
AF1q inhibited T cell attachment to breast cancer cell by 
attenuating Intracellular Adhesion Molecule-1 expression

Jino Park1,2,#, Jae Yeon Hwang3,#, Alexandra Thore1,2, Soojin Kim1,2, Tomiteru Togano2,4, 
Shotaro Hagiwara5, Juw Won Park3, and William Tse1,2

1James Graham Brown Cancer Center, University of Louisville School of Medicine, Louisville, KY 
40202, USA.

2Division of Blood and Bone Marrow Transplantation, Department of Medicine, University of 
Louisville School of Medicine, Louisville, KY 40202, USA.

3Department of Computer Science and Computer Engineering, University of Louisville, Louisville, 
KY 40292, USA.

4Division of Haematology, National Center for Global Health and Medicine, Tokyo 162-8655, 
Japan.

5Division of Haematology, Tokyo Women’s Medical University, Tokyo 162-8666, Japan.

Abstract

Aim: To investigate whether AF1q, overexpressed in metastatic cells compared with the primary 

tumor cells, plays a pivotal role in breast cancer metastasis.

Methods: To investigate whether AF1q has a responsibility in the acquisition of a metastatic 

phenotype, we performed RNA-sequencing (RNA-Seq) to identify the gene signature and applied 

the Metacore direct interactions network building algorithm with the top 40 amplicons of RNA-

Seq.
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Results: Most genes were directly linked with intercellular adhesion molecule-1 (ICAM-1). 

Likewise, we identified that ICAM-1 expression is attenuated in metastatic cells compared to 

primary tumor cells. Moreover, overexpression of AF1q attenuated ICAM-1 expression, whereas 

suppression of AF1q elicited the opposite effect. AF1q had an effect on ICAM-1 promoter region 

and regulated its transcription. Decreased ICAM-1 expression affected the attachment of T cells to 

a breast cancer cell monolayer. We confirmed the finding by performing the analysis on Burkitt’s 

lymphoma.

Conclusion: Attenuation of ICAM-1 by AF1q on tumor cells disadvantages host anti-tumor 

defenses through the trafficking of lymphocytes, which affects tumor progression and metastasis.
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INTRODUCTION

While primary lesion breast tumors are not fatal to the patient, the metastatic breast tumors 

are. For this reason, breast patients are often given other treatments after surgery to try to 

eliminate metastatic tumor cells that might have spread to other organs. Although the 

prognosis for breast cancer has improved during the last decade, we still lack specific 

treatments that target metastases. The discovery of such treatment will be of great benefit to 

patients.

The AF1q gene, located in chromosome 1, band 21, is an MLL fusion partner that was 

identified in acute myeloid leukemia patients with t (1; 11) (q21; q23) chromosomal 

abnormality[1]. The function of AF1q is not yet fully known; however, elevated AF1q 

expression is associated with poor clinical outcomes in various malignancies. We have 

demonstrated that the enhanced AF1q expression promotes cell proliferation, migration, 

sphere formation, and chemo-resistance in vitro and in vivo breast cancer models[2]. During 

the course of our study, we made an exciting discovery that AF1q physically interacts with 

TCF7, a key factor in the Wnt signaling pathway that enhances its activation[2]. The Wnt 

signaling pathway plays a leading role in various processes that are important for cancer 

progression, including cancer initiation, growth, cell death, differentiation, and metastasis[3]. 

Strikingly, we observed that AF1q-positive cancer cells are significantly more prevalent at 

metastatic sites than in primary breast tumors, when comparing paired samples from breast 

cancer patients[2]. Moreover, the Wnt signaling pathway was activated by AF1q crosstalk to 

the STAT3 pathway via the PDGF/PDGFR cascade[4]. The PDGF-B/PDGFR signaling 

cascade was activated upon enforced AF1q expression and this caused an increase in STAT3 

DNA binding activity through Src kinase action in cancer cells[4]. Moreover, AF1q is one of 

the genes that are differentially expressed between highly metastatic breast cancer cells and 

their parent cells[2]. Importantly, when breast tumor cells were treated with doxorubicin or 

etoposide, endogenous AF1q expression was further activated, implying that current 

chemotherapeutics may increase the risk of metastasis of breast cancer. Taken together, 

characterization of AF1q-induced breast cancer and new treatment strategies for hyperactive 

