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Abstract
Background: Thymidylate synthase (TS) is a critical target for cancer chemotherapy and is one of
the most extensively studied biomarkers for fluoropyrimidine-based chemotherapy. In addition to
its critical role in enzyme catalysis, TS functions as an RNA binding protein to regulate the
expression of its own mRNA translation and other cellular mRNAs, such as p53, at the translational
level. In this study, a comprehensive gene expression analysis at the levels of both transcriptional
and post-transcriptional regulation was conducted to identify response markers using human
genome array with TS-depleted human colon cancer HCT-C18 (TS-) cells and HCT-C18 (TS+)
cells stably transfected with the human TS cDNA expression plasmid.

Results: A total of 38 genes were found to be significantly affected by TS based on the expression
profiles of steady state mRNA transcripts. However, based on the expression profiles of polysome
associated mRNA transcripts, over 149 genes were affected by TS overexpression. This indicates
that additional post-transcriptionally controlled genes can be captured with profiling polysome
associated mRNA population. This unique approach provides a comprehensive overview of genes
affected by TS. Additional novel post-transcriptionally regulated genes affected by 5-fluorouracil (5-
FU) treatment were also discovered via similar approach.

Conclusion: To our knowledge, this is the first time that a comprehensive gene expression profile
regulated by TS and 5-FU was analyzed at the multiple steps of gene regulation. This study will
provide candidate markers that can be potentially used for predicting therapeutic outcomes for
fluoropyrimidine-based cancer chemotherapy.

Background
Thymidylate synthase (TS) is a folate-dependent enzyme
that catalyzes the reductive methylation of dUMP by 5,10-
methylenetetrahydrofolate to form dTMP and dihydro-
folate [1,2]. Because the TS-catalyzed enzymatic reaction

provides the sole intracellular de novo source of thymi-
dylate, an essential precursor for DNA biosynthesis, this
enzyme has been an important target for cancer chemo-
therapy for the past 50 years [3-5]. TS is also one of the
most extensively investigated biomarkers in recent years
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[6-10]. In certain cases, TS has been shown to be a signif-
icant biomarker for predicting patient responses to 5-FU
based therapy. However, in other studies, the expression
level of TS alone is not sufficient for clinical prognosis.
The goal of this study is to provide global comprehensive
gene profiles and networks at multiple levels of gene reg-
ulation that are affected by endogenous levels of TS pro-
tein and 5-FU administration. This information will
provide the basis to identity biomarker gene candidates
that can be further validated using clinical samples for
future clinical diagnosis and prognosis.

The rational for investigating genes affected by TS and 5-
FU at both transcriptional and post-transcriptional levels
is that TS, in addition to its critical enzymatic function,
functions as a RNA binding protein [11]. The translation
of human TS mRNA is regulated by its own protein prod-
uct via a negative autoregulatory mechanism whereby the
binding of TS protein to at least two distinct sequences on
its own TS mRNA results in translational repression
[12,13]. TS is also capable of interacting with several other
cellular mRNAs such as p53 mRNA and c-Myc mRNA
[14,15]. Previous studies demonstrated that TS protein
regulates p53 gene expression at least in part, at the trans-
lational level [16]. In this case, TS may be involved in
coordinating the regulation of expression and/or function
of cellular growth and proliferation and it is conceivable
that TS may play an essential role as a regulator of cell
cycle related events. More importantly, this study will
have direct clinical relevance in that the mechanism of
acute and long term 5-FU related drug resistance is dis-
tinct. The acute induction of TS expression after 5-FU
treatment was regulated at the translational level and long
term resistance for 5-FU is related to transcriptional acti-
vation and gene amplification of TS [17]. Thus, it would

be particularly important to systematically investigate
other potential post-transcriptional regulated genes via TS
protein. This may be especially vital for the discovery of
additional chemotherapeutic response related markers
that otherwise would be missed by simply profiling steady
state total mRNAs [18]. A recent report suggested that TS
may also function as an oncogene to transform NIH3T3
cells [19]. A comprehensive gene expression profiling
analysis may also gain new insights into signaling path-
ways that were deregulated by over-expression of TS. In
this regard, it is critical to develop more comprehensive
molecular expression profiles to provide candidate genes
that can potentially be used for predicting clinical out-
comes for colorectal cancer.

In this study, a systems biology approach was used to
investigate genes altered by the overexpression of TS at
both transcriptional and post-transcriptional levels using
human genome expression array in TS-depleted human
colon cancer HCT-C18(TS-) cells and HCT-C18 (TS+)
cells stably transfected with the human TS cDNA expres-
sion plasmid. In addition, both cell lines were treated with
5-FU for different time periods in an attempt to identify
both acute response genes as well as delayed response
genes affected by the 5-FU exposure. A number of genes
were identified by comparing the expression profiles
obtained from both steady state total mRNAs and polys-
ome associated mRNA transcripts isolated from 5-FU
treated HCT-C18 (TS-) and HCT-C18 (TS+) cells. Com-
prehensive gene lists were generated that were relevant for
both TS dependent and independent cytotoxicity by 5-FU
exposure. We also discovered genes and pathways that
may be involved for the oncogenic function of TS.

