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Abstract

Type 2 diabetes mellitus (T2DM) is associated with cognitive impairment and may

progress to dementia. However, the brain functional mechanism of T2DM-related

dementia is still less understood. Recent resting-state functional magnetic resonance

imaging functional connectivity (FC) studies have proved its potential value in the

study of T2DM with cognitive impairment (T2DM-CI). However, they mainly used a

mass-univariate statistical analysis that was not suitable to reveal the altered FC

“pattern” in T2DM-CI, due to lower sensitivity. In this study, we proposed to use

high-order FC to reveal the abnormal connectomics pattern in T2DM-CI with a multi-

variate, machine learning-based strategy. We also investigated whether such patterns

were different between T2DM-CI and T2DM without cognitive impairment (T2DM-

noCI) to better understand T2DM-induced cognitive impairment, on 23 T2DM-CI

and 27 T2DM-noCI patients, as well as 50 healthy controls (HCs). We first built the

large-scale high-order brain networks based on temporal synchronization of the

dynamic FC time series among multiple brain region pairs and then used this informa-

tion to classify the T2DM-CI (as well as T2DM-noCI) from the matched HC based on

support vector machine. Our model achieved an accuracy of 79.17% in T2DM-CI
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versus HC differentiation, but only 59.62% in T2DM-noCI versus HC classification.

We found abnormal high-order FC patterns in T2DM-CI compared to HC, which was

different from that in T2DM-noCI. Our study indicates that there could be wide-

spread connectivity alterations underlying the T2DM-induced cognitive impairment.

The results help to better understand the changes in the central neural system due

to T2DM.
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1 | INTRODUCTION

Type 2 diabetes mellitus (T2DM) is a type of complex metabolic disor-

der characterized by variable degrees of insulin resistance, impaired

insulin secretion, and increased glucose production (Kakrani, Gokhale,

Vohra, & Chaudhary, 2014). It accounts for 90–95% of diabetes cases

and is estimated to affect ~450 million adults globally (Wood

et al., 2016), with the number still increasing (Atlas, 2015). Clinical

research indicates that T2DM may be associated with accelerated

cognitive decline (Biessels, Strachan, Visseren, Kappelle, & Whitmer,

2014; Cheng, Huang, Deng, & Wang, 2012; Geijselaers, Sep,

Stehouwer, & Biessels, 2015; Groeneveld et al., 2019), even dementia

(Biessels, Staekenborg, Brunner, Brayne, & Scheltens, 2006; Exalto,

Whitmer, Kappele, & Biessels, 2012). The comorbidity has a wide

spectrum involving various functions, such as motor (Elkayam

et al., 2019; Gorniak, Ray, Lee, & Wang, 2020), executive (Redondo,

Beltr�an-Brot�ons, Reales, & Ballesteros, 2016; Vincent & Hall, 2015),

psychomotor (Ryan & Geckle, 2000), verbal memory (Messier, 2005),

and visual memory (Callisaya et al., 2019). Among the symptoms, cog-

nitive impairments in T2DM could become worse with longer diabetes

duration (Gregg et al., 2000) and/or poor glycemic control (Kanaya,

Barrett-Connor, Gildengorin, & Yaffe, 2004).

Clinical studies have suggested that factors causing T2DM with

cognitive impairment (T2DM-CI) include insulin dysregulation (Verdile,

Fuller, & Martins, 2015), hypoglycemia (Marseglia et al., 2016), micro-

vascular diseases (Saedi, Gheini, Faiz, & Arami, 2016), elevated levels

of inflammatory cytokines (Meneilly & Tessier, 2016), APOE-epsilon

4 allele (Dore, Elias, Robbins, Elias, & Nagy, 2009), and chronic expo-

sure to high-level glucose (Ghasemi, Haeri, Dargahi, Mohamed, &

Ahmadiani, 2013). However, how the brain changes in patients with

T2DM-CI is unclear. There are scattered reports using noninvasive

structural magnetic resonance imaging (MRI) that revealed the wide-

spread gray matter loss in the medial temporal, anterior cingular, and

medial frontal cortices, as well as white matter loss in the frontal and

temporal regions, might be associated with T2DM-CI (Moran

et al., 2013). Nevertheless, other studies favor the hypothesis that it

could be specific to and localized in brain regions, such as hippocam-

pus, that are targeted in T2DM (Brundel et al., 2010; den Heijer

et al., 2003). Studies also found that the impaired executive and mem-

ory functions might be related to the decreased gray matter density

and reduced glucose metabolism in the orbital prefrontal, temporal,

and cerebellar regions (Garcia-Casares et al., 2014), further linking the

general clinical etiology with brain structural and functional alterations

(Cheng, Liu, Zhang, Munsell, & Shen, 2015; Fan et al., 2007). In recent

years, resting-state functional MRI (rs-fMRI) has been used to investi-

gate T2DM-related changes in brain activity using amplitude of low-

frequency fluctuation (ALFF) of the blood oxygenation level-

dependent (BOLD) signal, and the changes in localized energy con-

sumption using the regional homogeneity (ReHo) (Chen et al., 2014;

Cui et al., 2014; Cui et al., 2015; Moheet, Mangia, & Seaquist, 2015;

Xia et al., 2013). Other rs-fMRI studies indicated that functional inter-

actions of certain functional systems, measured by functional connec-

tivity (FC) based on the temporal synchronizations of BOLD signals

among distinct brain regions, could also be affected (Li et al., 2020).

However, these studies mainly focused on the default mode network

(DMN), a large-scale resting-state functional network mediating cogni-

tive and emotional processes (Cui et al., 2014), and did not involve

other functional systems, such as the attention (Xia et al., 2015),

frontoparietal, and sensorimotor networks (SMNs) (Chen et al., 2015),

in which the alterations were reported in the studies afterward.