AF1q expression patients are urgently needed.
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Intercellular adhesion molecule-1 (ICAM-1) plays a key role in inflammatory conditions, 

nervous system development, and immune response through antigen recognition and 

lymphocyte surveillances[5,6]. There is still controversy regarding the contribution of 

ICAM-1 expression to tumor progression. Expression of ICAM-1 on tumor cells negatively 

correlates with tumor progression and development, including tumor size and lymph node 

metastasis[7]. A better prognosis was also reported for patients with ICAM-1 positive tumors 

compared with ICAM-1 negative tumors[8,9]. However, in vitro studies demonstrated that 

ICAM-1 overexpression can positively affect tumorigenicity[10]. Despite the controversy, it 

is clear that ICAM-1 plays a pivotal role in immune response. ICAM-1 levels on tumor cells 

stimulate T-cell receptor-mediated cellular immune response[11]. Recent studies revealed 

that ICAM-1 expression plays an important role in interactions between lymphokine-

activated killer cells and cancer cells[12,13]. These results suggest that a decrease of ICAM-1 

may be one of the mechanisms by which tumor cells escape cell-mediated cytotoxicity and 

lysis by the host cellular immune system.

Metastatic cancer cell, MDA-MB-231LN, is subtype of MDA-MB231 breast cancer cells 

and it has shown enhanced tumor growth and widespread metastasis than parents cell line in 

xenograft models[14]. We observed AFiq, a metastasis enhancer, is highly expressed in 

metastatic cancer cells (MDA-MB-231LN) than in the primary tumor cells (MDA-MB-231). 

In this study, we investigated whether AFiq is responsible in the acquisition of metastatic 

phenotype using RNA-sequencing (RNA-Seq) and applied the Metacore direct interactions 

network building algorithm. Intriguingly, most genes were directly linked with ICAM-1. 

Likewise, we identified that ICAM-1 expression is attenuated in metastatic cancer cells 

compared to primary cancer cells.

In addition to AF1q oncogenic functions, we demonstrated that intensity of AF1q expression 

in metastatic sites is higher than in primary sites[2]. Thus, similarly to that reported for 

certain oncogenes (i.e., Myc and Ras), AF1q has been shown to be endowed with a dual 

function in malignancy, being a protein apparently involved in both initiation and promotion 

of cancer progression through regulation of ICAM-1 expression. Our results suggest that 

targeting AF1q is valuable in developing treatments for breast cancer metastasis.

METHODS

Cell lines and cell culture conditions

MDA-MB-231 was purchased from American Type Culture Collection (ATCC). MDA-

MB-231-luc-D3H2LN (MDA-MB-231LN) was purchased from Caliper Life Science. The 

cells were maintained as a monolayer culture in DMEM, supplemented with Glutamax and 

penicillin-streptomycin (Invitrogen). Fetal bovine serum (FBS) (Thermo Fisher Scientific) 

was added to the media. Burkitt’s lymphoma cell lines, Ramos, Akata, Mutu, Raji, Jiyoye, 

BL-5, BL-7, and BL-8, were maintained in RPMI-1640, supplemented with Glutamax, 

penicillin-streptomycin, and 10% FBS (Thermo Fisher Scientific).

Whole blood was collected from healthy volunteers at James Graham Brown Cancer Center, 

University of Louisville with donors’ written consent. The CD4-positive and CD8-positive 

human T cells were purified from buffy coats via positive selection using a 1:1 mixture of 
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CD4- and CD8- MicroBeads (Miltenyi Biotec) according to the manufacturer’s protocol. 

Isolated T cells were maintained in RPMI-1640, supplemented with 300 IU/mL IL-2 (R&D) 

and 10% FBS (Thermo Fisher Scientific). All cells were maintained at 37 °C under a 

humidified atmosphere of 5% CO2.

RNA-Seq

Total RNA were isolated from MDA-MB-231 and MDA-MB-231LN cells with the use of 

the Purelink RNA min Kit (Thermo Fisher Scientific) in triplicates. Of total RNA, 1 μg was 

depleted of cytoplasmic and mitochondrial ribosomal RNA using the Illumina Ribo-Zero 

Gold rRNA Removal Kit (Human/Mouse/Rat) (Illumina). The rRNA-depleted RNA was 

ligated with Illumina adapters and further processed for sequencing following the Illumina 

TruSeq Stranded Total RNA library preparation kit (Illumina). All samples were pooled and 

a 75-cycle single-end sequence run was performed using the Illumina High Output Kit v2 on 

the Illumina NextSeq 500 platform.