Results
Characterization of HCT-C18 (TS-) and HCT-C18 (TS+) 
cells
The HCT-C18 (TS-) cell line contains a missense mutation
at amino acid 216 of the TS protein that results in a near
complete inactivation of TS enzyme activity [20]. HCT-
C18 (TS+) cells were stably transfected with an expression
construct containing full length human TS cDNA. HCT-
C18 (TS+) cells were able to grow without thymidine sup-
plement in the media [16,20]. However, HCT-C18 (TS-)
cells require 10 µM thymidine in RPMI1640 medium. The
doubling times of both cells were identical at 24 hrs.

Previous study has demonstrated that the mechanism for
the decreased p53 expression occurred at the translational
level [16]. We use p53 as a positive control gene for mon-
itoring our high throughput expression profiling
approach. Our microarray gene expression analysis indi-
cates that there is no difference in the expression level of
p53 based on steady state total mRNA (Additional file 1).
However, the expression level of actively translated p53

Effect of 5-FU on p53 and TS expression via Western immu-noblot analysisFigure 1
Effect of 5-FU on p53 and TS expression via Western immu-
noblot analysis. Equal amounts (25 µg) of protein extracts 
from both control and 5-FU treated HCT-C18 (TS+) cells 
were loaded and resolved with 10%
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Clustering analysis of genes expression affected by TS overexpression with HCT-C18 (TS+) (Lane 1) vs. HCT-C18 (TS-) (Lane 2) based on the profiles of steady state total mRNAsFigure 2
Clustering analysis of genes expression affected by TS overexpression with HCT-C18 (TS+) (Lane 1) vs. HCT-C18 (TS-) (Lane 
2) based on the profiles of steady state total mRNAs. One-way ANOVA analysis was used for the gene clustering with p < 
0.05.
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Clustering analysis of genes expression affected by TS overexpression with HCT-C18 (TS+) (Lane 1) vs. HCT-C18 (TS-) (Lane 2) based on the profiles of polysome associated mRNAsFigure 3
Clustering analysis of genes expression affected by TS overexpression with HCT-C18 (TS+) (Lane 1) vs. HCT-C18 (TS-) (Lane 
2) based on the profiles of polysome associated mRNAs. One-way ANOVA analysis was used for the gene clustering with p < 
0.05.
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mRNA in HCT-C18 (TS+) cells was found to decrease by
4.5-fold compared to the p53 mRNA level in HCT-C18
(TS-) cells (Additional file 2). This is consistent with our
previous results that p53 was regulated at the translational
level via TS [16].

Effect of 5-FU on the expression of TS and p53
The effect of 5-FU on the expression of both TS and p53
was investigated using Western immunoblot analysis.
HCT-C18 (TS+) cells were treated with 10 µM 5-FU for 4
hrs and 24 hrs. TS protein expression was increased by
nearly 4-fold (lane 2) at 4 hrs and 10-fold at 24 hrs (lane
3) (Figure 1). The TS-FdUMP-tetrahydrofolate covalent
ternary complex was clearly visible after 5-FU treatment.
The expression of wild type p53 was also increased in
response to 5-FU treatment (Figure 1, lane 2–3).

Effect of TS on steady state total mRNAs expression
The global gene expression profile of HCT-C18 (TS-) and
HCT-C18 (TS+) cells based on steady state total mRNA
expression was analyzed using human high density Code-
Link oligo array (20 K). Although the growth characteris-
tics of the two cell lines are similar in terms of doubling
time, many genes are already affected by overexpressing
TS protein. Our analysis revealed that over 38 genes were
changed in their expression in response to TS expression
(n = 3, p < 0.05 and 4-fold cut-off). The partial gene list
and the clustering analysis are shown in Figure 2 (For
complete gene list see Additional file 2). Genes such as
CENTB1 and MT3, which are involved in cell proliferation
and signaling, were up-regulated by TS. CASP1, a gene
involved in regulation of I-κB/NF-κB cascade, apoptosis
and signal transduction, was decreased 22-fold by TS over-
expression.

Effect of TS on polysome associated mRNAs
To discover novel genes post-transcriptionally regulated
by TS protein, we isolated the polysome associated
mRNAs from both HCT-C18 (TS-) and HCT-C18 (TS+)
cells and performed expression analysis using human
high density CodeLink oligo array (20 K). Over 149 genes
were effected in TS overexpressing HCT-C18 (TS+) cells (n
= 3, p < 0.05 with 4-fold cut-off) (Figure 3; Additional file
2). Genes involved in protein biosynthesis (FLJ10989,
PEX1, FLJ20450, PSMC6, MRPL3) and cell cycle control
(MAD2L1, INHBA, APPL, D123) were up-regulated at the
post-transcriptional level. The overlapping genes (such as
INHBA, and CASP1) between steady state total mRNA
and polysome associated mRNA profiles are listed in
Table 1.