While these pioneering neuroimaging studies have provided

interesting results, little is known whether the T2DM-CI, a systemic

disease, could elicit functional abnormality as a widespread disease-

related “pattern” encompassing the entire brain. The existing studies

either focused on the voxel-by-voxel statistical comparisons (Chen

et al., 2014; Cui et al., 2014; Cui et al., 2015) or limited the scope in

certain predefined brain regions/subnetworks, despite the structural

studies suggesting unspecific and widespread alterations (Moran

et al., 2013; Schmidt et al., 2004). While network neuroscience stud-

ies with complex network analysis indicated that T2DM patients had

reduced efficiency in the whole-brain structural connectivity network

(Zhang et al., 2014) and the gray matter co-variation network (Cao

et al., 2019) compared to healthy controls (HCs), none of them

reported if such a pattern also looks alike in the whole-brain func-

tional networks in T2DM and whether the affected connections are

associated with T2DM-induced cognitive impairment. In this study,

we assumed that, due to the widespread and systemic effect caused

by T2DM, T2DM-CI could cause widely distributed brain functional

dis-concordance. To detect such functional mis-coordination with bet-

ter sensitivity, we used a recently established, dynamic (time-varying)
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FC-based large-scale high-order brain network construction method

[dynamics-based HOFC (dHOFC), measuring the temporal synchroni-

zation of the dynamic FC (dFC) time series among multiple region

pairs] to capture the alterations in higher-level functional organization

in T2DM-CI (Chen et al., 2017; Chen, Zhang, Lee, & Shen, 2017;

Chen, Zhang, & Shen, 2016b; Liu et al., 2019; Zhang, Chen, Zhang, &

Shen, 2017; Zhou et al., 2020). Compared to the traditional static FC

(we called it “low-order” FC, or LOFC for short, to better distinguish it

from the dHOFC), dHOFC has shown improved disease detection

sensitivity in many studies, including mild cognitive impairment (MCI)

detection. Meanwhile, instead of using the conventional link-wise sta-

tistical comparisons that may not be optimal for such a pattern detec-

tion, we used a machine learning–based multivariate pattern

recognition method, to classify individual T2DM-CI from HC, so that

the contributing features in the classification model could constitute a

T2DM-CI abnormality “pattern” for better understanding of the dia-

betic encephalopathy.

In addition, previous studies did not specifically investigate

T2DM-CI or try to reveal the potential differences between T2DM-CI

and T2DM without cognitive impairment (T2DM-noCI). To better

understand why some T2DM patients developed cognitive impair-

ment but others not, and whether there could be “pattern differ-

ences” between T2DM-CI and T2DM-noCI, we further divided the

T2DM groups into T2DM-CI group and T2DM-noCI group, with

23 and 27 patients, respectively. We separately classified them from

the matched HC based on the support vector machines (SVM) using

dHOFC networks as features. We hypothesized that the T2DM-CI

had widespread impaired brain networks and thus could be well sepa-

rated from the HC. On the contrary, we anticipated that the T2DM-

noCI might not be separated from the HC as successfully as T2DM-CI

did due to largely intact cognitive functions and less affected brain

networks. We also hypothesized that the contributive patterns

derived from the T2DM-CI versus HC were different from those

derived from the T2DM-noCI versus HC classification.

2 | METHODS

2.1 | Participants

Totally, 100 participants (23 T2DM-CI, 27 T2DM-noCI, and 50 HC)

were enrolled in this study from October 2018 to December 2020.

This study was approved by the Ethics Committee of the First Affil-

iated Hospital of Guangzhou University of Chinese Medicine,

Guangzhou, China. All participants had written informed consent.

We divided the participants into two experiments. One experiment

consisted of 23 T2DM-CI and 25 HC, while another experiment

constituted of 27 T2DM-noCI and 25 different HC. Age, gender,

and education level between the two groups in each experiment

were matched. The HC used in the two experiments were volun-

teers enrolled at the same period. The T2DM patients were diag-

nosed at both in-patient and out-patient departments at the First

Affiliated Hospital of Guangzhou University of Chinese Medicine.

The diagnostic criterion is either fasting plasma glucose level

≥7.0 mmol/L or 2-hr oral glucose tolerance test glucose level

≥11.1 mmol/L, according to Association (2014). T2DM-CI was

defined as the T2DM patients with a Montreal Cognitive Assess-

ment (MoCA) score <26 (Nasreddine et al., 2005). Other cognitive

tests [auditory verbal learning test (AVLT) (Schmidt, 1996), trail-

making test (Bowie & Harvey, 2006), clock-drawing test (Samton

et al., 2005), and digit span test (Gong, 1992)] were carried out but

not included in this study because it is out of the scope of the current

study. T2DM-noCI patients and all HC had MoCA scores ≥26. These

diagnoses were clinically performed by two experienced endocrinolo-

gists at the First Affiliated Hospital of Guangzhou University of Chinese

Medicine on a consensus basis. The exclusion criteria included history

of serious brain diseases (e.g., tumor, significant brain trauma, stroke,

meningitis, and cerebral infarction), psychiatric disorders (e.g., bipolar

disorder, schizophrenia, generalized anxiety disorder, and major depres-

sive disorder), history of alcohol or drug abuse, complications such as

liver or kidney diseases, level-three hypertension, heart attack, and MRI

contraindications.

2.2 | MRI acquisition and preprocessing

All data were collected using the same 3.0T GE scanner (SIGNA

EXCITE; GE Medical Systems, Milwaukee, WI) with an eight-channel

head coil. Conventional oblique axial scanning of the whole brain was

performed on all subjects, including T1-weighted imaging (T1WI),

T2-weighted imaging, and fluid-attenuated inversion recovery

sequences. All participants were asked to lie supinely in the scanner

with their heads fixed by foam pads to minimize head movement.