RNA-Seq data analysis

RNA-Seq data were mapped using UCSC human genome, hg38, with STAR (version 

2.5.2b). The read count and reads per kilobase of transcript per million mapped reads 

(RPKM) were calculated on the basis of the human GRCh38 Ensembl Release 91 gene 

annotation. To search differentially expressed genes, Cuffdiff (version 2.2.1) was used. For 

further analysis, 1485 significantly differentially expressed genes were selected as following 

criteria, when the value of averaged RPKM from three replicates is greater than or equal to 1 

in at least one of the two samples, when the absolute value of log2 (fold-change) is greater 

than or equal to 1, and when false discovery rate is less than or equal to 0.01.

Tumor data selection

We selected data from The Cancer Genome Atlas (TCGA) project to represent the breast 

invasive carcinoma (BRCA). We downloaded publicly available 1,222 RNA-Seq data of 

1,092 breast cancer cases from TCGA database. Using FPKM values from all 1,222 

samples, the expression level of AF1q was compared to that of ICAM-1.

RT and real-time PCR analysis

Total RNA was subjected to reverse transcription (RT) with a High capacity RNA-to-cDNA 

kit (Thermo Fisher Scientific), and the resulting cDNA was subjected to real-time 

polymerase chain reaction (RT-qPCR) analysis with BrightGreen qPCR master mix (ABM) 

and a StepOne real time PCR system (Thermo Fisher Scientific). The amplification protocol 

comprised 40 cycles of incubations at 95 °C for 30 s and at 60 °C for 60 s. PCR primer 

sequences (forward and reverse) were as follows: 5’-TGAGTACAGCACCTTCAACTTC-3’ 

and 5’-GGGAAAGGAGTGGAAAGGAAG-3’ for AF1q; 5’-

CAATGTGCTATTCAAACTGCCC-3’ and 5’-CAGCGTAGGGTAAGGTTCTTG-3’ for 

ICAM-1; 5’-CAGAGGGCTACAATGTGATGGC-3’ and 5’-

GCTGAGGATTTGGAAAGGGTG-3’ for HPRT1.
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Plasmid construction

Full-length AF1q cDNA was inserted into pLUTdNB, which is a pTRIPZ base modified 

doxycycline-inducible vector by cloning the HindIII and XhoI fragments as previously 

described. Short hairpin RNA (shRNA) of AF1q was purchased from Open Biosystems. 

Empty pLUTdNB, and pTRIPZ-scramble were used as controls for pLUTdNB-AF1q, and 

pTRIPZ-AF1q shRNA, respectively.

Viral production and infection

Lentivirus was produced by co-transfection of HEK 293T cells (ATCC) with the lentiviral 

constructs pVSV-G and psPAX2 (Addgene). Transfections were carried out using 

Lipofectamine 2000 (Invitrogen). For enforced AF1q expression or shRNA targeting, cells 

underwent lentiviral transduction and were selected using 1 μg/mL puromycin (Thermo 

Fisher Scientific) as previously described[15]. After antibiotic selection, cells were cultured 

in complete medium including 1 μg/mL doxycycline (Thermo Fisher Scientific) for AF1q or 

shRNA induction.

Western blot

For blots of whole-cell lysates, cells were lysed directly in GLB buffer (2% SDS, 10% 

glycerol and 50 mmol/L Tris, pH 6.8), boiled, and separated by electrophoresis on a 4%

−12% SDS-PAGE gradient gel. Proteins were transferred to PVDF membrane (Millipore) 

and blocked in 5% skim milk (Bio-Rad) in 0.05% PBST. Rabbit monoclonal anti-AF1q, 

ICAM-1, and β-actin antibodies were purchased from Abcam. After the appropriate 

antibody incubations, an enhanced chemiluminescence (Denville) system was used for 

developing blots.

Reporter gene construct, transfection, and Luciferase assay

Dual-Luciferase reporter assays were performed using an ICAM-1 reporter plasmid. To 

construct reporter plasmids, 850 bases of an ICAM-1 promoter fragment were cloned to 

between the XhoI and HindIII sites of the pGL4-Luciferase reporter plasmid (Promega). 