Steady State mRNAs affected by 5-FU treatment in HCT-
C18 (TS+) Cells
To identify acute and delayed response genes following 5-
FU treatment in HCT-C18 (TS+) cells, gene expression
profiling analysis was performed on steady state total
mRNAs isolated from control and 5-FU treated samples at
4 hrs and 24 hrs time points. The expression analysis
reveals that over 46 genes were affected by 5-FU treatment
by One-way ANOVA analysis (n = 3, p < 0.05 with 4-fold
cut-off). The clustering analysis is shown in Figure 4. (For
complete gene list see Additional file 3). The expression
analysis clearly showed a different gene expression pro-
files between 4 hrs and 24 hrs 5-FU exposure. Based on
the comparison of the expression profiles among the
HCT-C18 (TS+) control and 5-FU treated samples, a
number of genes were acutely increased in response to 5-
FU. Genes (shown in orange color in Figure 4, lane 2)
such as ORCL6 (DNA replication), PRPS1 (nucleotide

Table 1: Overlapping genes between steady state and polysome associated mRNAs affected by TS overexpression.'

Genebank 
accession

Gene ID Fold change Biological function

Total Polysome

Increased genes
NM_002192 INHBA +21.81 +33.02 Cell cycle arrest; cell differentiation; signal transduction; cell-

cell signaling;
NM_000930 PLAT +11.93 +6.73 Blood coagulation; protein modification; proteolysis and 

peptidolysis
AB032261 SCD +5.48 +6.62 Fatty acid biosynthesis
Decreased genes

NM_001442 FABP4 -100.00 -100.00 Transport
NM_002153 HSD17B2 -54.95 -100.00 Estrogen biosynthesis; metabolism
NM_033292 CASP1;COP -22.22 -11.68 Regulation of I-κB kinase/NF-κB cascade; apoptosis; signal 

transduction
NM_003641 IFITM1 -18.08 -23.58 Signal transduction; immune response; cell proliferation and 

cycle
NM_002274 KRT13 -7.81 -11.90 Epidermis development
NM_002638 PI3 -5.75 -10.41 Copulation
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Clustering analysis of TS dependent cytotoxicity in HCT-C18 (TS+) cells (Lane 1) treated with 10 µM 5-FU for 4 hrs (Lane 2) and 24 hrs (Lane 3) based on the expression profiles generated from steady state total mRNAs via One-way ANOVA analysis with p < 0Figure 4
Clustering analysis of TS dependent cytotoxicity in HCT-C18 (TS+) cells (Lane 1) treated with 10 µM 5-FU for 4 hrs (Lane 2) 
and 24 hrs (Lane 3) based on the expression profiles generated from steady state total mRNAs via One-way ANOVA analysis 
with p < 0.05.
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Clustering analysis of TS dependent cytotoxicity in HCT-C18 (TS+) cells (Lane 1) treated with 10 µM 5-FU for 4 hrs (Lane 2) and 24 hrs (Lane 3) based on the expression profiles generated from polysome associated mRNAs via One-way ANOVA anal-ysis with p < 0Figure 5
Clustering analysis of TS dependent cytotoxicity in HCT-C18 (TS+) cells (Lane 1) treated with 10 µM 5-FU for 4 hrs (Lane 2) 
and 24 hrs (Lane 3) based on the expression profiles generated from polysome associated mRNAs via One-way ANOVA anal-
ysis with p < 0.05.
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biosynthesis), DDX15 (mRNA splicing), DKK4 (Wnt sig-
nalling pathway), and eIF4E (regulation of protein bio-
synthesis) are some of the important genes affected by the
acute 5-FU treatment based on our model. Expression of
some of the genes, such as SPRR1A, DDB2, and CDKN1A,
was only increased in response to 5-FU at 24 hrs (Figure 4.
orange color in lane 3).

Polysome associated mRNA Profiles with 5-FU treatment 
in HCT-C18 (TS+) cells
To identify acute and delayed response genes that were
affected at post-transcriptional level by 5-FU treatment,
polysome associated mRNAs were isolated from control,
and 5-FU treated samples at 4 hrs and 24 hrs. Gene expres-
sion analysis via microarray revealed that over 67 genes
were affected in response to 5-FU (n = 3, p < 0.05 with 4-
fold cut off). The clustering analyses are shown in Figure
5 (For complete gene list see Additional file 4). Gene
expression analysis revealed dynamic changes in expres-
sion at 4 hrs and 24 hrs of 5-FU treatment. By comparing
the expression profiles between control HCT-C18 (TS+)
and 5-FU treated samples, we discovered additional post-
transcriptionally controlled genes that otherwise would
be missed if the expression analysis was only performed
using steady state total mRNAs. Genes (Red color in Fig-
ure 5, lane 2, and lane 3) such as NFIC (DNA replication),
SRP72 (protein phosphorylation; signal transduction),
TSC2 (cell growth), IREB2 (translational regulator), and
CEBPB (acute-phase response) are some of the genes that
were regulated at the post-transcriptional level in response
to 5-FU exposure with unique expression dynamics.