During the scan, they were asked not to fall asleep, relax with eyes

closed, and avoid deliberate thinking. We monitored the image quality

and subjects during the scan and terminated the data acquisition if

the images were abnormal. Sagittal high-resolution whole-brain T1WI

was obtained using three-dimensional fast spoiled gradient-echo

sequences [repetition time (TR) = 8.15 ms, echo time (TE) = 3.17 ms,

flip angle = 12�, slice thickness = 1 mm, slice gap = 0 mm, number of

excitations (NEX) = 1, field of view (FOV) = 256 mm � 256 mm,

matrix size = 256 � 256), 188 sagittal slices, and 250-s total scanning

time]. Blood oxygen level-dependent (BOLD) rs-fMRI data were

acquired using an echo-planar imaging sequence with the following

parameters: TR = 2000 ms, TE = 30 ms, flip angle = 90�, slice

thickness = 3 mm, slice gap = 1 mm, FOV = 220 mm � 220 mm,

matrix size = 64 � 64, 36 axial slices, and 370-s scanning time. Data

Processing Assistant for rs-fMRI version 4.4 (http://rfmri.org/

DPARSF) and Statistical Parametric Mapping (SPM12, http://www.fil.

ion.ucl.ac.uk/spm) on MATLAB version R2016b were used to prepro-

cess the rs-fMRI data. The preprocessing procedures were as follows:

(a) discarding the first five volumes; (b) slice timing correction; (c) head

motion correction; (d) spatial normalization based on unified segmen-

tation on the co-registered T1WI and then applying the deformation

field to the rs-fMRI data, before resampling the latter to 3-mm isotro-

pic voxels (of note, more sophisticated brain registration methods
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could be used in the future to improve registration accuracy across sub-

jects (Ip & Shen, 1998; Jia, Wu, Wang, & Shen, 2010; Jia, Yap, &

Shen, 2012; Patton et al., 2005; Wu, Jia, Wang, & Shen, 2011);

(e) spatial smoothing with an isotropic Gaussian kernel with a full width

half maximum of 6 mm in each direction; (f) removing linear trends of

the rs-fMRI time series and temporal filtering with a frequency band of

0.01–0.1 Hz; and (g) regressing out Friston 24-parameter head motion

parameters (Friston, Williams, Howard, Frackowiak, & Turner, 1996),

mean signals from the white matter, cerebrospinal fluid, and the whole

brain (i.e., global signal). All subjects had head motion <2 mm (transla-

tion in any direction) and 2� (rotation in any direction), and mean

framewise displacement (FD) <0.5 mm (Power et al., 2014; Power, Bar-

nes, Snyder, Schlaggar, & Petersen, 2012).

2.3 | Classification based on high-order FC
networks

We used Brain Network Construction and Network-based Classifica-

tion toolbox (BrainNetClass v1.1, Zhou et al., 2020) to construct brain

dHOFC networks for all subjects (23 T2DM-CI from 25 HC) and clas-

sify the subjects in the two groups. Similar analysis and classification

were conducted for 27 T2DM-noCI and 25 HC (see Figure 1).

BrainNetClass is a Matlab-based, automatic, easy-to-use pipeline for

advanced brain network construction and network-based disease clas-

sification (https://github.com/zzstefan/BrainNetClass). We chose

“dHOFC” as the brain network construction method because the pre-

vious studies indicated that such a method could better capture

disease-related subtle changes and outperform traditional (low-order)

FC in disease classification (Chen, Zhang, & Shen, 2016b; Liu

et al., 2019; Zhang et al., 2017; Zheng et al., 2019). The procedure

was well documented elsewhere (Chen, Zhang, & Shen, 2016b; Zhou

et al., 2020) and only briefly described below. After regional averaged

rs-fMRI time series were extracted from each of the 116 regions-of-

interest (see their abbreviations and full names in Supplementary

Table 1) according to the automated anatomical labeling (AAL) atlas,

we calculated dFC between each pair of regions using a well-adopted

sliding window correlation approach, with a step size of one TR and a

window length optimized as below (Preti, Bolton, & Van De

Ville, 2017). The dFC time series were concatenated across all sub-

jects and the hierarchical clustering was used to group synchronized

dFC time series into clusters. The resultant cluster centroids (i.e., the

representative dFC time series of each cluster) were then fed into a

second round of Pearson's correlation analysis to generate a dHOFC

matrix for each subject. Therefore, each new “node” in the dHOFC

network represents a set of pairwise inter-regional links with highly

F IGURE 1 Framework of dynamics-based high-order functional connectivity (dHOFC) network construction and network-based classification
between type 2 diabetes mellitus with cognitive impairment (T2DM-CI) and the healthy controls (HC). The framework for classification between
type 2 diabetes mellitus without cognitive impairment (T2DM-noCI) and the HC is the same. The training phase starts with sliding window-based

dynamics functional connectivity (dFC) analysis (b) for all the region pairs based on the BOLD time series extracted from the automated
anatomical labeling (AAL) template (a). After concatenating all subjects' dFC time series, k-means clustering is conducted to group the dFC time
series into clusters (c), before a second round of Pearson's correlation analysis between any pair of cluster-averaged dFC time series for
constructing dHOFC network (d). Nodal clustering coefficients are extracted from all the nodes in the dHOFC network construction as features
(e). After a feature selection based on Least Absolute Shrinkage and Selection Operator (LASSO) (f), a support vector machine (SVM) model is
built for classification (g). In the testing phase (not shown in the figure), the testing sample that was left out is used and the same features are
selected before they are fed into the trained classification model for generating the predicted label
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synchronized dFC profiles. Each new “link” in the dHOFC network

represents the coordination between each pair of these new “nodes”
in the dHOFC network, which may reflect a high-order brain func-

tional organization. Of note, this high-order FC differs from the con-

ventional low-order FC (LOFC) based on the traditional Pearson's

correlation on raw BOLD rs-fMRI signals.

For each node in the dHOFC network, we calculated its local clus-

tering coefficient as features based on the weighted networks (Chen,

Zhang, & Shen, 2016), as previously done for LOFC networks

(Bassett & Bullmore, 2006). This complex network metric quantified

the probability that a node's neighbors in the dHOFC network also

connected with each other, reflecting nodal local efficiency of the

dHOFC network (Bassett & Bullmore, 2006). Due to possible feature

redundancy, we adopted the Least Absolute Shrinkage and Selection

Operator (LASSO) to select only crucial features to improve the classi-

fication performance and model robustness (Tibshirani, 1996). Alto-

gether, there were three freely estimable parameters to be optimized,

including the window length for sliding window correlation, the num-

ber of clusters for deciding the effective number of nodes in the

dHOFC, and the LASSO parameter that controlled the number of

selected features. They were optimized from the ranges of [20,

30, …, 60], [100, 200, …, 800], and [0.07, 0.075, …, 0.09], respectively,

by using a nested leave-one-out cross-validation (LOOCV) strategy.

During the nested LOOCV, an inner LOOCV was used for parame-

ter optimization and an outer LOOCV was for model evaluation with

the optimized parameters. We trained a SVM to perform classification.

