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Abstract

Background: The human red nucleus (Nr) is comparatively less well-studied than that of cats or monkeys. Given the
functional importance of reticular and midbrain structures in control of movement and locomotion as well as from an
evolutionary perspective, we investigated the nature and extent of any differences in Nr projections to the olivary complex
in quadrupedal and bipedal species. Using neuroanatomical tract-tracing techniques we developed a ‘‘neural sheet’’
hypothesis allowing us to propose how rubro-olivary relations differ among the three species.

Methods and Findings: Wheat germ agglutinin-horseradish peroxidase staining supports findings that the cat’s nucleus
accessories medialis of Bechtrew (NB) projects mainly to the lateral bend of the principal olive. We clarified boundaries
among nucleus of Darkschewitsch (ND), NB and parvicellular red nucleus (pNr) of the cat’s neural sheet. The macaque’s ND-
medial accessory olivary projection is rostro-caudally organized and the dorsomedial and ventrolateral parts of the
macaque’s pNr may project to the principal olive’s rostral and caudal dorsal lamella; in cat it projects as well to pNr. Myelin-
and Nissl-stained sections show that a well-developed dorsomedial part of the human Nr consists of densely packed cells,
deriving small myelinated fibers that continue into the medial central tegmental tract.

Conclusions: Based on these findings we suggest there are distinct bipedal-quadrupedal differences for Nr projections to
the olivary complex. We propose the Nr of cats and monkeys comprise the ND, NB and pNr in a zonal sheet-like structure,
retaining clear nuclear boundaries and an isolated, well-developed mNr. The human NB may be distinguished from its more
specialised ND (ND lies alongside a well-developed pNr) in the human central gray. Phylogenetically, the NB may have been
translocated into a roll-shaped Nr in the reticular formation, the dorsomedial portion of which might correspond to the cat’s
and monkey’s NB.
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Introduction

The structure and function of the mesodiencephalic region and

possible homologies among experimental species used in neuro-

anatomical and electrophysiological studies such as rat, cat and

monkey has long been problematic. However the important role of

many of the midbrain nuclei in locomotion especially, but also in

many aspects of other forms of motor control, make a comparison

of connectivity relationships involving this region between bipeds

and quadrupeds of considerable interest. Such knowledge may

lead for example to new insights into evolutionary processes which

could have resulted in the advent of bipedalism. They also may

cast new light on how fine-movement control likely emerged from

more primitive forms of template-based motor functions. The aim

of the present study was to identify area(s) corresponding to the

human nucleus accessories medialis of Becheterew (NB) and its

descending tract through comparisons of data from the cat,

macaque and human, and to propose a new model for the human

red nucleus.

In humans, the red nucleus consists of the parvicellular red

nucleus (pNr) and it derives the central tegmental tract (CTT),

whereas the cat’s red nucleus contains the magnocellular red

nucleus (mNr), the origin of the rubrospinal tract. In a pioneering

study of this region in cats, Ogawa (1939) proposed that the cat’s

pNr corresponded to a nuclear complex consisting of the nucleus

of Darkschewitsch (ND), the interstitial nucleus of Cajal (Nint) and

the nucleus of the fields of Forel, forming the medial tegmental

tract (MTT) [1]. Mannen (1988) published a work entitled ‘‘A

dendro-cyto-myeloarchitectonic atlas of the cat’s brain’’; his work

was based on material stained by Golgi-, Weigert- and Nissl-

prepared serial sections [2]. Individual Golgi-impregnated neurons

(printed in eight published colours) clearly were identifiable

throughout the entire brain. This excellently detailed atlas showed

the cat’s mNr as being classified as ‘‘closed nuclei’’ in contrast to

‘‘open nuclei’’, since the extranuclear dendrites of its cells seldom

were found in the neighboring reticular formation. In these

normally stained sections, the poorly-developed feline pNr could

not be clearly demarcated from among the diffusely distributed

neurons of the reticular formation. Of course all anatomical

studies, whether using tract-tracing with WGA-HRP or cytological

in nature (e.g., Golgi-, Weigert- or Nissl-staining) particularly those

done in earlier decades, will be limited by technical and
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methodological issues that make it difficult to draw firm

conclusions about nuclear boundaries or patterns of connectivity.

However one of us was able to demonstrate the feline pNr as

consisting of a long cellular zone continuing from the ND to the

rostral part of the mNr through the use of an HRP-tracing method

(Onodera, 1984 [3]). After HRP deposition into the central core of

the cat’s inferior olive, almost all the cells of both the ND and NB,

located in the ventral central gray. A number of labelled small cells

also were found in both the dorsomedial (dm)- and ventrolateral

(vl)-pNr of the reticular formation. The cat possesses a continuous

zonal neural sheet consisting of the ND, NB and the poorly-

developed dm- and vl-pNr and it is readily seen that this mNr is

well-developed for quadrupedalism (Onodera, 1984 [3]).

mNr neurons in quadrupeds (e.g., cat: Drew et al., 1996 [4])

exhibit a significant increase in discharge frequency during of

either fore- or hindlimbs movement when the animals cross

obstacles, similar to what is seen in pyramidal tract neurons. These

neurons are controlled by a network resembling a continuous

zonal neural sheet, i.e., the mesodiencephalo-olivo-cerebellar

system. Such animals execute voluntary gait modification of fore-

and hindlimbs using visual and other sensory cues [5]. Pyramidal

tract neurons contribute to fine, precise control of distal limb

movements both by increases and decreases in the level of spinal

interneuron activity. By contrast, mNr neurons may discharge

more in relation to intralimb coordination as well as interlimb

coordination [5]. mNr neurons of rats and monkeys, species that

possess a manipulable hand, are provided with a ‘‘hand preshape’’

through their extension of digits via goal-directed limb move-

ments, such as reaching to grasp [6,7,8,9]. Pyramidal tract

neurons which are controlled by a continuous zonal neural sheet-

olivo-cerebellar circuit, superimpose motor control for individual

finger movements on grouped-finger extension, such action which

is governed by rubrospinal tract neuron activity.

In the bipedal human, the mNr is rudimentary. From an

evolutionary perspective, human pyramidal tract neurons controlled

by the rubro-olivo-cerebellar circuit would have subsumed the

function of the framework governing limb movements that, until

then, had been provided by the rubrospinal tract neurons, thereby

introducing stability and accuracy of skilled movements of all muscle

groups required for locomotion, enabling the advent of bipedalism.

Although the human ND is identified as a separate body part from

the well-developed red nucleus, demarcated by fiber bundles

consisting of the superior cerebellar peduncle, CTT, MTT and

the medial longitudinal fasciculus (MLF), the human NB could not

be identified in the ventral central grey, as is seen for the cat’s NB.