Genes associated with 5-FU induced TS independent 
cytotoxicity
To identify genes associated with TS independent cytotox-
icity affected by 5-FU treatment, HCT-C18 (TS-) cells were
treated with 10 µM 5-FU for 4 hrs and 24 hrs in the pres-
ence of 10 µM thymidine. The presence of thymidine pro-
vides the essential precursor for DNA biosynthesis for the
HCT-C18 (TS-) cells thereby preventing the TS mediated
cytotoxicity caused by 5-FU. In this case, the cytotoxicity
of 5-FU in HCT-C18 (TS-) cells was a result of direct incor-
poration of 5-FU metabolites to DNA and RNA. Based on
the clustering analysis of steady state total mRNA profiling
of control HCT-C18 (TS-) cells and 5-FU treated samples
in the presence of 10 µM thymidine, the gene expression
profiles generated from these samples are mainly associ-
ated with TS independent toxicity in response to 5-FU by
direct incorporation to RNA and DNA. 185 genes (n = 3,
p < 0.05 with 4-fold cut-off) were affected. The clustering
analysis is shown in Figure 6 (For complete gene list see
Additional file 5).

To further define the genes that were associated with TS
independent toxicity, we compared the expression clus-

ters (Figures 4 and 6) from both HCT-C18 (TS-) and HCT-
C18 (TS+) cells treated with 5-FU using Venn diagram
analysis. The overlapping gene list is shown in Table 2.
Genes such as RRM2 (DNA replication), CDKN1A (G1
arrest), SEI1 (cell proliferation), DDB2 (nucleotide-exci-
sion repair), SFN (cell cycle regulation) were associated
with TS independent cytotoxicity to 5-FU treatment. Gene
expression analysis from Figure 4 was used for the con-
struction of the cell cycle control pathway after 5-FU treat-
ment illustrated in Figure 7.

Discussion
In this study, a systems biology approach was used to ana-
lyze global gene expression and its networks affected by TS
and 5-FU at multiple levels of control. To the best of our
knowledge, this is the first report to address genes that are
affected at both transcriptional and post-transcriptional
levels affected by elevated TS protein expression and 5-FU
treatment. We believe that this will provide a better under-
standing of complex network related to the multi-func-
tions of TS protein as an RNA binding protein or as a
potential oncogene. It also provides a technology plat-
form to systematically discover potential post-transcrip-
tionally controlled genes by TS and 5-FU treatment. As
our comparative model, we used a pair of human colon
cancer cell lines: the mutant HCT-C18(TS-) subline in
which the TS protein had been rendered marginally active
and the TS over-expressing subline, HCT-C18(TS+), cre-
ated by stable expression of a human TS cDNA plasmid.
Both cell lines express wild-type p53 protein [16]. p53 is
one of the known genes affected by the over-expression of
TS at the translational level due to its RNA binding func-
tion [16]. Using our expression profiling approach, the
levels of p53 mRNA are not significantly changed based
on steady state total mRNA profile. However, the polys-
ome associated p53 mRNA was decreased by 4.5-fold in
HCT-C18 (TS+) cells compared with HCT-C18 (TS-) cells
(listed in Additional file 2). These results, taken together,
confirmed that our comprehensive gene profiling analysis
approach is capable of discovering new post-transcrip-
tionally regulated genes.

The gene profiling analysis based on steady state total
mRNA transcripts revealed over 38 genes that were dereg-
ulated by TS over-expression (Figure 2 and Additional file
1). Although this study does not provide any direct evi-
dence for TS as a cell cycle regulator, a number of cell cycle
control and apoptotic control genes were perturbed by TS
over-expression. One of the genes is inhibin/activin A
(INHBA) that was up-regulated by nearly 22-fold in HCT-
C18 (TS+) cells. INHBA is a growth factor that is involved
in cell proliferation [21]. INHBA does this through type I
and type II receptor serine kinases [21]. This may be a
potential pathway by which TS is able to influence the cel-
lular transformation process [21-23]. In fact, it has been
Page 8 of 15
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Clustering analysis of predictive marker genes for TS independent cytotoxicity in HCT-C18 (TS-) cells (Lane 1) treated with 10 µM 5-FU for 4 hrs (Lane 2) and 24 hrs (Lane 3) via One-way ANOVA analysis with p < 0Figure 6
Clustering analysis of predictive marker genes for TS independent cytotoxicity in HCT-C18 (TS-) cells (Lane 1) treated with 10 
µM 5-FU for 4 hrs (Lane 2) and 24 hrs (Lane 3) via One-way ANOVA analysis with p < 0.05.
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reported recently that INHBA is over-expressed in stage IV
colorectal cancer [24]. Additionally, single stranded RNA
interacting protein (RBMS3), a gene responsible for
mRNA splicing, was also up-regulated by 28-fold. The
gene is a member of a small family of proteins which bind
single stranded DNA/RNA. These proteins are character-
ized by the presence of two sets of ribonucleoprotein con-
sensus sequence (RNP-CS) that contain conserved motifs,
RNP1 and RNP2, originally described in RNA binding
proteins, and required for DNA binding. These proteins
have been implicated in such diverse functions as DNA
replication, gene transcription, cell cycle progression and
apoptosis [25]. The encoded protein was isolated by vir-
tue of its binding to an upstream element of the alpha2 (I)
collagen promoter. The observation that this protein
localizes mostly in the cytoplasm suggests that it may be
involved in a cytoplasmic function such as controlling
RNA metabolism, rather than transcription. Thus, RBMS3
may play an important role as part of the post-transcrip-