SVM is a well-validated and extensively used classifier with superior

performance even with a small sample size (Zeng et al., 2012; Zhou

et al., 2020; Zhou, Wang, Zang, & Pan, 2018), which is suitable for our

experiments. SVM searches for optimal hyperplane that separates the

critical elements (i.e., support vectors) mapped to a high-dimensional

space with certain kernels (Cortes & Vapnik, 1995; Misaki, Kim,

Bandettini, & Kriegeskorte, 2010). In this article, we used a linear kernel

and the hyperparameter C was set to 1. After the LOOCV procedure

was repeated and all subjects were gone through it, various perfor-

mance evaluation metrics were derived comparing the predicted label

with the ground truth. These metrics include the area under the curve

(AUC) of receiver operator characteristics, accuracy, sensitivity, speci-

ficity, and F1-score (Sokolova, Japkowicz, & Szpakowicz, 2006). To

compare the results with that from the LOFC, we also built traditional

Pearson's correlation-based network (termed as LOFC) and conducted

LOFC-based classification using BrainNetClass toolbox (by selecting

Pearson's correlation as the network construction method in the tool-

box). We used the connection coefficients of the constructed LOFC

network as features and applied two-sample t-test with LASSO for fea-

ture selection (Zhang et al., 2019). The SVM classifiers with the same

settings were used to perform the classification with LOOCV.

2.4 | Identification of discriminative features

To find and compare potential contributing features of the classification

between T2DM-CI and HC, and the classification between T2DM-noCI

and HC, we identified discriminative dHOFC nodes (i.e., a set of

pairwise inter-regional links with highly synchronized dFC profiles)

according to their frequency of being selected during the outer LOOCV

runs. The more frequently the feature was selected, the more important

this feature could be (Liu et al., 2019). Then, we selected and illustrated

the most discriminative features (those with the selection frequency

>95%). To further evaluate which large-scale functional network(s)

these coordinated dFC links encompassed, for each discriminative

dHOFC node, we checked each brain region's network affiliation,

according to the network templates in Yeo et al. (2011) for cerebral

regions and Buckner, Krienen, Castellanos, Diaz, and Yeo (2011) for

cerebellar regions. Specifically, each AAL region was assigned to one of

the seven large-scale brain functional networks: frontoparietal network

(FPN), ventral attention network (VAN), DMN, dorsal attention network

(DAN), SMN, visual network (VN), and limbic/basal ganglia network

(LN) (Tzourio-Mazoyer et al., 2002).

2.5 | Statistical analysis

Statistical analysis of the clinical and neuropsychological data was per-

formed using Stata 11.0 (Stata, College Station, TX). Between-group com-

parisons were conducted between T2DM-CI and HC as well as between

T2DM-noCI and HC by using two-sample t-tests or Mann–Whitney non-

parametric tests depending on whether the variables satisfied normal dis-

tribution and variance homogeneity. Gender differences were examined

by chi-square tests. To investigate the associations between imaging fea-

tures (i.e., local clustering coefficients of the discriminative dHOFC nodes)

and clinical symptoms [i.e., MoCA scores and AVLT (immediate recall)

(AVLT-IR)], we performed multiple linear regression by using SPSS v23.0

(Chicago, IL) after controlling other confounding demographic variables

(i.e., age, gender, and education level). Specifically, each imaging feature

was included as an independent variable, while MoCA score and AVLT-IR

were included as a dependent variable, and age, gender, and education

level as covariates. We also calculated partial correlation between each

imaging feature and MoCA score, as well as AVLT-IR. The results with

p < .05 were considered as statistically significant.

3 | RESULTS

3.1 | Information and comparison of clinical and
neuropsychological data

The information of the clinical and neuropsychological data of the

100 participants was summarized in Table 1, where the characteristics

showing significant group differences (p < .05) were marked with

asterisk. Statistical comparisons between the T2DM-CI and HC (and

between T2DM-noCI and HC) revealed no significant differences in

age, gender, or education level. Some clinical characteristics such as

blood pressure showed significant differences both between T2DM-

CI and HC and between T2DM-noCI and HC. MoCA scores and

AVLT-IR showed significant differences between the T2DM-CI
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patients and their matched HC but not between the T2DM-noCI

patients and their matched HC. For other neuropsychological charac-

teristics, they showed no significant differences between the T2DM-

noCI patients and the matched HC.

3.2 | Classification performance

The performance comparison between the classification models

using dHOFC and LOFC was shown in Table 2. The dHOFC-based

classification performance in both T2DM-CI versus HC and

T2DM-noCI versus HC classification was better than that of LOFC

with respect to all the performance metrics. Generally, the use of

dHOFC boosted T2DM-CI versus HC classification accuracy by

~23% (79.17%), with balanced sensitivity (69.57%) and specificity

(88.00%), compared to that using LOFC. In contrast, dHOFC-

based classification between T2DM-noCI and HC led to less accu-

rate (59.62% in accuracy) results. Again, its performance was still

higher than that of the LOFC-based classification (51.92% in

accuracy).

TABLE 1 Comparison of clinical and neuropsychological characteristics between two groups

T2DM-CI (n = 23) HC (n = 25) p value T2DM-noCI (n = 27) HC (n = 25) p value

Clinical characteristics

Age (years) 54.87 ± 9.13 54.24 ± 4.83 .43 47.81 ± 8.75 50.72 ± 6.15 .18

Gender (M/F) 8/15 12/13 .39 21/6 17/8 .54

Education (years) 8.00 ± 4.67 8.96 ± 3.74 .43 11.78 ± 3.18 12.48 ± 2.80 .40

Fasting plasma glucose (mmol/L) 8.81 (7.19–10.30) 4.88 (4.50–5.30) .0001* 7.55 ± 1.93 4.66 ± 0.57 .0001*

BMI (kg/m2) 24.52 ± 2.57 23.20 ± 2.56 .082 24.47 ± 2.78 22.89 ± 2.50 .037*

HbA1c (%) 9.37 ± 1.77 NA NA 8.92 ± 2.33 NA NA

Systolic blood pressure (mm Hg) 128.26 ± 13.88 116.64 ± 9.29 .0013* 125.63 ± 12.91 116.40 ± 9.48 .0053*