Materials and Methods

Two adult female and male cats and three female macaques

(Macaca fuscata) were employed as subjects in the present study. All

experimental protocols were performed in accordance with the

Animal Experimental Guidelines of Iwate Medical University and

the Canadian Council of Animal Care, and the ethics protocol was

approved by the Animal Users Subcommittee of Iwate Medical

University. Procedures were designed to minimize animal suffering

and reduce the number used. Human brains were obtained via

informed donation for medical education and research of Iwate

Medical University with the corresponding written consents given

by donors and their families who agreed with policies relating to

good–will cadaver donation. Human brain slice preparation

approved by the Ethical Committee of Iwate Medical University

is used annually in neuroanatomical courses at Iwate Medical

University; cadaver identity data are anonymous. All experiments

were performed between 1996 and 1998.

Animal Preparation
Two cats in Case 1 (female, 2.8 kg) and Case 2 (male, 3.0 kg)

and two macaques (Macaca fuscata) in Case 3 (female, 9.0 kg), and

Case 4 (female,10.0 kg) were used for the demonstration of

mesodiencephalic nuclei consisting of olivary projecting neurons.

One macaque in Case 5 (female, 10.5 kg) was used for the

demonstration of the cortico-mesodiencephalic projection.

After induction of sedation by an intramuscular injection of

ketamine hydrochloride (10 mg/kg body weight), animals were

anesthetized deeply by intraperitoneal injections of sodium

pentobarbital (30 mg/kg body weight). Then, atropine sulphate

(60 mg/kg body weight) was injected intramuscularly. To gain

sterotaxic access to the inferior olivary complex (Case 1–4), part of

the occipital bone lying over the occipital cortex and cerebellum

was removed. For demonstration of mesodiencephalic nuclei

consisting of olivary projecting neurons, these animals received

multiple stereotaxic injections (0.2 ml/one injection for the cat,

1.0 ml/one injection for the macaque) of 2% WGA-HRP (Toyobo,

Tokyo, Japan) solution as retrograde tracer via a 1-ml Hamilton

microsyringe into the entirety of the olivary complex (two cats,

Cases 1 and 2: 0.2 ml62 and 0.2 ml64) or with the use of a 5-ml

Hamilton microsyringe into its subnuclei (two macaques, Cases 3

and 4: 1.0 ml66).

A large craniotomy was made to expose the appropriate region

of frontal cortex of one macaque (Case 5). For demonstration of

the cortico-mesodiencephalic projection, this animal received,

under direct visual control, multiple injections (23 sites) of 10.6 ml

2% WGA-HRP solution as anterograde tracer using a 1-ml

Hamilton microsyringe into the premotor area and frontal eye

field (FEF).

Animals were permitted to survive for 2 days after the injections,

and were overdose-anesthetized prior to transcardial perfusion

with 500 ml of warmed (37uC) physiological saline followed by

1,500 ml (for cats) or 2,500 ml (for macaques) of fixative

containing 1% paraformaldehyde and 2.5% glutaraldehyde in

0.1 M phosphate buffer (PB), pH 7.4 and then by 1,000 ml PB,

pH 7.4. Whole brains were stored overnight at 4uC in 0.1 M PB

containing 30% sucrose. Coronal sections of 50 mm thickness were

cut with a vibratome or a freezing microtome and collected in

0.1 M PB. Sections were processed for the histochemical

demonstration of HRP with the tetramethylbenzidine method

[10] and counterstained with neutral red. The distribution of

labeled axons and somata were photographed and drawn through

the use of a photomicroscope (Olympus) with a drawing tube

attached.

Human Brain Preparation
After death and within 24 hrs postmortem, cadavers were

perfused through the femoral artery with 10,000 ml of a 10%

formalin solution. Brains were removed immediately from the

skulls and immersed in the same fixative for several months. Well-

fixed adult brain was selected and washed in running water.

Macro- and microscopical examination of this brain did not reveal

any lesions. The diencephalon and brainstem were cut into several

blocks. These blocks were cut by a freezing microtome into

50 mm-thick serial coronal sections. Each section was picked up

with a chrome alum gelatin-coated slide. Every twelfth section was

stained with 1% cresyl violet. Other serial sections were stained

with myelin stain using Luxol fast blue. The distributions of Nissl

stained cells were plotted using a drawing tube.

Drawing of 3D Image
Frontal, dorsal and lateral views of the structures of the

mesodiencephalic nuclei of the cat, macaque and human were

New Model of Human Red Nucleus
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Figure 1. WGA-HRP injection sites in cat’s inferior olivary complex (case 1 and 2). The upper two columns comprise a scale drawing of the
distribution of injected WGA-HRP solution in the cat’s inferior olivary complex in case 1 and 2. The Roman numerals (II-XIV) represent levels of the
inferior olivary complex from caudal to rostral (Brodal, 1940 [60]). The crossed stripes indicate a heavily stained area. Lower photomicrographs show
the maximal extent of injected wheat germ agglutinin-horseradish peroxidase (WGA-HRP) at the olivary level (Fig. 1) in case 1 (A) and case 2 (B). DAO–
dorsal accessory olive, MAO–medial accessory olive, PO–principal olive, vlpNr–ventorlateral part of parvicellular red nucleus, b–nucleus b. Scale
bar = 500 mm in B (also applies to A).
doi:10.1371/journal.pone.0006623.g001

New Model of Human Red Nucleus
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Figure 2. Distribution of WGA-HRP-labelled cells in mesodiencephalic structures (case 1). Successive serial sections are rostrally arranged,
i.e., section A is the most rostral. The number in the left corner of each photomicrograph is the rostrocaudal distance (in micrometers) from section A.
AM–anteromedian nucleus, dmpNr–dorsomedial part of parvicellular red nucleus, EW–Edinger-Westphal nucleus, FF–Field of Forel, FR–fasciculus
retroflexus, MLF–medial longitudinal fasciculus, mNr–magnocellular red nucleus, MTN–medial terminal nucleus, NB–nucleus accessorius medialis of
Bechterew, ND–nucleus of Darkschewitsch, Nint–interstitial nucleus of Cajal, Pf–parafascicular nucleus, riMLF–rostral interstitial nucleus of MLF, sPf–
subparafascicular nucleus, sRF–suprarubral reticular formation, vlpNr–ventorlateral part of parvicellular red nucleus, III–oculomotor nucleus. Scale
bar = 200 mm in P (also applies to A–O).
doi:10.1371/journal.pone.0006623.g002

New Model of Human Red Nucleus
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drawn from the cat’s and macaque’s WGA-HRP labelled serial

sections for cat, macaque and human (herein illustrated sequen-

tially) using Nissl stained serial sections. Three-dimensional images

were drawn freehand according to these frontal, dorsal and lateral

views.