tional control mediated by TS. Conversely, genes such as
caspase 1 (CASP1) that control cell cycle arrest and apop-
tosis, were down-regulated some 22-fold. Hence, future
studies will focus on determining whether TS protein reg-
ulates the expression of these genes directly by binding to
the mRNAs or indirectly through downstream mecha-
nisms.

Using our systems biology approach of polysome associ-
ated mRNA comparisons, we have identified a list of genes
that are over- or under-expressed due to TS protein over-
expression (Figure 3 and gene list in Additional file 2).
Many of them play key roles in cell-cell signalling, protein
biosynthesis, RNA processing, DNA repair, cell cycle con-
trol and translational regulation. Some of them are previ-
ously known translational controlled genes such as EGFR
[26], one of the key targets for the latest targeted antican-
cer drug development for colon cancer treatment [27,28].
In this study, the expression of EGFR was found to

Real time pathway analysis of cell-cycle related genes mediated via TS overexpression in HCT-C18 (TS+) cells using actual gene expression dataFigure 7
Real time pathway analysis of cell-cycle related genes mediated via TS overexpression in HCT-C18 (TS+) cells using actual gene 
expression data. (Red color indicates overexpression. Blue color indicates decreased expression).
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increase by nearly 8-fold by TS over-expression. Many
other genes on this list are novel potential post-transcrip-
tionally regulated genes. Among the down regulated
genes, cyclin dependent kinase inhibitor p21 (CDKN1A)
was decreased by over 5-fold. Apoptosis inhibitor BAK1
was also decreased by 6-fold in TS over-expressing cells. It
seems that over expressing TS has set the stage for cells to
have many growth advantages using multiple mecha-
nisms.

To identify genes regulated at both transcriptional and
post-transcriptional level, we performed an overlapping
analysis by comparing the gene lists generated from
steady state total mRNAs and polysome associated
mRNAs using Venn diagram. There are 15 overlapping
genes between the two lists (Table 1). D123 (CdC123),
up-regulated by 5-fold in HCT-C18 (TS+) cells, has been
shown to be regulated at the translational level via eIF2γ
[29]. We have identified an additional 136 genes based on
polysome associated mRNAs which could be easily
missed if only steady state mRNA profiling is performed.
This approach provides a technical platform to systemati-
cally analyzing gene expression at post-transcriptional
level. It also reveals the importance of analyze gene
expression at multiple levels.

Based on the clinical observation and detailed molecular
investigations [11,17], TS can be acutely induced with a
short time 5-FU exposure and the mechanism of TS induc-
tion was regulated, at least in part, at the translational
level [11]. With this notion, we designed a strategy that
allows us to capture both acute and delayed response
genes in response to 5-FU exposure. To achieve this, both
HCT-C18 (TS+) and HCT-C18 (TS-) cells were treated
with 10 µM 5-FU for 4 hrs and 24 hrs. Figures 4 and 6
listed genes with known functions based on One-way
ANOVA clustering analysis from steady state total mRNA
profiling from each cell line, respectively. A clear and
unique expression pattern revealed a dynamic response to
5-FU treatment (Figure 4). There are 46 genes that were
proved to be significant factors for acute 5-FU treatment
(Genes listed in Additional file 3). They include CXCR4,
FLJ23311, RSP26, AKAP12, ORC6L, PRPS1, DDX15,
DKK4, and EIF4E. DKK4 functions as an agonist in the
Wnt signaling pathway to stimulate cell proliferation dur-
ing brain development [30]. However, little is known
about the function of DKK4 in cancer. This is the first
report to show that DKK4 may play an important role in
colorectal cancer possibly via the Wnt signaling pathway
[31]. eIF4E, one of the key translational initiation factors,
has been shown to play key roles in cell cycle control and
is an important marker for determining chemosensitivity
[32,33]. We speculate that the acute induction of eIF4E
expression by 5-FU may be contributing to the resistance
mechanism. Following 24 hr 5-FU exposure, nearly all of

the acutely up-regulated genes had returned to baseline
levels. However, additional genes such as SPRR1A, DDB2,
and CDKN1A were only up-regulated after 24 hrs. These
differential gene expression profiles suggest that single
time point microarray data from clinical samples should
be viewed with caution and not over-interpreted.