Diastolic blood pressure (mm Hg) 80.48 ± 8.61 75.64 ± 5.78 .026* 83.59 ± 9.89 76.72 ± 5.40 .013*

TC (mmol/L) 4.65 ± 1.02 NA NA 4.62 ± 0.97 NA NA

TG (mmol/L) 2.05 (1.25–2.37) NA NA 1.90 (0.96–3.10) NA NA

LDL (mmol/L) 3.41 ± 1.13 NA NA 3.03 ± 0.95 NA NA

Neuropsychological characteristics

MoCA 21.74 (18–25) 27.08 (26–28) .0001* 27.63 ± 1.28 27.92 ± 1.38 .43

AVLT-IR 16.87 ± 4.55 20.68 ± 4.31 .0046* 22.26 (20–26) 21.20 (18–26) .36

AVLT-STR 6.65 ± 2.71 7.76 ± 1.71 .093 7.70 ± 1.64 7.88 ± 1.99 .73

AVLT-LTDR 6.74 ± 3.39 7.60 ± 1.66 .29 7.93 ± 1.57 7.48 ± 2.06 .38

TMT-A 77.17 (53–95) 64.60 (55–69) .36 61.50 (59–69) 61.18 (56–66) .17

TMT-B 61.56 (45–72) 59.47 (51–67) .98 61.57 (49–65) 56.17 (45–64) .51

DST 11.43 ± 1.78 11.80 ± 1.89 .50 11.04 ± 1.26 11.32 ± 1.31 .43

CDT 2.70 (2–3) 2.72 (2–3) .73 2.85 (2–3) 2.92 (2–3) .67

Abbreviations: T2DM-CI: type 2 diabetes mellitus with cognitive impairment; T2DM-noCI: type 2 diabetes mellitus without cognitive impairment; HC:

healthy controls; M: male; F: female; MoCA: Montreal cognitive assessment; BMI: body mass index; TC: total cholesterol; TG: triglycerides; LDL: low-

density lipoprotein; AVLT: auditory verbal learning test; AVLT-IR: auditory verbal learning test (immediate recall); AVLT-STR: auditory verbal learning test

(short-term recall after 5 min); AVLT-LTDR: auditory verbal learning test (long-term delayed recall after 20 min); TMT: trail-making test; DST: digit span

test; CDT: clock-drawing test.

TABLE 2 Classification performance
in T2DM-CI versus HC and T2DM-noCI
versus HC differentiation

Group Method AUC ACC (%) SEN (%) SPE (%) F1-score (%)

T2DM-CI vs. HC dHOFC 0.81 79.17 69.57 88.00 76.19

LOFC 0.63 56.25 39.13 72.00 46.15

T2DM-noCI vs. HC dHOFC 0.68 59.62 55.56 64.00 58.82

LOFC 0.58 51.92 48.00 55.56 48.98

Abbreviations: T2DM-CI: type 2 diabetes mellitus with cognitive impairment; T2DM-noCI: type 2

diabetes mellitus without cognitive impairment; HC: healthy controls; AUC: area under curve; ACC:

accuracy; SEN: sensitivity; SPE: specificity; dHOFC: dynamics-based high-order functional connectivity;

LOFC: low-order functional connectivity.
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3.3 | Top discriminative dHOFC features in T2DM-
CI versus HC classification

We identified two dHOFC nodes with their local clustering coeffi-

cients as discriminative features in the classification of T2DM-CI from

HC. To generate interpretable spatial configurations of the dHOFC

nodes and visualize them, we showed the brain region pairs with

covaried dFC from the two dHOFC nodes in Figure 2 (see the details

of the pairwise connections involved in Supplementary Table 2).

These regions and connections involved time-varying coordination

across all the large-scale brain networks (see the LN involved in Sup-

plementary Figure 1).

Specifically, the node 1 (selected in a frequency of 95.83% from

all the LOOCV runs) in dHOFC encompassed the SMN, DMN, and

VAN. It contained 50 links, 22 out of which were the intra-network

connections in the SMN. The involved connections were among the

left median cingulate and paracingulate gyri (DCG.L), right median cin-

gulate and paracingulate gyri (DCG.R), left Rolandic operculum (ROL.

L), right Rolandic operculum (ROL.R), left supramarginal gyrus (SMG.

L), right supramarginal gyrus (SMG.R), left superior temporal gyrus

(STG.L), right superior temporal gyrus (STG.R), right supplementary

motor area (SMA.R), left insula (INS.L), right insula (INS.R), right

precentral gyrus (PreCG.R), left postcentral gyrus (PoCG.L), right post-

central gyrus (PoCG.R), left Heschl's gyrus (HES.L), and right Heschl's

gyrus (HES.R). As for the brain region's affiliation to each large-scale

brain functional network, we calculated the ratio between the number

of regions belonging to each functional network and the total

number of the regions in that functional network, which was used to

indicate the functional system's relative involvement of the discrimi-

native node in dHOFC (as shown in the right panel in Figure 2). We

also calculated the absolute involvement of each functional network

by counting the summed “degree” of all the regions in each functional

network from the “cluster” of links [(a node in the dHOFC network)

shown in the left panel in Figure 2]. In the node 1, the SMN accounted

for 75% relative involvement with an absolute involvement degree of

68, while the involvement of the other two high-level systems (DMN

and VAN) was relatively small (12.5% relative involvement and their

sum of absolute involvement degree was 16, respectively).

The node 2 (selected in the same frequency as that of the node 1)

in dHOFC encompassed more functional systems than the node

1, including both primary (SMN and VN) and high-level (DMN, FPN,

DAN, and VAN) systems. Among 48 links, 46 were inter-network con-

nections. The connections involved the left paracentral lobule (PCL.L),

right paracentral lobule (PCL.R), left calcarine fissure and surrounding

F IGURE 2 The left panel shows the top two discriminative dynamics-based high-order functional connectivity (dHOFC) nodes selected from
classification between type 2 diabetes mellitus with cognitive impairment (T2DM-CI) and healthy controls (HC) according to the selection
frequency (95.83%). The colored nodes represent brain regions in different large-scale brain networks derived from Yeo et al. (2011) and Buckner
et al. (2011). The node size reflects the number of involved highly co-varied dFC links with other regions. The color of the links represents intra-
network connections (in respective network's color) or inter-network connections (gray). The right panel shows the radar maps of the relative
involvement of each dHOFC node with respect to seven large-scale functional networks
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cortex (CAL.L), right calcarine fissure and surrounding cortex (CAL.R),

left cuneus (CUN.L), right cuneus (CUN.R), left lingual gyrus (LING.L),

right lingual gyrus (LING.R), left superior occipital gyrus (SOG.L), right

superior occipital gyrus (SOG.R), left middle occipital gyrus (MOG.L),

right middle occipital gyrus (MOG.R), left inferior occipital gyrus (IOG.