Results

Structure of the Cat’s Red Nucleus
Olivary injection sites (Fig. 1). In case 1, where there were

four, 0.2-ml injections performed and the tissue processed 44 hrs

later, the injection site was found to be centered into the cat’s

olivary complex (see Fig. 1A). All olivary subnuclei were heavily

stained throughout the rostro-caudal direction with additional

partial involvement of the surrounding reticular formation.

In case 2, where there were two, 0.2-ml injections performed and

the tissue processed 43 hrs later, the injection site was found also to

be centered into the cat’s olivary complex (see Fig. 1B), however this

injection was dorsally shifted compared with case 1. Therefore this

tracer strongly stained the dorsal accessory olive (DAO), the dorsal

lamella (dl) of the principal olive (PO) and the caudal part of the

medial accessory olive (MAO), and extended as well to the

medullary reticular formation, although the lateral bend of PO

and the ventral-most part of rostral MAO were free from staining.

Distribution of labeled cells in the mesodiencephalic area

(Figs. 2 and 3). The heavily labelled ND (sections B–L) and NB

(sections C–P) were found ipsilaterally in the ventral central gray,

while the labelled dmpNr (sections C–M) and vlpNr (sections F–N)

were located ipsilaterally in the reticular formation. All sections in

this paragraph refer to Fig. 2. At the rostral level of the ND and

NB (sections C–E), these nuclei fuse with each other and at this

level the border between these structures is unclear. A narrowing

of the nuclear zones is observed medially (sections F–J). The

separation between ND and NB occurs at caudal levels (sections K

and L). One of the causes of the separation between ND and NB

might be the increase that occurred in number of descending fibers

emerging from these nuclei and the consequent constriction of

ND. The distal tip of ND did not extend to the level of the

oculomotor nucleus (section M). The distal tip of NB exits dorsally

to the rostral part of the oculomotor nucleus (sections N–P). The

fibers of the fasciculus retroflexus (FR) penetrate the lateral side of

the rostral tip of the ND (sections C and D), pass through the

lateral side of the rostral ND and NB (sections C–E), between the

rostral interstitial nucleus of MLF and Nint (sections D–F) and

penetrate between dmpNr and vlpNr (sections F–H). The lateral

part of the vlpNr overlaps with the rostral part of the mNr (sections

H–N).

In case 2, the pattern of the distribution of labeled cells was

fundamentally similar to case 1. However, due to the fact that the

number of labeled neurons of the NB were prominently reduced

compared with case 1, the border of the NB was more readily

definable along its rostrocaudal axis (see Fig. 3).

Figure 3. Distribution of WGA-HRP-labelled cells in mesodiencephalic structures (case 2). Successive serial sections are rostrally arranged,
i.e., section A is the most rostral. dmpNr–dorsomedial part of parvicellular red nucleus, EW–Edinger-Westphal nucleus, FR–fasciculus retroflexus, NB–
nucleus accessorius medialis of Bechterew, ND–nucleus of Darkschewitsch, Nint–interstitial nucleus of Cajal, III–oculomotor nucleus. Scale
bar = 200 mm in I (also applies to A–H).
doi:10.1371/journal.pone.0006623.g003

New Model of Human Red Nucleus
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Figure 4. WGA-HRP injection sites in macaque’s inferior olivary complex (case 3 and 4). The upper two columns comprise a scale drawing
of the distribution of injected WGA-HRP solution in the macaque’s inferior olivary complex in case 3 and 4. The Roman numerals (II–XII) represent
levels of the inferior olivary complex from caudal to rostral (Brodal and Brodal, 1981 [61]). The crossed stripes indicate a heavily stained area. Lower
photomicrographs show the maximal extent of injected WGA-HRP at the olivary level in case 3 (Fig. A) and case 4 (Fig. B). DAO–dorsal accessory olive,
dc–dorsal cap, dmcc–dorsomedial cell column, MAO–medial accessory olive, PO–principal olive, vlo–ventrolateral outgrowth, b–nucleus b. Scale
bar = 500 mm in B (also applies to A).
doi:10.1371/journal.pone.0006623.g004

New Model of Human Red Nucleus
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Because the major difference between cases 1 and 2 concerning

the involvement of the lateral bend of the PO, the results indicate

that NB projects to this olivary region.

Structure of the Macaque’s Red Nucleus
Olivary injection sites (Fig. 4). Case 3 comprised 6

injections of 1.0-ml, a 45-hr wait for tissue preparation and

resulted in an injection site that encompassed the rostral half of the

olivary complex. The tracer was restricted to the rostral parts of

MAO, DAO and PO, with additional partial involvement of the

surrounding reticular formation. Therefore the rostral (XII–VIII

level) part of dl of PO was heavily stained, but the caudal (VII–V

level) part of dl of PO was stain-free.

Case 4 also comprised 6 injections of 1.0-ml and a 45-hr wait for

tissue preparation. It encompassed the middle part of the olivary

complex. The rostral (XII-XI level) part of dl-PO and most of the

MAO were stain-free. The caudal (VIII–V) part of dl of PO and a

restricted spot in the middle of MAO were heavily stained, with

additional partial involvement of the surrounding reticular formation.

Distribution of labeled cells in the mesodiencephalic area

(Figs. 5,6,7). Labeled neurons in case 3 (Fig. 5) were observed

ipsilaterally throughout the extent of the ND (Figs. 5, 7A and C),

but some labeled cells were seen in the NB. Although many

labeled cells were observed in the dmpNr (Figs. 5 and 7E), no

labeled cells were observed in the well-developed vlpNr. No

labeled cells from case 4 (Fig. 6) were found in the caudal half of

ND (Figs. 6 and 7D), whereas some labeled cells were seen

ipsilaterally in the dmpNr, NB and the rostral half of ND (Figs. 6

and 7B). Many labeled neurons were observed ipsilaterally in a

restricted area of the well-developed vlpNr (Figs. 6 and 7F).

Owing to the major difference between cases 3 and 4 concerning

the rostral part of both rostral MAO and dl of PO, the rostral and

caudal parts of the ND can be said to project to the caudal and rostral

parts of the rostral MAO, respectively, and the dmpNr and vlpNr

project to the rostral and caudal part of the dl of PO, respectively.