Interestingly, we discovered an additional 67 genes asso-
ciated with for 5-FU treatment based on profiling of poly-
some associated mRNA transcripts (Figure 5). The
induction of p53 will contribute a significant part for cell
cycle arrest and apoptosis based on previous reports
[34,35]. In addition, we also found genes such as, G-pro-
tein coupled receptor 132 (G2A), colon cancer antigen 33
(SDCCAG33), TSC2, and p34 (SEI1), were perturbed with
5-FU exposure. SEI1 is a CKD4-binding protein to regu-
late CDK4 activity [36] and was up-regulated following 5-
FU exposure. G2A and SDCCAG33 were acutely up-regu-
lated by 5-FU treatment whereas TSC2 was a delayed
response gene affected by 5-FU. It has been recently
shown that TSC2 is regulated at the translational level by
hypoxia [37]. TSC2 is also involved in mTOR signaling
pathway to regulate cell growth, proliferation, and cell
death [38]. mTOR is one of the key pathways for transla-
tional regulation via eIF4E [39]. These gene expression
profiles may be helpful in elucidating additional resist-
ance mechanisms related to 5-FU treatment.

We also determined the marker genes that were associated
with TS independent cytotoxicity using HCT-C18 (TS-)
cells treated with 5-FU in the presence of 10 µM thymi-
dine. The main cytotoxicity caused by 5-FU was the inhi-
bition of TS to block the sole de novo synthesis of
thymidylate, an essential precursor for DNA biosynthesis.
However, in the presence of 10 µM thymidine, the cyto-
toxicity caused by 5-FU in HCT-C18 (TS-) cells was mainly
by the direct incorporation of 5-FU metabolite into DNA
and RNA. The genes involved in TS independent cellular
toxicity have not been systematically investigated in the
past. In this study, we discovered a number of genes that
were associated with TS independent cytotoxicity of 5-FU.
Genes involved in DNA replication (NFIC, CDC45L,
TREX1, UBE1), DNA repair (TREX1, BTG2, XPC), DNA
metabolism (TK1), RNA catabolism (ELAVL1), RNA
processing (U3-55K), cell signaling (DDK2, CAPRI,
TFAP2C), and apoptosis (NFKB1A, TRAF4) are on this list
(Figure 6 and Additional file 5). It's not surprising to see
these genes on the list because direct incorporation of 5-
FU metabolite to RNA and DNA is the major part of cyto-
toxicity via TS independent mechanism [40,41]. It has
been shown that incorporation of 5-FU into RNA affects
pre-mRNA splicing process [42]. This study provides the
molecular targets and regulatory network that are poten-
tially responsible for future enhancement of such cellular
toxicity to tumors.
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Genes associated with TS independent cytotoxicity caused
by 5-FU were listed in Table 1. This list includes genes
such as RRM2, SEI1, GPIBB, DDB2, and CDKN1A. A
recent report showed that RRM2 (ribonucleotide reduct-
ase subunit M) was regulated at the translational level by
the upstream AUGs [43]. This finding provides further
validation to our approach as a systematic discovery plat-
form for novel translational regulated genes. It has been
shown recently that decreasing RRM2 level in HCT-116
(p53-/-) cells sensitize cells to DNA damaging agents and
ribonucleotide reductase inhibitors [44]. It is clear that
multiple genes will be responsible for determining the
sensitivity in response to 5-FU other than TS itself [45].

These marker genes are important for us to understand the
complex network regulated by TS and 5-FU. To go a step
further, we also attempted to analyze them in the context
of the regulatory network. As an example, we try to put
these genes into a biological context via analyzing the cell
cycle related genes affected by TS over-expression using
pathway analysis, and the results are shown in Figure 7.
It's quite clear that TS over-expression decreases p53 level,
thereby affecting its downstream genes such as p21 and
the rest of the cell cycle related genes. This approach also
helps to visualize the inter-relationship between TS and
cell cycle related genes. We believe this is a starting point
to show the power of systems biology approach for dis-
secting the mechanism and network of gene regulation.
Preliminary results using colon cancer patient samples
demonstrated that some of these genes can be used as pre-
dictors for 5-FU based therapy (manuscript in prepara-
tion).

Conclusion
In conclusion, the studies presented here provide a com-
prehensive expression profile of transcriptional and post-
transcriptional levels affected by over-expression of TS
protein and 5-FU treatment. This work expands our cur-
rent understanding of the complex networks regulated by
TS protein. In addition, our study also discovered candi-
date genes associated with TS independent cellular cyto-
toxicity. In particular, the newly discovered post-
transcriptionally regulated genes by TS and 5-FU will be
good candidates for further investigating the molecular
and cellular mechanism of such regulation. This study fur-
ther demonstrates the importance of understanding trans-
lational control in a global context in response to
genotoxic stresses such as exposure to chemotherapeutic
agents.

Methods
Cell culture
The human colon cancer cell lines, HCT-C18 (TS-) and
HCT-C18 (TS+), have been previously described [16,20].
HCT-C18 (TS-) cells were maintained in 75-cm2 plastic
tissue culture flasks with growth medium consisting of
RPMI 1640 medium containing 10% fetal bovine serum
and supplemented with 10 µM thymidine (Sigma, MO) at
37°C and 5% CO2. The HCT-C18 (TS+) cells were grow-
ing in the same medium without thymidine.