L), right inferior occipital gyrus (IOG.R), left fusiform gyrus (FFG.L),

right fusiform gyrus (FFG.R), left precuneus (PCUN.L), right precuneus

(PCUN.R), left inferior temporal gyrus (ITG.L), right inferior temporal

gyrus (ITG.R), left cerebellum crus1 (CRBLCrus1.L), right cerebellum

crus1 (CRBLCrus1.R), left cerebellum6 (CRBL6.L), right cerebellum6

(CRBL6.R), vermis45 (Ver45), and vermis6 (Ver6). According to the rel-

ative involvement, the VN (53.85%) was mostly involved, followed by

DAN (15.38%), SMN (11.54%), DMN (7.69%), VAN (7.69%), and FPN

(3.85%). However, the SMN had the highest absolute involvement

degree (50), followed by VN (28), DAN (8), DMN (4), VAN (4), and

FPN (2). Most of the synchronized dFC links involved bilateral para-

central lobules.

For other discriminative nodes in the dHOFC network with lower

(but still high, between 90% and 95%) selection frequency, please see

Supplementary Figure 1. Please note that we did not show the LOFC

features derived from the classification between T2DM-CI and HC

because of its low accuracy.

3.4 | Association between dHOFC features and
clinical variables

We found a relationship between brain dHOFC features (i.e., local

clustering coefficient of the top discriminative dHOFC nodes 1 and 2)

and clinical features (i.e., MoCA scores, reflecting general cognitive

function) based on partial correlation analysis in the T2DM-CI group.

Specifically, local clustering coefficient of the dHOFC node 1, together

with three covariates (age, gender, and education level) successfully

explained the MoCA scores in the T2DM-CI group, as evaluated by

multiple regression (p = .005). With partial correlation analysis (after

adjusting for the effect of the covariates), their association was signifi-

cant (r = .444, p = .050, Figure 3a). We also found that MoCA scores

were correlated with education level (r = .672, p = .001). For dHOFC

node 2, we also found that MoCA scores can be successfully

explained by the dHOFC feature and three covariates (p = .002). Par-

tial correlation indicated a nearly significant relationship between the

local clustering coefficient of the dHOFC node 2 and MoCA scores

(r = .437, p = .054, Figure 3b). We also found that MoCA scores were

correlated with education level (r = .597, p = .005).

3.5 | Top discriminative dHOFC features in T2DM-
noCI versus HC classification

We also identified top one dHOFC node (selected in a frequency of

90.38% from all the LOOCV runs) with their local clustering coeffi-

cients as discriminative features in the classification of T2DM-noCI

from HC (Figure 4). Compared to T2DM-CI, the regions, and connec-

tions of T2DM-noCI encompassing the SMN, and FPN, may not

involve large-scale brain networks. It contained 16 links, half of which

were the intra-network connections in the FPN, while others were

inter-network connections. The involved connections were among

the orbital part of the left superior frontal gyrus (ORBsup.L), the

orbital part of the right superior frontal gyrus, (ORBsup.R), the orbital

part of the left middle frontal gyrus (ORBmid.L), the orbital part of the

F IGURE 3 Scatter plots of the dynamics-based high-order functional connectivity (dHOFC) features [(a) and (b) represent the local clustering
coefficients of the dHOFC node 1 and node 2, respectively, shown in Figure 2] against Montreal Cognitive Assessment (MoCA) scores in the
group of type 2 diabetes mellitus with cognitive impairment (T2DM-CI). Both values were corrected by removing the effect of age, gender, and
education level. The straight lines denoted fitted lines, and the curves on both sides were the 95% confidence interval. The P and r values were
derived from partial correlation analysis
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right middle frontal gyrus (ORBmid.R), left cerebellum region 7b

(CRBL7b.L), right cerebellum region 7b (CRBL7b.R), left cerebellum

region 8 (CRBL8.L), and right cerebellum region 8 (CRBL8.R) (see the

details of the pairwise connections involved in Supplementary

Table 3). According to the relative involvement and absolute involve-

ment degrees, the FPN (75%, 24) was mostly involved, while SMN

was relatively small (25%, 8).

3.6 | Association between dHOFC features and
clinical variables

We found a relationship between brain dHOFC features (i.e., local

clustering coefficient of the top discriminative dHOFC node) and clini-

cal features (i.e., AVLT-IR, reflecting short-term memory) based on

partial correlation analysis in the T2DM-noCI group. Specifically, local

clustering coefficient of the dHOFC node, together with three

covariates (age, gender, and education level), successfully explained

the AVLT-IR in the T2DM-noCI group, as evaluated by multiple

regression (p = .000). With partial correlation analysis (after adjusting

for the effect of the covariates), their association was significant

(r = �.459, p = .024, Figure 5). We also found that AVLT-IR was cor-

related with education level (r = .430, p = .036).

4 | DISCUSSIONS

To the best of our knowledge, this is the first classification study

between T2DM-CI and HC as well as T2DM-noCI and HC based on

brain functional network. We used brain dHOFC network to increase

the sensitivity in detection of disease-induced brain functional changes.