Fronto-Rubral Projection of the Macaque (Figs. 8 and 9)
Multiple injections of 10.6-ml WGA-HRP solution into 23 sites

were performed into premotor and FEF areas, but sparing F5 (see

Matelli et al., 1985 [11]) and the leg-foot region of the premotor

area in the macaque (Fig. 8) for case 5, and after a 41-hr wait

provided before tissue preparation. In the rostral diencephalons,

labeled descending fibers appeared gathered in the medial part of

the crus cerebri and scattered labeled descending fibers were

observed ipsilaterally in the subthalmic nucleus, the zona incerta

and adjacent thalamic nuclei. Many labeled terminal arborizations

were seen ipsilaterally in the dmpNr and the medial part of the

vlpNr, and some labeled terminal arborizations were observed in

Figure 5. Distribution of WGA-HRP-labelled cells in mesodiencephalic structures (case 3). Drawings are arranged rostrocaudally; section A
is the most rostral. One dot represents one labelled cell. Large dot shows a large labelled cell. dmpNr–dorsomedial part of parvicellular red nucleus,
FR–fasciculus retroflexus, mNr–magnocellular red nucleus, NB–nucleus accessorius medialis of Bechterew, ND–nucleus of Darkschewitsch, Nint–
interstitial nucleus of Cajal, vlpNr–ventorlateral part of parvicellular red nucleus, III–oculomotor nucleus.
doi:10.1371/journal.pone.0006623.g005

New Model of Human Red Nucleus
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the NB, but few were observed in the ND, the Nint, the lateral part

of the vlpNr or the mNr (Fig. 9). In the contralateral side a few

labeled terminal arborizations were observed only in the NB (Fig. 9E

and F). The more caudo-lateral parts of vlpNr were penetrated by

larger fiber bundles of the superior cerebellar peduncle, judging

from the size of the unlabelled area (compare Fig. 9C and G).

This case demonstrates that in the macaque, dmpNr and NB

are targeted by the middle premotor and FEF regions, however

projection to the ND has yet to be definitively shown. Owing to

the unlabeled area, the leg-foot region of the premotor area can be

said to project to the lateral part of the vlpNr, and F5 to the NB.

Myelo- and Cytoarchitecture of the Human Red Nucleus
(Figs. 10,11,12)

Using a series of sections prepared with a myelin (Figs. 10 and

11D), and Nissl (Figs. 10, 11 and 12) stain, we observed the

mesodiencephalic nuclei consisting of the ND and the red nucleus.

Myelin staining of brain sections shows that the fiber bundles of

the superior cerebellar peduncle penetrate the center of the red

nucleus at an angle from a caudo-medial to rostro-lateral direction

and also wrap around the outer surface of the red nucleus like a

capsule (Fig. 10). The FR penetrates and contacts the dorsomedial

part of the red nucleus (sections 2–4 in Fig. 10). This dorsomedial

part of the red nucleus is considered as corresponding to the

human NB because this oval area shows microscopical-level

features (i.e., more densely packed cells) that correspond more to

the periaquaductal gray matter than they do to the reticular

formation, similar to what is seen in the feline NB (see also

Fig. 11D). Furthermore, fine myelinated fibers vertically rose from

the NB and joined the medial part of the CTT (Fig. 11D). We

conclude that the FR takes a radically different course with respect

to the NB compared to cat and macaque: i.e., in the human the

FR passes through the medial side of the NB, whereas in the cat

and macaque, the FR passes through the lateral side of the NB and

dmpNr. At this level, the ND is separated from the red nucleus by

fiber bundles consisting of the superior cerebellar peduncle, CTT,

MTT and MLF and is thus isolated in the ventral central gray

(Figs. 10B–D, sections 4–8 in Fig. 10).

At the level of the oculomotor nucleus, oculomotor nerve fibers

run along the surface of the red nucleus whereas caudally the many

fiber bundles of the superior cerebellar peduncle penetrate the tail of

the red nucleus (Figs. 10E–G, sections 10–14 in Fig. 10). Some rubral

neurons remain at the ventrolateral part (Fig. 10G, section 12 in

Fig. 10) of the tail of the red nucleus; this corresponds to the caudal

part (section N in Fig. 2) of the cat’s vlpNr. Efferent fibers from

rubral neurons emerge from the dorsomedial part of the red nucleus,

penetrate the cellular layer and its outer capsule of the fiber bundle,

and then descend as the CTT to the inferior olive. The medial part

Figure 6. Distribution of WGA-HRP-labelled cells in mesodiencephalic structures (case 4). Drawings are arranged rostrocaudally; section A
is the most rostral. One dot represents one labelled cell. Large dot shows a large labelled cell. dmpNr–dorsomedial part of parvicellular red nucleus,
FR–fasciculus retroflexus, mNr–magnocellular red nucleus, NB–nucleus accessorius medialis of Bechterew, ND–nucleus of Darkschewitsch, Nint–
interstitial nucleus of Cajal, vlpNr–ventorlateral part of parvicellular red nucleus, III–oculomotor nucleus.
doi:10.1371/journal.pone.0006623.g006

New Model of Human Red Nucleus
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of this CTT contains fibers emerging from the NB (Fig. 11D). Giant

as well as large neurons of the mNr are gathered largely into a dorsal

and a ventral group and are scattered among the fibers of the

superior cerebellar peduncle (see section 14 in Fig. 10, Fig. 12).

These neurons contain coarse Nissl bodies (Fig. 12F and G).

At the caudal level of the vlpNr, large, medium and small sized

neurons were seen to be gathered between the outer capsule of

vlpNr and the pigmented (see next paragraph) cell layer (Fig. 12A–

E). This neural zone and scattered giant and large neurons of the

mNr form the semi-lunar shell which might correspond to the

well-developed semi-lunar shell of mNr seen in infants (Ulfing and

Chan, 2001; 2002 [12,13]; Yamaguchi and Goto, 2006 [14]). This

adult mNr zone was vestigial, since in some areas these neurons

had almost disappeared (Fig. 12C).

Many large, pigmented neurons are observed in the surround-

ing area outside the red nucleus and superior cerebellar peduncle,

such as the parabrachial pigmental nucleus and the rostral and

caudal linear nuclei (Fig. 12C and D). There is the possibility that

some large pigmented neurons near the red nucleus are mis-

identified as mNr neurons. However, these neurons can be

excluded clearly from being mNr neurons since cell bodies of the

former contain neuromelanin pigment while the latter do not

(Fig. 12F, G and H).