Briefly, 1 × 104 cells were plated in each well of a 96-well plate. The next day, the reporter 

plasmid (100 ng) and Renilla plasmid (10 ng, Promega) were co-transfected into the cells 

with lipofectamine 2000 (Thermo Fisher Scientific). After 48 h, cells were washed with PBS 

and assayed with the Dual-Luciferase reporter assay system (Promega) according to the 

manufacturer’s instructions. Luciferase activity was determined using Synergy H1 Multi-

Mode reader (Biotek). Quantitation of luminescent signal from reporter plasmid was 

normalized by quantitation of the luminescent signal from Renilla.

Surface and intracellular staining

Cells were harvested using non-enzymatic dissociation solution (Corning) and washed once 

with PBS. For staining of ICAM-1, cells were incubated in Human Fc Block (BD) for 10 

min. Thereafter, cells were stained with FITC-conjugated antibody to ICAM-1 in the 

presence of Fc Block for 30 min at 4 °C. Cells were then washed 3× with PBS and analyzed 

by FACS Caliber (BD). Data analysis was performed using Flowjo V10 software (Ashland).
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Monocyte adhesion assay

Isolated T cells were incubated with Cell Tracker (Thermo Fisher Scientific) for 30 min at 

37 °C and then 105 cells per well were incubated on MDA-MB-231LN monolayers in HBSS 

supplemented with 2 mmol/L calcium and magnesium for 1 h. After removing nonadherent 

cells, the number of Cell Tracker-labeled cells bound to the MDA-MB-231LN cells was 

quantified under fluorescent microscopy.

Immunohistochemistry

Tissue samples were fixed in 4% paraformaldehyde, embedded in paraffin, and then 4-μm 

sections were prepared. Sections were de-waxed and a steamer pre-treatment in Tris/EDTA 

buffer (DAKO) was performed. Endogenous peroxidase activity was quenched by incubation 

in 3% hydrogen peroxide in PBS. For blocking steps, avidin (Sigma-Aldrich), biotin 

(Sigma-Aldrich) in PBS, and a super block (IDlabs Biotechnology) were used. Rabbit 

monoclonal AF1q antibody and mouse monoclonal ICAM-1 antibody in a 1:200 dilution 

were incubated at 4 °C overnight. IHC detection was performed with the IDetect Super Stain 

System HRP (IDlabs Biotechnology). Specific signals were amplified using 3-amino-9-

ethylcarbazole (IDlabs Biotechnology) under visual control, followed by counterstaining 

with hematoxylin.

Statistical analysis

Quantitative data are presented as means ± SD and were subjected to analysis of variance 

followed by a t test with the use of Prism V.7 software (GraphPad Software). A P value of < 

0.05 was considered statistically significant.

RESULTS

Next-generation sequencing and transcriptome data analysis

We observed AF1q, a metastasis enhancer, was highly expressed in metastatic cells, MDA-

MB-231LN (invasive subline from MDA-MB-231), than in the primary tumor cells (MDA-

MB-231) [Figure 1A]. To validate the results of RNA-seq, we performed RT-qPCR analysis 

using randomly selected genes [Figure 1B]. Both MDA-MB-231 and MDA-MB-231LN cell 

lines were subjected to RNA-Seq analysis with three biological replicates for each cell line. 

The 75 bp-long single-end sequencing reads were mapped to the human genomic reference 

using STAR aligner. More than 27.7 million sequencing reads were mapped to genome on 

each replicate (averaging 35.3 million mapped reads) [Supplementary Table 1]. Out of the 

58,289 annotated genes, 18,042 (31.0%) by Ensemble were expressed with more than 10 

read counts on at least one of our replicates [Supplementary Table 2]. Only uniquely mapped 

reads were used further for searching differentially expressed genes using Cuffdiff. Total 

1,485 genes were selected as significantly differentially expressed with the criteria explained 

above. Among those, 762 genes showed increased value of RPKM in MDA-MB-231LN cell 

line compared to MDA-MB-231 and 723 genes showed the opposite. Row-scaled RPKM 

value of each replicate represents that the differential expression of genes is consistent 

throughout replicates of each cell line [Figure 1C].
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With those differentially expressed genes, pathway analysis was performed using Metacore. 

By selecting top 40 network objects resulted from the pathway analysis [Table 1], direct 

interaction network building algorithm was applied. Interestingly, pathway process showed 

that most genes were directly linked with ICAM-1 [Figure 2A]. In addition, we found out 

that ICAM-1 transcript level was significantly decreased in MDA-MB-231LN cell line 

compared to MDA-MB-231 confirming that ICAM-1 expression is attenuated in metastatic 

cell line [Figure 2B].