Western immunoblot analysis
Equal amounts of protein (25 µg) from each cell line were
resolved by SDS/PAGE on 10% gels by the method of Lae-
mmli [46]. Proteins were probed with mouse anti-TS
monoclonal antibody (1:5,000 dilution) (Zymed Labora-
tories, CA), or anti-p53 mouse monoclonal antibody

Table 2: 2

Genebank 
accession

Gene ID P value Biological function

TS+ TS-

S73288 SPRR1A 0.0073 0.0078 Epidermis development
NM_001034 RRM2 0.0143 0.0133 DNA replication; deoxyribonucleoside diphosphate metabolism
NM_005554 KRT6A, B, C 0.0168 0.0030 Ectoderm development
NM_003125 SPRR1B 0.0211 0.0014 Epidermis development
NM_000407 GP1BB 0.0229 0.0094 Blood coagulation; cell adhesion; cell surface receptor linked signal transduction
NM_000389 CDKN1A 0.0265 0.0137 Cell cycle arrest; apoptosis;cell proliferation; regulation of cyclin dependent 

protein kinase activity
NM_013376 SEI1 0.0274 0.0477 Cell proliferation; regulation of cyclin dependent protein kinase activity; 

transcription, DNA-dependent
NM_000422 KRT17 0.0278 0.0044 Epidermis development
NM_002658 PLAU 0.0362 0.0019 Blood coagulation; cell growth and/or maintenance; chemotaxis
NM_000107 DDB2 0.0441 0.0049 Nucleotide-excision repair
NM_006142 SFN 0.0482 0.0115 Cell proliferation; negative regulation of protein kinase activity; regulation of cell 

cycle; signal transduction

Overlapping genes between HCT-C18 (TS+) and HCT-C18 (TS-) cells affected by 5-FU treatment.
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(1:1,000 dilution) (Santa Cruz, CA), anti-α-tubulin
mouse monoclonal antibody (1:1,000 dilution) (Santa
Cruz, CA) followed by secondary antibody (Bio-Rad, CA).
Proteins were visualized with a chemiluminescence detec-
tion system using the Super Signal substrate (Pierce, IL).

Isolation of polysome associated mRNA transcripts
For preparation of cytoplasmic extracts, cells from three
175 cm2 tissue culture plates (60% confluency) were
treated with 100 µg/ml cycloheximide (Sigma, MO) for 5
min at 37°C, washed with ice-cold phosphate-buffered
saline containing cycloheximide (100 µg/ml) and har-
vested by scraping [47]. The fresh cells were pelleted by
centrifugation, swollen for 2 min in 375 µl of low salt
buffer (LSB) (20 mM Tris pH 7.5, 10 mM NaCl and 3 mM
MgCl2) containing 1 mM dithiothreitol and 50 U recom-
binant RNasin (Promega, WI) and lysed by addition of
125 µl of lysis buffer (1× LSB containing 0.2 M sucrose
and 1.2% Triton X-100) (Sigma) followed by vortexing.
The nuclei were pelleted by centrifugation in a microcen-
trifuge at 13,000 rpm for 2 min. The supernatant (cyto-
plasmic extract) was transferred to a new 1.5 ml tube on
ice. Cytoplasmic extracts were carefully layered over 0.5–
1.5 M linear sucrose gradients (in LSB) and centrifuged at
45,000 rpm in a Beckman SW40 rotor for 90 min at 4°C.
Gradients were fractionated using a pipette and the
absorbance at 260 nm was measured for each fraction by
UV spectrometry. Fractions 6 to 13 containing polysomes
based on the positive absorbance profiles at 260 nm were
pooled for RNA isolation.

Sample preparation, array hybridization and gene 
expression analysis
CodeLink UniSet Human 20 K Oligo Bioarray (Amersham
Biosciences, NJ), containing approximately 20,289 genes
probes, was used to generate gene expression profiles of
both steady state total mRNAs and actively translated
mRNAs isolated from control HCT-C18 (TS-) and HCT-
C18 (TS+) cells and cells treated with 10 µM 5-FU (n = 3).
Steady state total mRNAs from untreated HCT-C18 TS (-)
and HCT-C18 TS (+) cells or after treatment with 10 µM
5FU for 4 and 24 hrs were isolated using Trizol Reagent (n
= 3) (Invitrogen, CA). The corresponding polysomal frac-
tions from each sample were pooled together and actively
translated mRNAs were isolated using Trizol LS Reagent
(Invitrogen, CA). All reagents were provided in the Code-
Link expression assay kit (Amersham Biosciences, NJ),
except where noted. cRNA synthesis was performed as per
manufacturer's instructions. Using 2 µg of total RNA, first-
strand cDNA was generated by reverse transcriptase and a
T7 primer. Subsequently, second-strand cDNA was pro-
duced using DNA polymerase I and RNase H. The result-
ing double-stranded cDNA was purified on a QIAquick
column (Qiagen, CA) and cRNA was generated via an in
vitro transcription reaction using T7 RNA polymerase and

biotin-11-UTP (Perkin-Elmer, MA) at 37°C for 14 hrs.
cRNA was purified on an RNeasy column (Qiagen, CA),
quantified by UV spectrophotometry, and 10 µg biotin-
labelled cRNA was then fragmented by heating at 94°C
for 20 min in the presence of magnesium buffer. The frag-
mented cRNA was hybridized overnight at 37°C in
hybridization buffer to a UniSet Human 20 K Bioarray in
a shaking incubator at 300 rpm.