Discussion

Neural Sheet Model of the Parvicellular Red Nucleus
(Fig. 13)

Ogawa (1939) attributed the origin of the MTT in the cat to

three structures: the ND, Nint, and nucleus of the fields of Forel

(corresponding to the rostral interstitial nucleus of MLF) and

concluded that the human red nucleus corresponds to these nuclei

[1]. Thereafter, many researchers subscribed to the view that

quadrupedal animals have a well-developed MTT and that

humans have a well-developed CTT; they furthermore held that

both tracts have the same origins and terminations (see reference

in Voogd, 2003 [15]). Cells of origin of these olivary projections

have been identified with the HRP method. The subparafasci-

cular and parafascicular nuclei in the cat (as defined by

[16,17,18,19,20,21,22]) have been redefined as the rostral part

of the ND, a structure that projects to the rostral MAO (Onodera,

1984 [3]). The rostral part of the ND in the rat (as shown by

Ruigrok and Cella, 1995 [23]) also projects to the rostral MAO

(Onodera et al., 2004 [24]). However the rat’s ND proper does

not project to the inferior olive [23,25] and does not receive

terminals from the substantia nigra pars reticulata (SNr) which

projects to the ventrolateral central gray ventral to the rat’s ND

Figure 7. Distribution of WGA-HRP-labelled cells in mesodiencephalic structures (case 3 and 4). A (case 3) and B (case 4): rostral part of ND, C
(case 3) and D (case 4): caudal part of ND. E (case 3): dmpNr. F (case 4): vlpNr. dmpNr–dorsomedial part of parvicellular red nucleus, NB–nucleus accessorius
medialis of Bechterew, ND–nucleus of Darkschewitsch, vlpNr–ventorlateral part of parvicellular red nucleus. Scale bar = 100 mm in F (also applies to A–E).
doi:10.1371/journal.pone.0006623.g007
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proper (Gerfen et al., 1982 [26]; Deniau and Chevalier, 1992

[27]) in contrast to the cat’s ND which projects to the rostral

MAO (Onodera, 1984 [3]) and receives terminals from the

SNr (Onodera and Hicks, 1998 [28]). Therefore, there is no

neuroanatomical homology between the rat’s ND (proper) and

the feline ND. As the rat’s ventrolateral central gray, ventral to

the ND proper, receives terminals from the SNr [27,26] and

projects to the inferior olive [23,25], we consider that this region

of the ventral central gray corresponds not to the cat’s NB but the

cat’s ND.

In an autoradiographical study, Saint-Cyr and Courville (1982)

[19] and Holstege and Tan (1988) [29] were not able to define a

detailed topographic organization within the mesodiencephalo-

olivary projections in the cat. By contrast, our previous study in the

cat presented findings that showed a precise topographical

organization within these olivary projections and a well-developed

MTT belonging to the well-developed ND and NB and a poorly-

developed CTT belonging to the poorly-developed dm- and vl-

pNr (Onodera, 1984 [3], see Fig. 13A). We then confirmed that in

cats, the ND projects by way of the MTT, while the Nint and the

rostral interstitial nucleus of MLF project only to the MLF

(Onodera and Hicks, 1998 [28]). Our data from this study in the

cat show that the border among ND, NB and dmpNr has become

clear and that this well-restricted NB area strongly projects to the

lateral bend of the PO more than to the vl of PO, judging from a

comparison of case 1 with case 2.

A question of interest at this point was whether quadrupeds

other than the cat also have a similar topographically organized

olivary projection from their mesodiencephalic regions. Previous

studies in the rat (Swenson and Castro, 1983 [30]), macaque

(Strominger et al., 1979 [31]) and chimpanzee (Strominger et al.,

1985 [32]) suggested that they do. As the so-called ‘‘rat’s rostral

ND’’ projects only to the rostral MAO in the rat, as supported by

use of the DiI method (Onodera et al., 2004 [24]), we propose that

the rat also has a similar topographically precise projection of the

mesodiencephalo-olivary system. The macaque, a species that also

practises quadrupedal locomotion but has a manipulative hand,

possesses a well-developed pNr and a well-developed mNr. Using

autoradiographic tracing methods, Strominger et al. (1979) have

demonstrated that the lateral and medial parts of the macaque’s

pNr projects to the dorsal lamella (dl-) and ventral lamella of (vl-)

PO, respectively, and the intermediate part projects to the bend

region of PO [31]. In that study medial and intermediate parts of

the pNr contain the NB. Our present data from the macaque show

that 1) the dmpNr projects to the rostral part of dl of PO in case 3; 2)

the vlpNr projects to the caudal part of dl of PO in case 4; and 3) the

rostral ND projects to the caudal part of the rostral half of MAO in

case 4. Our previous study in the cat (Onodera, 1984 [3]) showed

Figure 8. WGA-HRP injected sites in macaque’s cerebral cortex (case 5). Upper drawing shows the expansion of the injected WGA-HRP
solution indicated by oblique lines in a lateral view of the macaque’s cerebral cortex. Lower drawing shows multiple injection sites (small dots) in the
frontal section. A, B and C indicates a-a’, b-b’ and c-c’ in upper drawing, respectively.
doi:10.1371/journal.pone.0006623.g008
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Figure 9. Distribution of WGA-HRP-labelled terminals in macaque’s mesodiencephalic structures (case 5). Labelled terminals were
indicated by small dots. dmpNr–dorsomedial part of parvicellular red nucleus, FR–fasciculus retroflexus, mNr–magnocellular red nucleus, NB–nucleus
accessorius medialis of Bechterew, ND–nucleus of Darkschewitsch, Nint–interstitial nucleus of Cajal, vlpNr–ventorlateral part of parvicellular red
nucleus, III–oculomotor nucleus.
doi:10.1371/journal.pone.0006623.g009
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Figure 10. Human red nucleus and its surrounding structures. Upper photomicrographs (A-H) showing distribution of myelinated fiber
bundles stained by myelin stain in the human mesodiencephalic structure of successive serial sections. Section A is the most rostral. The human NB is
the dorsomedial cell-rich area of the red nucleus. Scale bar = 500 mm in H (also applies to A–G). Lower scale drawing showing the distribution of Nissl-
stained cells found in the human mesodiencephalic structure as indicated by dots in the drawings of 15 successive serial sections. Section 1 is the
most rostral. Sections 13 and 14 show giant mNr cells as large dots indicated by arrowheads. The number in the left corner of each photomicrograph
and drawing is the rostrocaudal distance (in micrometers) from the rostral tip of the red nucleus. (A) – (H) correspond to Figs. 11A–H. CTT–central
tegmental tract, dmpNr–dorsomedial part of parvicellular red nucleus, EW–Edinger-Westphal nucleus, FR–fasciculus retroflexus, MLF–medial
longitudinal fasciculus, mNr–magnocellular red nucleus, MTT–medial tegmental tract, NB–nucleus accessorius medialis of Bechterew, ND–nucleus of
Darkschewitsch, SCP–superior cerebellar peduncle, vlpNr–ventorlateral part of parvicellular red nucleus, III–oculomotor nucleus, IV–trochlear nucleus.
doi:10.1371/journal.pone.0006623.g010
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the same topographical pattern of the projection from the subnuclei