The results indicate that there exists discriminative synchronization of

dFC across large-scale intrinsic brain networks that can differentiate

T2DM-CI (and T2DM-noCI) from HC. By building dHOFC network and

conducting network-based classification with the help of machine

learning, we, for the first time, revealed a few covaried dFC that were

associated with T2DM-induced cognitive impairment, some of which

significantly correlated with patients' cognitive abilities as assessed

by MoCA and AVLT-IR. The dHOFC-based classification between

F IGURE 5 Scatter plots of the dynamics-based high-order
functional connectivity (dHOFC) node feature against the auditory
verbal learning test (immediate recall) (AVLT-IR) in the group of type
2 diabetes mellitus without cognitive impairment (T2DM-noCI). The
values were corrected by removing the effect of age, gender, and
education level. The straight lines denoted fitted lines, and the curves

on both sides represented the 95% confidence interval. The P and
r values were derived from partial correlation analysis

F IGURE 4 The left panel shows top one discriminative dynamics-based high-order functional connectivity (dHOFC) nodes selected from
classification between type 2 diabetes mellitus without cognitive impairment (T2DM-noCI) and healthy controls (HC) according to the selection
frequency (90.38%). The colored nodes represent brain regions in different large-scale brain networks derived from Yeo et al. (2011) and Buckner
et al. (2011). The node size reflects the number of involved highly co-varied dFC links with other regions. The color of the links represents intra-
network connections (in respective network's color) or inter-network connections (in gray). The right panel shows the radar maps of the relative
involvement of each dHOFC node with respect to seven large-scale functional networks
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T2DM-noCI and HC was not as good as that between T2DM-CI and

HC, together with different dHOFC features, which indicated that

T2DM-CI involved severe brain functional disorders that could be dif-

ferent from T2DM-noCI. Our findings provide valuable information that

may help to understand T2DM-related alterations in the central neural

system.

Our study indicates that dHOFC can be a good metric to model the

complex interactions among brain regions and capture high-level cogni-

tive functions, compared to the traditional, LOFC (79.17% vs. 56.25% in

accuracy). It further confirms that dHOFC can be very sensitive to MCI,

as found in previous MCI detection studies (Chen, Zhang, & Shen,

2016b). Of note, similar finding is found in the classification between

T2DM-noCI and HC. Despite some studies (El-Baz, Hassanien, &

Schaefer, 2016; Yue, Xin, Kewen, & Chang, 2008) have used machine

learning to diagnose diabetes based on simple clinical features, such as

personal data and results of medical examinations, our study highlights

the value of brain functional imaging in T2DM diagnosis, especially in

evaluation of cognitive decline caused by T2DM. Compared with other

functional imaging metrics, such as ReHo and ALFF also derived from

rs-fMRI, dHOFC measures long-range functional interactions in a time-

varying manner and captures their synchronizations, and thus can be

more sensitive to subtle changes in the cognitive status.

To perform a preliminary (due to unmatched age, gender, and

education level) comparison between the two T2DM groups for a bet-

ter understanding of T2DM-related cognitive impairment, we per-

formed one more classification task between 23 T2DM-CI and

27 T2DM-noCI using dHOFC. This classification achieved an ACC of

66.00%, while the AUC, SEN, SPE, and F1-score were 0.66, 56.52%,

74.07%, and 60.47%, respectively. This result shows a degraded but

still to-some-extent possible separation between T2DM-CI and

T2DM-noCI groups. Since the T2DM-CI and T2DM-noCI groups had

the same underlying disease (i.e., T2DM), we considered that T2DM

per se could cause more significant changes in the brain functional

networks than T2DM-related CI does. This might lead to less accurate

classification results between T2DM-CI and T2DM-noCI. Further-

more, we hypothesized that T2DM-CI had widespread brain network

impairment while T2DM-noCI also had similar (but possibly less)

affected brain networks; therefore, we could not separate them as

well as separating T2DM-CI from HC. We detected three shared net-

works (i.e., SMN, DMN, and VAN) that could be more affected in

T2DM-CI compared with T2DM-noCI, while the possible affected

brain networks as revealed by T2DM-noCI versus HC classification

did not include VN, DAN, DMN, and VAN. Please be also noted that

SMN and VN were found to have an important role in the classifica-

tion between T2DM-CI and HC, while FPN ranked the top in the clas-

sification between T2DM-noCI and HC. This new experiment

suggests that the DMN could be vital in the classification between

T2DM-CI and T2DM-noCI. Meanwhile, we also found that the SMN

is the network that might be involved in all three classifications.

Therefore, we think that further impaired DMN could be related to

T2DM-related CI.

Our study, in consistent with previous rs-fMRI studies, suggests

that the functional alteration in the DMN may play a role in cognitive

decline in patients with T2DM. Previous studies showed that T2DM-

related impaired FC was mainly in the DMN (Cui et al., 2015; Musen

et al., 2012; Xia et al., 2015; Yang et al., 2016; Zhou et al., 2010). Yang

et al. (2016) also found reduced FC in patients with T2DM-induced MCI

between the DMN and other regions, while a few other studies reported

reduced FC between the DMN regions and anterior cingulate cortex

(Zhang et al., 2015), FFG.L (Musen et al., 2012), right inferior frontal

gyrus (IFG.R), and left thalamus (Zhou et al., 2010). In resting state, the

DMN is one of the most active brain systems that is closely related to

internal recognition (i.e., episodic memory, theory of mind, and self-eval-

uation) (Buckner, Andrews-Hanna, & Schacter, 2008; Sestieri, Corbetta,

Romani, & Shulman, 2011). It is very important that a dynamic balance of

the interactions among regions inside the DMN as well as those between

the DMN and other brain systems to maintain a normal cognitive func-

tion (Uddin, Clare Kelly, Biswal, Xavier Castellanos, & Milham, 2009).

Patients with T2DM are generally at a higher risk of cognitive impair-

ment; therefore, they may show altered dHOFC in the DMN.

Another important finding in our article is the strong involvement

of the SMN in T2DM-CI. Of note, we also find that the SMN is infor-

mative in the T2DM-noCI diagnosis. Motor area, such as the

precentral gyrus, is associated with motor (Mattingley, Husain,

Rorden, Kennard, & Driver, 1998) and cognitive decline in previous

MRI studies of diabetic patients (Cui et al., 2014; Manschot

et al., 2006; Wang, Fu, Liu, Xing, & Zhang, 2014). SMN is generally

believed to be responsible for motor and somatosensory functions

(Barber et al., 2012). However, it is also considered to be involved in

some high-order cognitive functions, such as episodic memory, action

recognition, spatial navigation (Russ, Mack, Grama, Lanfermann, &

Knopf, 2003), planning and execution of voluntary movements (Ferri,

Frassinetti, Ardizzi, Costantini, & Gallese, 2012), and motor-learning

(Singh et al., 2015). Due to the close interaction between the SMN

and other functional systems, we think that the SMN can be a signa-

ture of T2DM-CI when dFC, instead of static FC, is used in the study.