To explore the relationship of AF1q with ICAM-1 in breast cancer, we used 1,222 RNA-seq 

data of 1,092 breast cancer cases from TCGA database. Using FPKM values from all 1,222 

samples, the expression level of AF1q was compared to that of ICAM-1. Vast majority of the 

samples did not show clear correlation between the expression levels of AF1q and ICAM-1 

[Supplementary Figure 1]. Interestingly, however, all those with high FPKM values of AF1q 

showed low expression level of ICAM-1 supporting our observation that overexpression of 

AF1q attenuated ICAM-1 expression. Although majority of samples did not show clear 

correlation, this finding is consistent with our previous report that the role of AF1q is a co-

factor rather than a transcription factor[2].

ICAM-1 is transcriptionally regulated by AF1q

To demonstrate that the AF1q expression was involved in ICAM-1 gene expression in breast 

cancer, we first experimentally overexpressed or suppressed AF1q expression in MDA-

MB-231LN. We used a lentiviral transduction system to overexpress and suppress AF1q 

with endogenous AF1q expression. As shown in Figure 3A and B, overexpressed AF1q 

(AF1q) remarkably decreased ICAM-1 mRNA and protein expression, compared to that of 

control (Ctrl). The ICAM-1 expression, however, was increased by the suppression of AF1q 

with shRNA (shAF1q) than control (shCtrl). These results indicate that AF1q regulates 

ICAM-1 expression in transcription. FACS analysis comparing ICAM-1 surface expression 

on cells show that the attenuation of ICAM-1 on the surface of MDA-MB-231LN in 

response to AF1q was also confirmed [Figure 3C].

We assessed whether AF1q influences ICAM-1 promoter activity by performing a 

Luciferase reporter assay. We first experimentally overexpressed or suppressed AF1q 

expression in HEK293, then, HEK293 cells with a construct containing 850 bases of an 

ICAM-1 promoter fragment. Overexpressed AF1q displayed 0.7 fold lower luminescence. 

However, the luminescence was 1.4 fold higher when AF1q expression was suppressed by 

shAF1q [Figure 3D].

ICAM-1 plays an important role in T cell adhesion and cytolysis

Because ICAM-1 is associated with the recognition of T cells, we wanted to determine 

whether ICAM-1 dysregulation by AF1q is essential for the T cell attachment to breast 

cancer cells. To demonstrate that ICAM-1 plays a critical role in the adhesion of T cells, we 

performed an in vitro adhesion assay. The attachment between breast cancer cell monolayer 

and T cells was significantly reduced by AF1q-induced ICAM-1 attenuation, while 

enhanced ICAM-i expression by AF1q suppression increased the attachment [Figure 4A]. 
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The attachment between T cells and breast cancer cell monolayer was significantly reduced 

by pretreatment with a blocking antibody to ICAM-1 [Figure 4B].

Cell cytotoxicity assays are shown in Figure 4C where the corresponding MDA-MB-231LN 

sublines were used as the target cell. Assays were carried out using ex vivo expanded T cells 

derived from healthy donors. These data indicate that ICAM-1 can function as an important 

determinant of a tumor cell’s sensitivity to T cell-mediating killing.

AF1q reciprocally regulate expression of ICAM-1

We extended our finding to Burkitt’s lymphoma. It is well known that downregulation of 

ICAM-1 in Burkitt’s lymphoma enhances the probability of escape of tumor cells from T 

cell surveillance[16]. RT-qPCR and Western blot analysis showed that the AF1q expression at 

both the mRNA and protein levels reciprocally regulated the expression of ICAM-1 in 

Burkitt’s lymphoma cell lines [Figure 5A and B]. We validated our finding in Burkitt’s 

lymphoma patient samples. To investigate the expression levels of AF1q and ICAM-1 in 

Burkitt’s lymphoma patient samples, immunohistochemical staining of patient tissues was 

performed. We have observed identical results from the IHC study [Figure 5C]. These 

findings are consistent with observation in breast cancer cells.

DISCUSSION

We have here identified ICAM-1 which reciprocally regulated by AF1q was associated with 

metastasis of cancer cells. Although elevated AF1q expression is associated with poor 

clinical outcomes in various malignancies[4–6], the function of AF1q is not yet fully 

understood. Our findings further explain why high AF1q expression is associated with poor 

clinical outcomes. However, greater mechanistic understanding of how AF1q is involved in 

promoting cancer metastasis is necessary before these laboratory investigations can be 

translated into clinical interventions. Thus, it is very important to continue to investigate the 

underlying biological functions of AF1q and its association with breast cancer metastasis.