of pNr to the dl of PO. However, the possibility that dmpNr and

vlpNr project to vl- and dl of PO, respectively still remains. We also

showed the point to point projection between the ND and the

rostral half of MAO: i.e., in the cat, the medial part of the ND

projects to the lateral part of the rostral MAO and the lateral part of

the ND to the medial part of the rostral MAO (Onodera and Hicks,

1995 [33]). The present data from the macaque show a new rostro-

caudal relationship between the ND and rostral MAO. In macaque,

the rostral and caudal part of the ND project to the caudal and

rostral part of the rostral MAO, respectively. Therefore the

topographical relationship of projections connecting the ND and

the rostral MAO is inversely related. Based on these considerations

it appears reasonable to propose that the mesodiencephalo-olivary

projections of cat and macaque have essentially the same pattern,

although there is a difference in the pNr of the cat. Therefore we

conclude that fundamentally, quadrupeds have a similar topo-

graphical olivary projection from the mesodiencephalic nuclei as we

know is the case for the cat (compare Fig. 13A and B).

By contrast, the human red nucleus as well as that of the

chimpanzee shows other specialized features, i.e., an anatomically

isolated ND alongside a well-developed, egg-shaped red nucleus.

Comparative neuroanatomical studies of primates have shown that

the separation of ND and NB began at the divergence point

between ape and monkey [34]. The marmoset and macaque possess

a continuous zone consisting of the ND, NB and pNr, similar to the

cat. The gibbon represents a transition species with respect to the

connection between ND and its prominently well-developed NB.

Such a well-developed NB and dmpNr may have been related to the

evolutionary development of the frontal cortex containing the FEF,

since the NB and its adjacent dmpNr receives a projection from the

FEF and its adjacent frontal cortex in macaque [35,36,37,5,38]. As

with the human, the chimpanzee exhibits a complete separation

between ND and its well-developed red nucleus [34].

Actually the human red nucleus does not present the same

appearance as the neural sheet-like appearance of the cat’s and

monkeys red nucleus. However the human red nucleus likely has

fundamentally the similar topographical relationship as that of the

Figure 11. Human parvicellular red nucleus. Photomicrographs showing the distribution of Nissl-stained pNr cells in A(1), B(3), C(4), E(7), and
F(10) which correspond to sections 1, 3, 4, 7 and 10 of Fig. 10 and the distribution of myelinated fiber bundles stained by myelin stain in D which
corresponds to section Fig. 10B. The number in the left corner of each photomicrograph is the rostrocaudal distance (in micrometers) from the
rostral tip of the red nucleus. CTT–central tegmental tract, dmpNr–dorsomedial part of parvicellular red nucleus, EW–Edinger-Westphal nucleus,
FR–fasciculus retroflexus, MLF–medial longitudinal fasciculus, MTT–medial tegmental tract, NB–nucleus accessorius medialis of Bechterew, ND–
nucleus of Darkschewitsch, Nint–interstitial nucleus of Cajal, vlpNr–ventorlateral part of parvicellular red nucleus. Scale bar = 200 mm in F (also
applies to A–E).
doi:10.1371/journal.pone.0006623.g011
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cat, judging from the comparison between human brain materials

(Nathan and Smith, 1982 [39]; Voogd, 2003 [15]) and experimental

data, especially those from the chimpanzee’s brain (Strominger et

al., 1985 [32]). The latter have shown that the chimpanzee’s CTT

projects only to the PO. The present study with myelin stain has

shown that the fine myelinated fibers vertically arise from the NB

and join the medial part of the CTT (see Fig. 11D). This stands in

contrast to the situation in the cat, where the NB occupies an area

within the MTT (Onodera, 1984 [3]). Therefore the position of the

human NB can be seen to have shifted from the ventral central gray

into the reticular formation (Fig. 13C). Accordingly the zonal sheet

of the human’s red nucleus might have comprised longitudinally-

organized components of a well-developed vl- and dm-pNr, and an

extremely well-developed NB.

Figure 12. Human magnocellular red nucleus. Photomicrographs showing the distribution of Nissl-stained mNr cells. A (11) and E (13) correspond
to sections 11 and 13 in Fig. 10. C is a reversed photomicrograph of the contralateral side of A for comparison with C. The area indicated by a broken line
is the outer layer of the semi-lunar shell of mNr (A, C and E). It exits between the capsule of the superior cerebellar peduncle and the parabrachial
pigmented nucleus (PBP). B. High magnification views of large (L), medium (M) and small (S) neurons of the outer shell of mNr. D. Many pigmented cells
exist in the parabrachial pigmented nucleus. Arrowheads indicate accumulation of pigment. E. Caudal end of vlpNr. Arrowhead indicates one giant
neuron. F and G. Giant neurons among fibers of the superior cerebellar pedunculus. H. Large neuron contains pigments. Arrowhead indicates
accumulation of pigment. The number in the left corner of each photomicrograph is the rostrocaudal distance (in micrometers) from the rostral tip of the
red nucleus. PBP–parabrachial pigmented nucleus, vlpNr–ventorlateral part of parvicellular red nucleus. Scale bars = 100 mm in A–H.
doi:10.1371/journal.pone.0006623.g012
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Three-Dimensional Model of the Cat’s and Macaque’s
Red Nucleus (Fig. 14A and B)

Our three-dimensional (3D) models (Fig. 14A and B) of the

feline and macaque’s red nucleus were enabled through the use of

WGA-HRP-labelled serial sections from the cat (Fig. 2) and the

macaque (Figs. 5, 6 and 9). The fundamental structure of the

macaque’s 3D model was the same as the cat’s 3D model. The

macaque’s vlpNr is well-developed compared with the cat’s vlpNr.

Larger fiber bundles of the superior cerebellar peduncle

penetrated more caudo-lateral parts of the pNr, while smaller

fiber bundles penetrated more rostro-medial parts of the pNr.

Rolled-Sheet Model of the Human Red Nucleus (Fig. 14C)
The two models of the human red nucleus based on

cytoarchitecture and referred to here have been proposed earlier.

The first model was introduced by Grofová and Maršala (1960)

[40] and it represents a polyhedron shape that is covered by

several irregular zones that have relatively greater cellular density.

In the wide, central area of pNr there are rarely-seen scattered

neurons that are separated by strong bundles of myelinated fibers.

It is impossible always to identify unambiguously the form and

extent of the above-mentioned zones in each case, as the criteria

useful for the identification of each cellular zone are imprecise. It is

useful to keep uppermost in mind that the human red nucleus is

covered by a dense cellular layer.

