radio
Communications (PIMRC 2017), Montreal, QB, Canada, 10–13 October 2017; pp. 1–6.

50. Jin, Y.; O’Donoughue, N.; Moura, J.M.F. Position location by time reversal in communication networks. In Proceedings of the
2008 IEEE International Conference on Acoustics, Speech and Signal Processing, Las Vegas, NV, USA, 30 March–4 April 2008; pp.
3001–3004.

51. Sen, S.; Radunovic, B.; Choudhury, R.R.; Minka, T. You are facing the Mona Lisa: Spot localization using PHY layer information.
In Proceedings of the 10th International Conference on Mobile Systems, Applications, and Services, Lake District, UK, 25–29 June
2012; pp. 183–196.

52. Wu, Z.-H.; Han, Y.; Chen, Y.; Liu, K.J.R. A Time-Reversal Paradigm for Indoor Positioning System. IEEE Trans. Veh. Technol. 2015,
64, 1331–1339. [CrossRef]

53. Del Corte-Valiente, A.; Gómez-Pulido, J.M.; Gutiérrez-Blanco, O.; Castillo-Sequera, J.L. Localization Approach Based on Ray-
Tracing Simulations and Fingerprinting Techniques for Indoor–Outdoor Scenarios. Energies 2019, 12, 2943. [CrossRef]

54. Alexandropoulos, G.C.; Shlezinger, N.; del Hougne, P. Reconfigurable Intelligent Surfaces for Rich Scattering Wireless Communi-
cations: Recent Experiments, Challenges, and Opportunities. IEEE Commun. Mag. 2021, 59, 28–34. [CrossRef]

55. Abu-Shaban, Z.; Keykhosravi, K.; Keskin, M.F.; Alexandropoulos, G.C.; Seco-Granados, G.; Wymeersch, H. Near-field localization
with a reconfigurable intelligent surface acting as lens. arXiv 2020, arXiv:2010.05617.

56. Del Hougne, P. Robust position sensing with wave fingerprints in dynamic complex propagation environments. Phys. Rev. Res.
2020, 2, 043224. [CrossRef]

http://doi.org/10.1007/s00607-020-00897-4
http://doi.org/10.1109/ACCESS.2020.3039271
http://doi.org/10.1109/bmsb47279.2019.8971861
http://doi.org/10.3390/s19112537
http://doi.org/10.1016/j.measurement.2021.109349
http://doi.org/10.1109/spawc.2018.8445928
http://doi.org/10.1103/PhysRevLett.127.043903
http://www.ncbi.nlm.nih.gov/pubmed/34355940
http://doi.org/10.1109/JIOT.2016.2628701
http://doi.org/10.1109/TSP.2011.2166390
http://doi.org/10.1109/TVT.2015.2397437
http://doi.org/10.3390/en12152943
http://doi.org/10.1109/MCOM.001.2001117
http://doi.org/10.1103/PhysRevResearch.2.043224

	Introduction 
	Related Work 
	Proposed Method 
	Fingerprint Data Collection and Normalization 
	Fingerprint Feature Extraction with AE or PCA 
	AE Feature Extraction 
	PCA Feature Extraction 

	RP Candidates Selection with Fingerprint Minkowski Distance 
	TD Location Estimation with Locations of RP Candidates 

	Experiments, Performance Evaluation, and an Application 
	Experimental Settings 
	Performance Evaluation 
	Performance Comparison 
	An FPFE Application 

	Conclusions 
	References