We observed that nuclear factor-kappa B (NF-κB) activity was attenuated in response to 

AF1q expression in breast cancer cells (data not shown). NF-κB translocated to the nuclers 

binds to the proximal NF-κB consensus sequence of the ICAM-1 promoter and binding of 

NF-κB to the proximal binding site of the ICAM-1 promoter induces transcriptional 

activity[17]. Published reports show that Wnt/β-catenin negatively regulates NF-κB activity 

through a β-catenin-NF-κB interaction in colon and breast cancer cells[18,19]. β-catenin can 

physically complex with NF-κB, resulting in a reduction of NF-κB DNA binding, 

transactivation activity, and target gene expression[20]. Activated β-catenin is associated with 

repressed NF-κB activity in human cancer cells[20]. Interestingly, the interaction between 

them is only indirect, as these two proteins do not bind to each other without a helper 

protein. Structurally, AF1q has highly acidic peptide regions highly conserved between 

species that fulfill the criteria for an acidic blob, a typical feature for cofactors. We also 

noted an internal peptide repeat within the sequence of 90 amino acids of human AF1q, 

which is located at both ends of the peptide, indicative of similar binding interfaces[2]. 

Previously, we reported that AF1q enhances the TCF7/LEF/β-catenin complex binding 

affinity as a cofactor. When we performed immunoprecipitation with NF-κB antibody in 

Park et al. Page 8

J Cancer Metastasis Treat. Author manuscript; available in PMC 2019 July 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



cancer cells overexpressing AF1q, we observed that β-catenin and AF1q were pulled down 

together (data not shown). However, it is not clear yet whether AFiq promotes protein 

interaction between β-catenin and NF-κB. These results suggest that activated β-catenin by 

AF1q would archive higher affinity to bind with NF-κB.

Cancer cells utilize multiple mechanisms to prevent host immune cells from exercising their 

antitumor activities. Many of these mechanisms are now known on a cellular and molecular 

level. These mechanisms, which enable the tumor to escape from the host immune system 

and to progress, are being intensively investigated in hope of finding therapeutically safe and 

effective inhibitors able to counteract tumor-induced immunosuppression. Tumor escape has 

been a major problem in cancer immunotherapy, and it has been held responsible for the 

failure of many immune interventions in cancer. For this reason, it is important to study and 

understand the various suppressive pathways human tumors utilize.

Tumors use blood vessels to supply themselves with oxygen and nutrients as well as for 

waste removal[21]. Lymphocytes also use blood vessels as the gateway where intergrin 

interactions with endothelial cell adhesion molecules are required to infiltrate into the 

tumor[22,23]. The downregulation of ICAM-1 by several inhibitory mechanisms limiting T 

cell transendothelial migration have been described[24–26]. Also, other componets of the 

tumor stroma and cancer-associated fibroblasts, can suppress T cell infiltration, which can 

influence cancer progression and metastasis[27].

The interction between tumor and lymphocytes through ICAM-1 plays an important role in 

leukocyte adhesion, transduction, and cytolysis [28–30]. For example, tumor clones from 

melanoma metastasis split into 2 groups with high and low susceptibility to killing by IL-2 

activated lymphocytes. The subset with low lysablity expressed ICAM-1 at levels 10 fold 

lower than those of tumor clones with high lysability[31]. These results suggest that a 

constitutively high expression of ICAM-1 on tumors would be the parameter contributing to 

the high lysability of these tumor cells by any effector.

This study investigated the role of AF1q-attenuated ICAM-1 in progression and metastasis 

of breast cancer. Based on published reports, ICAM-1 strongly stimulates metastasis but also 

regulates lymphocyte infiltration via interactions between immune cells and malignant cells. 

This suggests that ICAM-1 needs an on-off switch for cancer progression and metastasis. It 

needs “off” to escape from host immune surveillances system in the initial phase of cancer, 

but “on” to invade and grow afterwards. Our results suggest that AF1q is a switch for 

ICAM-1 expression. Therefore, AF1q is a promising target for developing treatment for 

breast cancer metastasis.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
A: AF1q expression status in breast cancer cell lines (1: MDA-MB-231, 2: MDA-MB-231-

luc2-LN); B: validation of relative expression of gene obtained from RNA-seq by qPCR. 

qPCR analyses were performed as described in the method section using randomly selected 

20 genes (upregulated genes 10 and downregulated genes 10). Relative expression values are 

presented as an average ± SD of three biological replicates; C: significantly expressed genes. 