After hybridization, the arrays were washed in 0.75× TNT
buffer [1× TNT: 0.1 M Tris-HCl (pH 7.6), 0.15 M NaCl,
and 0.05% Tween 20] at 46°C for 1 hr followed by incu-
bation with Cy5-streptavadin (Amersham Biosciences,
NJ) at room temperature for 30 minutes in the dark.
Arrays were then washed in 1× TNT four times for 5 min
each. The slides were then dried by centrifugation and
kept in the dark until scanning. Images were captured on
an Axon GenePix 4200 A scanner. The resulting image was
quantified and the intensity of each spot divided by the
median spot intensity to provide a scaled and comparable
number across multiple arrays. Bacterial spots provide
both positive and negative controls. After dot grid and
QC, CodeLink software generates export files for analysis
by GeneSpring software 7.2 (Aglient, CA).

Gene expression analysis was carried out on GeneSpring
software version 7.2, which allows multifilter compari-
sons using data from different experiments to perform the
normalization, generation of restriction lists and the func-
tional classification of the differentially expressed genes.
Under Cross-Gene Error Model, normalization was
applied in two steps: (a) "per chip normalization" in
which each measurement was divided by the 50th percen-
tile of all measurements in its array; and (b) "per gene nor-
malization" in which all the samples were normalized
against the specific samples (controls). Then data were fil-
tered by flags and 4-fold change. The expression profiles
of the different groups were compared using One-way
ANOVA with cut-off p < 0.05. Comparisons of gene lists
across different groups were performed using Venn Dia-
grams and clustering was performed with the Condition
Tree algorithm. In addition, the Gene Ontology groupings
and Gen Maps 2.0 program were used in conjunction with
GeneSpring to identify pathways and functional groups of
genes.
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Additional File 1
Gene expression affected by TS over-expression based on profiling 
steady state mRNAs in HCT-C18 (TS-) and HCT-C18 (TS+) cells. 
This file contains the global gene expression profile of HCT-C18 (TS-) 
and HCT-C18 (TS+) cells based on steady state total mRNA expression 
using human high density CodeLink oligo array (20 K). Over 38 genes 
were changed in their expression in response to TS expression (n = 3, p < 
0.05 and 4-fold cut-off).
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2164-7-68-S1.doc]

Additional File 2
Gene expression affected by TS over-expression based on profiling poly-
some associated mRNAs in HCT-C18 (TS-) and HCT-C18 (TS+) cells. 
This file contains the gene list of potential novel genes controlled at the 
post-transcriptionally by TS protein. Polysome associated mRNAs from 
both HCT-C18 (TS-) and HCT-C18 (TS+) cells were isolated and expres-
sion analysis was performed using human high density CodeLink oligo 
array (20 K). Over 149 genes were effected in TS overexpressing HCT-
C18 (TS+) cells (n = 3, p < 0.05 with 4-fold cut-off).
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2164-7-68-S2.doc]

Additional File 3
Effect of 5-FU treatment on steady state mRNAs expression in HCT-
C18 (TS+) cells. This file contains a gene list associated with both acute 
and delayed response genes following 5-FU treatment in HCT-C18 (TS+) 
cells by gene expression profiling analysis using steady state total mRNAs 
isolated from control and 5-FU treated samples at 4 hrs and 24 hrs time 
points. The expression analysis reveals that over 46 genes were affected by 
5-FU treatment by One-way ANOVA analysis (n = 3, p < 0.05 with 4-
fold cut-off). The clustering analysis is shown in Figure 4.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2164-7-68-S3.doc]

Additional File 4
Effect of 5-FU treatment on polysome associated mRNAs expression in 
HCT-C18 (TS+) cells. This file contains both acute and delayed response 
genes that were affected at post-transcriptional level by 5-FU treatment. 
Polysome associated mRNAs were isolated from control, and 5-FU treated 
samples at 4 hrs and 24 hrs. Gene expression analysis via microarray 
revealed that over 67 genes were affected in response to 5-FU (n = 3, p < 
0.05 with 4-fold cut off). The clustering analyses are shown in Figure 5.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2164-7-68-S4.doc]

Additional File 5
Effect of 5-FU treatment on steady state mRNAs expression in HCT-
C18 (TS-) cells. This file contains gene list based on gene expression pro-
files generated from these samples. These genes are mainly associated with 
TS independent toxicity in response to 5-FU by direct incorporation to 
RNA and DNA. The clustering analysis is shown in Figure 6. This file 
contains a gene list of 185 genes (n = 3, p < 0.05 with 4-fold cut-off) 
affected by 5-FU exposure in HCT-C18 (TS-) cells in the presence of thy-
midine.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2164-7-68-S5.doc]
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