The second model was published by Olszewski and Baxter

(1982) [41] and it was described as consisting of three subnuclei:

pars oralis, pars dorsomedialis and pars caudalis. The pars oralis is

the oral pole of the red nucleus. The pars dorsomedialis is

separated from oralis by a lamella of myelinated fibers and the cell

density of these two parts is higher than in pars caudalis. The pars

caudalis is traversed by many fiber bundles within which its

constituent cells are loosely and irregularly arranged.

We would like to propose a third model we name as ‘‘rolled

sheet’’. This is based in part on a combined myelo- and

cytoarchitectonic analysis, considered together with the above

two preceding models, plus a consideration of the common

topographical olivary projection (see Fig. 13). A dense cellular

layer of the pNr envelops huge myelinated fiber bundles of the

superior cerebellar peduncle. These fiber bundles branch off

collateral terminals to the pNr neurons and pass through the

center of the red nucleus in a dorsolateral direction. These passing

fibers ascend through the dorsolateral opening to the thalamus and

descend from the cortex. The caudomedial end of the red nucleus

forms a ring-like structure allowing for the entrance of the

cerebellar peduncle and the elongated bulge of the ventolateral

wall (i.e., caudal end of vlpNr). The dorsomedial part of the rostral

red nucleus is a densely packed cell mass that is divided by a

lamella of myelinated fibers (see Fig. 11D). We defined this

dorsomedial region and its caudal continuation as the NB. The

rostral pole of the red nucleus forms a cell mass appearing like a set

of lips (see Fig. 11A); dense cellular layers contact each other to

look like closed lips and these possess a few penetrating myelinated

fiber bundles. The outer surface of the red nucleus is formed by

densely packed cells and furthermore is covered by a dense,

myelinated fiber capsule; the inner surface of the rolled sheet is

formed by loosely and irregularly arranged cells and is penetrated

by large collateral fiber bundles of the superior cerebellar

peduncle. Therefore the human red nucleus may be considered

to be classified as a typical ‘‘closed nucleus’’ just as the cat’s red

nucleus is (Mannen, 1988 [2]), although there are other differences

between the parvicellular red nucleus for the human and the

magnocellular red nucleus for the cat.

Both giant and large mNr neurons are located in dorsal and

ventral groups caudal to the vlpNr (see Figs. 10 and 12E, F and G).

Some large, medium and small mNr neurons also are scattered

outside the outer capsule of the red nucleus (Fig. 12A, B and E).

These mNr neurons form a semi-lunar shell at the caudal end of

vlpNr, and are considered a homologue of the cat’s and macaque’s

mNr, judging from their positions (compare Fig. 14A, B and C). In

the monkey, neurons with a coarse Nissl pattern (i.e., mNr neurons)

extend for a short distance along the lateral side of fine neurons (i.e.,

pNr neurons) in the rostral part of the red nucleus [42]. This short

dorsolateral extension of the monkey’s mNr corresponds to the

semilunar shell. The gibbon mNr is laminated and rotated about its

major axis [43]. This feature seems equivalent to the semilunar

Figure 13. Neural sheet model of red nucleus. A. In the cat, the
poorly-developed neural sheet curves. B. In the macaque, the
moderately developed neural sheet curves. C. In the human, the
extremely well-developed neural sheet is completely rolled. The human
NB is defined as the dorsomedial part of the red nucleus and it projects
to the vl of PO via the medial part of the CTT. A strong stream of these
well-developed CTT fibers separates the NB from ND. The gray color
indicates a ‘‘still uncertain’’ projection. CTT–central tegmental tract,
dmpNr–dorsomedial part of parvicellular red nucleus, lb–lateral bend,
MAO–medial accessory olive, MTT–medial tegmental tract, NB–nucleus
accessorius medialis of Bechterew, ND–nucleus of Darkschewitsch, PO–
principal olive, vl–ventral lamella, vlpNr–ventorlateral part of parvicel-
lular red nucleus.
doi:10.1371/journal.pone.0006623.g013
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shell. The chimpanzee mNr shows a similar feature as the human

semilunar shell: i.e., populations of coarse and fine neurons

occupying distinct and separate areas within a small junctional

zone [44]. Recent studies concerning the human fetal mNr showed

that this structure develops progressively during the latter half of

gestation and that the mNr is more prominent in fetal stages than in

adulthood (Ulfing and Chan, 2001; 2002 [12,13]; Yamaguchi and

Goto, 2006 [14]). The fetal mNr drapes around the caudal third of

the pNr in the form of a semi-lunar shell, and it and the pNr are

clearly separated from each other.

Pompeiano and Brodal (1957) pointed out the possibility of

underestimates having been made of the extent of the human

Figure 14. Three-dimensional models of red nucleus. The mesodiencephalic nuclei of the cat (A), the macaque (B), and the human (C) as
reconstructed using serial sections shown in Fig. 1 for cat; Figs. 7,8 and 11 for macaque; and a myelo- and cytoarchitectonic analysis in Figs. 10–12 for
human. The rostral ends of these modeles toward left side. dmpNr–dorsomedial part of parvicellular red nucleus, EW–Edinger-Westphal nucleus, FR–
fasciculus retroflexus, mNr–magnocellular red nucleus, NB–nucleus accessorius medialis of Bechterew, ND–nucleus of Darkschewitsch, vlpNr–
ventorlateral part of parvicellular red nucleus, III–oculomotor nucleus.
doi:10.1371/journal.pone.0006623.g014
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rubrospinal projection, if a substantial number of rubrospinal

neurons were small [45]. Papez and Stottler (1940) showed that in

human infants, small cells located caudal and lateral in the red

nucleus project to the contralateral spinal cord [46]. Using tissue

from an adult patient with an old paramedian infarct involving the

red nuclei, Terao and co-workers (1996) reported that small

myelinated fibers in the lateral corticospinal tract were selectively

diminished at all spinal cord levels compared with large

myelinated fibers. They suggested that some of these diminished

small myelinated fibers may correspond to the human rubrospinal

tract [47].

The human red nucleus was previously considered to

correspond to the rubral complex of nuclei. In quadrupeds, this

complex consists of the mNr and the mesodiencephalic nuclei

projecting to the inferior olive via both the CTT and MTT (for

rat, see Ruigrok and Cella, 1995 [23]; for cat, see Ogawa, 1939

[1]). However the present study shows clearly that the CTT

components (i.e., NB-pNr complex) and the rudimentary semi-

lunar shell of mNr actually correspond to the human red nucleus.