1,485 genes are significantly expressed in both cell lines with three biological replicates, 

respectively. Among those, transcripts of 762 genes increased in MDA-MB-231LN cell line 

and those of 723 genes decreased
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Figure 2. 
Functional interaction network analysis. A: 1,485 significantly selected genes were further 

analyzed for pathway process using Metacore. Top 40 network objects were, then, used for 

building direct interactions. ICAM-1 is directly linked with most genes and positioned at the 

end of the pathways. Red line represents suppression, blue line represents activation; B: 

RNA-seq shows that expression level of ICAM-1 is drastically decreased in MDA-

MB-231LN cell line compared to MDA-MB-231
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Figure 3. 
Transcriptional regulation of ICAM-1 expression by AF1q in breast cancer. A: ICAM-1 

mRNA expression was quantified using qPCR in MDA-MB-231LN cells engineered to 

overexpress or suppress AF1q; B: the blot shows ICAM-1 protein expression; C: MDA-

MB-231LN cells were stained with ICAM-1 mAb and flow cytometry analysis were 

performed using FACS Calibur. On left panel, Red is profile of the MDA-MB-231LN/Ctrl 

and Blue is MDA-MB-231LN/AF1q. On the right panel, Red is MDA-MB-231LN/shCtrl 

and Blue is shAF1q cells. Representative data of three similar experiments are shown; D: 

Luciferase activity in HEK293T cells transfected with reporter constructs of the proximal 

promoter of ICAM-1. Renillar Luciferase activity was used to normalize the promoter 

activity
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Figure 4. 
ICAM-1 is important for attachment and cytotoxicity of T cells to breast cancer. A: Labelled 

T cells attached to MDA-MB-231LN cells monolayer. AF1q significantly reduced the 

number of attached T cells to the monolayer. When AF1q expression was suppressed, the 

number of attached T cells was increased. The Bar graph represents the % adhesion cells of 

total cells; B: ICAM-1 blocking antibody significantly reduced the number of attached T 

cells to the monolayer; C: a 72 h cytotoxicity assay was performed in 24 well plates where 

co-cultured at 10:1 or 20:1 E:T ratio with MDA-MB-231LN cells
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Figure 5. 
AF1q reciprocally regulates the expression of ICAM-1 in Burkitt’s lymphoma. A: ICAM-1 

mRNA expression was quantified using qPCR in MDA-MB-231LN cells engineered to 

overexpress or suppress AF1q; B: Western blot analysis of ICAM-1 and AF1q in Burkitt’s 

lymphoma cell lines; C: representative images of AF1q and ICAM-1 staining in human 

Burkitt’s lymphoma tumor metastasis tissues. High IHC staining of AF1q in tissue samples 

show low ICAM-1 expression
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Table 1.

Top 40 network objects ranked by occurrence in top 50 pathway maps

Ranking Network objects Number of maps
containing network object Ranking Network objects Number of maps

containing network object

1   IL-6     24 10 TGF-β receptor type II 8

2   ICAM-1     20 11 NFKBIA 7

3   IL-1 beta     18 11 MHC class II 7

4   p38 MARK     16 12 WNT5A 6

5   VCAM-1     15 12 GRO-2 6

6   VEGF-A     12 12 Tcf(Lef) 6

6   c-Myc     12 12 Bcl-XL 6

7   GM-CSF     11 12 WNT 6

7   CCL2     11 13 GRO-3 5

8   I-kB     10 13 PLAUR 5

8   PTCH1     10 13 IL-1 α 5

8   SHH     10 13 SNAIL1 5

9   MMP-1     9 13 PKA-cat 5

10   Fibronectin     8 13 MMP-13 5

10   TCF7L2     8 13 PDGF-R-β 5

10   Frizzled     8 13 CSF1 5

10   TLR2     8 13 PKA-reg 5

10   GLI-2     8 14 Jagged1 4

10   Lef-1     8 14 TRF2 4

Network object ranking reflects the popularity of each network object in pathway map. Smaller rank value means that network object occurs in 
greater number of maps. ICAM-1: intercellular adhesion molecule-1
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