We find that the VN (especially in the dHOFC node 2) can be

affected in T2DM-CI patients. This is consistent with previous find-

ings from T2DM patients using other functional metrics, such as ReHo

and ALFF. For example, reduced performance in cognitive tests was

found to be associated with reduced ReHo and ALFF in the cuneus

and lingual gyri in T2DM patients, which could be related to impaired

visual memory and word processing function (Mechelli, Humphreys,

Mayall, Olson, & Price, 2000). Reduced ReHo was also found in the

bilateral lingual gyrus, postcentral gyrus, parietal regions, right fusi-

form gyrus, precentral gyrus, and superior frontal gyrus in T2DM

patients (Cui et al., 2014; Liu et al., 2016; Peng et al., 2016). Previous

fMRI studies indicated that decreased brain activity in the occipital

area and postcentral gyrus was related to visual impairment (Liu

et al., 2011) and sensory loss (Luo et al., 2012), respectively. Diabetic

retinopathy has been linked to accelerated cognitive decline and

abnormal neural function (Hugenschmidt et al., 2014; Wang

et al., 2017). Since the homology between retinal and cerebrovascular

cells, the state of small vessels in the retina closely mirrors that of the

cerebral microvasculature, suggesting that diabetic retinopathy can be

used as a marker for the presence of microangiopathy within the brain
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(Feinkohl, Price, Strachan, & Frier, 2015). Previous studies demon-

strated many shared morphological and physiological properties

between the retinal and cerebral microvasculature (Patton

et al., 2005), suggesting that the microvascular changes might be

related to retinopathy and changes in cognitive function. Diabetic reti-

nopathy may be a putative marker for cognitive impairment in

patients with diabetes, where the cerebral microvascular disease may

have an important pathogenic role. In our study, most of the patients

do not have clinical visual or sensory changes, suggesting that abnor-

mal neural activity may be an early sign before the appearance of clini-

cally measurable symptoms. In future work, we will further collect

sensorimotor and visual disability information on testing. It will be

interesting to follow these patients over time to determine the clinical

significance of these findings.

We think that the interaction of multiple high-level functional net-

works can be altered by T2DM. A growing body of researches have

demonstrated that functional disconnections among the high-level net-

works are responsible for cognitive impairment (Chen et al., 2015; Dai

et al., 2015; Shu et al., 2012; Wang et al., 2013; Whitwell et al., 2011).

In our study, we also detect altered dHOFC in such high-level resting-

state networks (i.e., DMN, VAN, FPN, and DAN). DAN maybe related

to some higher-level cognitive processes, such as visuospatial and exec-

utive functions (Corbetta, Kincade, & Shulman, 2002). In addition to our

findings in the T2DM-CI patients, DMN, DAN, and VAN have also been

found deteriorated in other cognitive impairment disorders, such as AD

and hepatic encephalopathy (Fox, Corbetta, Snyder, Vincent, &

Raichle, 2006; Wilson et al., 2017). It is known that the FPN is vital to

working memory and other executive functions (Nielsen et al., 2017). It

has been proved that the FPN has a higher degree of FC compared to

other brain networks, indicating its functional diversity and roles in

information integration (Marek, Hwang, Foran, Hallquist, & Luna, 2015;

Power, Schlaggar, Lessov-Schlaggar, & Petersen, 2013).

Although T2DM and AD appear to share progressive cognitive

impairment, the brain damage could be different. First, compared with

previous early AD studies (Chen, Zhang, Gao, et al., 2016) that

showed dHOFC alterations in the lateral and medial temporal gyrus,

orbitofrontal cortex, superior and inferior parietal lobules, our results

based on T2DM-CI revealed quite different altered regions, such as

the SMN and VN that were highly ranked in the discriminative

dHOFC nodes 1 and 2. Of note, we also found that the SMNs were

informative in the diagnosis of T2DM-noCI. Therefore, it is not likely

that our findings were related to AD. However, we did find that the

education level was positively correlated with MoCA scores and

AVLT-IR, which might indicate that T2DM with higher education

could have better preserved cognitive ability. Longitudinal studies are

needed to study whether high education could slow the progression

of cognitive impairment in T2DM.

There are several limitations to our study. First, the sample size in

our study was relatively small. A larger sample size is urgently needed

to validate our findings. Multicenter and collaborative large databases

are encouraged in the future for result validation. Second, we found

that the T2DM-noCI group was more highly educated and had a lower

HbA1c level that might indicate better diabetic control than the

T2DM-CI group. The possible separation (ACC = 66%) between

the two groups might be related to such factors. It is also difficult to

evaluate whether the missing contribution of the DMN in the T2DM-

noCI versus HC classification was caused by higher education in the

T2DM-noCI group. Lower education level might be a vulnerability fac-

tor in normative aging and an independent risk factor of MCI or

dementia. Our result shows that it could be also a possible associated

factor in T2DM-related CI. Meanwhile, better diabetic control could

be another reason for less-affected cognitive abilities in the T2DM-

noCI. In the future, we will conduct a study with better control of the

two confounding factors and classify between well-matched T2DM-

CI and T2DM-noCI patients. We will also investigate the influence of

education level on both groups. Third, due to the unmatched age, gen-

der, and education level between T2DM-CI and T2DM-noCI, it is diffi-

cult to compare the differences directly between these two groups.

Although we achieved an accuracy of 66% when separating T2DM-CI

from T2DM-noCI, a one-on-one match in the collection of T2DM-CI-

and T2DM-noCI participants should be the direction of our future

efforts to better reduce the effect of age, gender, and education level.

Fourth, different treatment strategies might have exerted certain effect

on the results and were not considered in our study. Therefore, how to

eliminate the influence of medicine should be further investigated.

5 | CONCLUSIONS

This is the first classification study between T2DM with different cog-

nitive levels and HCs. With powerful machine learning and advanced

brain functional network strategies, we managed to identify brain

functional abnormalities in various brain networks, especially the sen-

sorimotor and VNs. We found that the dynamics-based high-order FC

could achieve satisfactory classification accuracy for T2DM-CI. Our

findings provide valuable knowledge for better understanding of

diabetes-related cognitive impairment.
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