Evolutionary Consideration
Although it is believed generally that the primate mNr shows a

consistent trend toward gradual functional and anatomical

diminution during the progress of evolution, as a matter of fact

this is not the case. Those primates that are proficient at terrestrial

quadrupedalism exhibit a very well-developed mNr. Examples are

the macaque and baboon [42,43]. Both corticorubral and

corticospinal neurons mix well in the motor cortex of such

monkeys. However, the mNr of apes (e.g., gibbon and chimpan-

zee) shows a consistent trend to decrease gradually along the

phylogenetic scale [48,49,43,50]. Correspondingly, the corticoru-

bral neurons of these apes may have followed a gradual decrease.

This reduction of the role of the mNr is considered to be a

consequence of a dynamic continuous change in cerebral

organization that is furthered by neuronal competition. The

chimpanzee’s mNr is the smallest and most limited in size for

quadrupedalism and arboreal life. Anatomical data (Sobel 1977

[44]) have shown that the cell count in the chimpanzee’s mNr (ca.

1,250) is 2.8 times greater than that in humans (ca. 450 cells).

Neurons of the human mNr are found in a variety of sizes: giant,

large, medium and small cells [44]. Humans are known to possess

150–200 giant-to-large sized neurons in that portion of the mNr

which project large myelinated fibers not only to the brain stem

but also within the first three cervical segments (Nathan & Smith

1982 [39]). Therefore there must remain the possibility that there

were these mNr neurons related to limb control associated with

propriospinal neurons in upper cervical segments, and that these

projected extensively throughout the cervical enlargement (Nathan

et al. 1996 [51]), being related to shoulder movement [37].

Our previous studies [3,33,28,52,24] have shown that the

mesodiencephalic nuclei, including the ND, NB and pNr, show

developmental differences corresponding to species-specialized

body parts, such as the human hand, the elephant’s trunk and the

whale’s axial musculature system. Onodera and Hicks (1999) [52]

proposed that the phylogenetically newer pyramidal tract and

well-developed mesodiencephalo-olivo-cerebellar circuits ‘‘broke

through’’ the constraints of the older rubrospinal system of the

mNr and suggested that the human pyramidal system took over to

provide a tonically active framework for locomotor function,

rather than actually physically replacing the rubrospinal system.

The transient prominence of the fetal and infant mNr discussed

above might have provided the organism with a functional

rubrospinal projection. This may have permitted the transition

from the rubrospinal system to corticospinal system: i.e., subsequent

normal development of the corticospinal system during ontogeny. It

is known from current observation of human infants that once

certain key milestones are achieved for stabilization of each body

segment (the head, upper and lower torso segments and crawling

behavior), standing is achieved, balancing behavior performed, as is

low-velocity, bipedal locomotion that typically begins around one

year of age. The acquisition of bipedalism demands not only the

maturation of the body’s phenotype but also the reorganization of

the nervous system. Clearly evolution cannot occur by transforma-

tion from one adult form to another adult form, but by ontogenetic

change over time. Humans have taken several million years to

establish bipedalism through changes of the genetic pool, while

individual humans after birth take several years to establish the same

process, of course without any genetic change.

Using voxel-based morphometric analyses, Vargha-Khaden and

her coworkers (2005) showed that the affected KE family members

with a higher-order orofacial motor impairment during speech have

significantly reduced grey matter in the inferior frontal gyrus

(Broca’s area), the precentral gyrus, the temporal pole, the head of

the caudate nucleus and the ventral cerebellum (lobules VIIB and

VIIIB) [53]. In the normal human fetus, the FOXP2 gene is

expressed in not only the cerebral cortex, basal ganglia and

thalamus, but also the cerebellum, inferior olivary complex and red

nucleus (Lai et al., 2003 [54]; Teramitsu et al., 2004 [55]). These

data propose that one circuit for FOXP2-dependent speech and

language might be not only the prefronto-caudate-loop but also the

inferior fronto (Broca’s area)- rubro-olivo-lateral cerebellar loop.

The NB may receive projections from ventral area 6, within and

caudal to the inferior ramus of the arcuate sulcus (see Leichnetz et

Figure 15. Human cerebro-cerebellar system. The medial
cerebellar system receives cortical information from areas 4, 8 and 7
via the ND [62,63,38,56]. The lateral cerebellar system might not have
been related only to skilful motor learning via areas 4, 6, 5 and 8
[35,36,63,38,56], but also to cognitive and language processing via the
prefrontal cortico-rubral projection. CTT–central tegmental tract, dD–
dorsal half of cerebellar dentate nucleus, dl–dorsal lamella, Gl–
cerebellar globose nucleus, lb–lateral bend, MAO–medial accessory
olive, MTT–medial tegmental tract, NB–nucleus accessorius medialis of
Bechterew, ND–nucleus of Darkschewitsch, pNr–parvicellular red
nucleus, PO–principal olive, vD–ventral half of cerebellar dentate
nucleus, vl–ventral lamella, 4–motor area, 5–somatosensory association
cortex, 6–premotor area, 7–posterior parietal cortex, 8–frontal eye field,
44–Broca’s speech area.
doi:10.1371/journal.pone.0006623.g015
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al, 1984 [56]). As this region (area F5) corresponds to human area

44 (the inferior frontal cortex) as judged through comparative

architectonic analysis (Petrides and Pandya, 1994 [57]), the NB

might be related to Broca’s area, so it is not only the function but

also the position of NB that changes between macaque and human.

The present study suggests that the well-developed human NB

might be related to language via its connections with Broca’s area 44

(the inferior frontal cortex) and the well-developed ventral half of the

cerebellar dentate nucleus (see Fig. 15), the latter which is developed

more greatly than the ape’s ventral half of the cerebellar dentate

nucleus (see Matano, 2001 [58]). A recent diffusion tensor

tractography study using MRI demonstrated that the human red

nucleus receives strong projections from the prefrontal cortex

(Habas and Cabanis, 2006 [59]).

Conclusions
The present study has employed the cat and macaque to show

that: 1) the topographical relationship between the ND and rostral

MAO is inversely related: i.e., the rostral and caudal parts of the

ND project to the caudal and rostral parts of the rostral MAO

respectively, while the medial and lateral parts of the ND project

to the lateral and medial parts of the rostral MAO, respectively; 2)

the NB projects strongly to the lateral bend of the PO: 3) the

dmpNr and vlpNr project to the rostral and caudal part of dl of

PO, respectively. However the possibility that macaque’s dmpNr

and vlpNr project to vl and dl of PO, respectively still remains.

Our treatment and analysis of human material showed that the

human NB may be separated from the ND in the ventral central

gray, and phylogenetically may have been translocated into the

present roll-shaped red nucleus in the reticular formation.

Further study of the pNr and NB of experimental animals will

demonstrate more precise topographical olivary projections and

may facilitate development of a very useful model for comparison

with research on the human red nucleus. This would allow us to

break through the limitations necessarily imposed upon future

neuroanatomical and physiological investigations of the human

red nucleus.
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