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Abstract: Previous research has demonstrated that children with autism walk with atypical ankle
kinematics and kinetics. Although these studies have utilized single-segment foot (SSF) data, multi-
segment foot (MSF) kinematics can provide further information on foot mechanics. Machine learning
(ML) tools allow the combination of MSF kinematic features for classifying autism gait patterns. In
this study, multiple ML models are investigated, and the most contributing features are determined.
This study involved 19 children with autism and 21 age-matched controls performing walking trials.
A 34-marker system and a 12-camera motion capture system were used to compute SSF and MSF
angles during walking. Features extracted from these foot angles and their combinations were used
to develop support vector machine (SVM) models. Additional techniques-S Hapley Additive exPla-
nations (SHAP) and the Shapley Additive Global importancE (SAGE) are used for local and global
importance of the black-box ML models. The results suggest that models based on combinations of
MSF kinematic features classify autism patterns with an accuracy of 96.3%, which is higher than using
SSF kinematic features (83.8%). The relative angle between the metatarsal and midfoot segments
had the highest contribution to the classification of autism gait patterns. The study demonstrated
that kinematic features from MSF angles, supported by ML models, can provide an accurate and
interpretable classification of autism and control patterns in children.
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1. Introduction

Autism spectrum disorder (ASD) is a complex neurodevelopmental disorder charac-
terized by impaired social interactions and communication, and restricted and repetitive
patterns of behaviors, interests, and activities (APA, 2013). ASD can also be character-
ized by various motor symptoms such as the delayed onset of motor milestones [1,2],
hypotonia [3,4], and impaired postural control and balance [5]. These motor symptoms
may affect a child’s ability to walk. Several studies have reported atypical gait patterns
in children with autism [6,7], of which, several have highlighted atypical ankle range of
motion [8], ankle kinematics [4,8–12], and ankle kinetics [8–10,13]. During gait, the foot
and ankle function to attenuate shock at impact, provide stability and support to the lower
limb, and aid in forward propulsion. Given the important role of the ankle/foot complex
in gait, it is plausible that changes in foot function may result in impaired movement
patterns. However, pediatric studies of gait patterns in ASD have modeled the foot as a
single, rigid single foot segment (SSF) with one to two degrees of freedom. To date, no
study has examined multisegment foot kinematic data in children with ASD during gait.
Multisegment foot (MSF) mechanical models facilitate the investigation of the relative
motion between foot subsegments (e.g., heel vs. forefoot), which can lead to a greater
understanding of the role of the foot/ankle complex in ASD.
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To further understand gait patterns in children with ASD versus neurotypical controls,
there has been a recent increase in the number of studies using machine learning (ML)
tools for classification based on combinations of kinematic and kinetic features [7,14–19].
Such studies facilitate the identification of discriminatory gait features in ASD versus
neurotypical controls, which may lead to the development of automated gait classifiers,
optimal treatment plans, improved functionality for children, and reduced health care costs.
More research using ML tools is needed to further understand gait patterns and ankle/foot
function in ASD.

Overview of ML Studies for ASD Gait Assessment

Machine Learning (ML) has found numerous applications in the biomechanics field,
such as pathological gait pattern detection [20] and fall detection in older adults [21].
Autism assessment is one such ML application that plays a role in the early detection
of autism, as it can help clinicians shorten the diagnosis process and provide accurate
results [22]. Some classification models have investigated social and communication
impairments as the diagnostic criteria for ASD by utilizing brain image and clinical as-
sessment data [23,24]. Other diagnosing characteristics such as the existence of motor
deficits, specifically, atypical gait patterns could be explored further using classification
models [7]. A previous study has suggested that disturbances due to walking can be used
to diagnose ASD at an early age [25]. Gait patterns have been investigated using gait
monitoring approaches such as sensor-based, marker-based and marker-less systems. The
3D marker-based system is considered the gold standard, from which kinematic features
can be extracted to facilitate such data-driven approaches [7].

Previous research has investigated the classification of ASD and control gait patterns
using temporal-spatial, kinematic, and kinetic features [7,14–19]. Ilias et al., (2006) observed
that the fusion of all these features resulted in a classification accuracy of 95.80% (sensitivity
100%, specificity 85.00%) using a support vector machine (SVM) classifier [14]. Similarly,
another study using only kinematic features from the hip, knee, and ankle joint, reported
accuracy of 91.70% (sensitivity 93.30%, specificity 90.00%) using an artificial neural network
(ANN) model [17]. In this study, a step-wise discriminant analysis feature selection was
utilized for dimensionality reduction and demonstrated that the best performance could
be attributed to four features, three of which were extracted from the ankle angle. Other
dimensionality reduction techniques employed data transformations, such as principal com-
ponent analysis and linear discriminant analysis [15] on three-dimensional joint position
data, which resulted in an accuracy of 99.3% (sensitivity 99.66%, specificity 99.00%). More
recently, a study extracted kinematic features from a markerless-based data acquisition [16]
that resulted in a classification accuracy of 92% using a rough set classifier [19].

To date, all kinematic ML studies of gait patterns in autism have used SSF models. Given
the number of gait studies that have highlighted atypical ankle mechanics [8,9,11–13,17], an
investigation of the relative motion between foot segments via MSF kinematic models
are needed. The combination of MSF kinematic data and ML tools will facilitate the
exploration of more complex foot/ankle kinematic features for the classification of gait
patterns in children with ASD. Contrary to the black-box nature of ML models, currently,
interpretability tools are employed to analyze feature contribution and their ranking [26,27].
Hence, comparisons of MSF and SSF classification performance and feature rankings will
provide insight into whether MSF models contribute more to the accurate classification
of ASD than SSF models alone. This will provide researchers and clinicians with future
directions of data collection and analysis protocols for autism gait assessment, taking into
consideration factors such as sensory sensitivity in ASD and participant compliance.

The objectives of this study were to (1) investigate the classification of gait patterns in
children with ASD versus neurotypical controls using MSF and SSF kinematic data, and (2)
to determine the optimal MSF kinematic features for classifying gait patterns in children
with ASD.
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2. Materials and Methods
2.1. Participants

Nineteen children (n = 19) diagnosed with autism between the ages of 6–15 years
participated in the study (16 males, 3 females; age = 10.47 ± 2.91 years; height: 1.42 ± 0.15 m;
weight: 41.20 ± 17.00 kg) compared to a neurotypical control group consisting of twenty-one
children (n = 21) between the ages of 6–16 years (11 males, 10 females, age: 11.38 ± 2.91 years;
height: 1.49 ± 0.14 m; weight: 44.32 ± 16.36 kg). Participants were recruited through
advertisements, emails, and word-of-mouth from the local community. Autism and control
group characteristics are provided in Table 1. Parents voluntarily completed a questionnaire
designed to identify possible injuries/diseases/disorders that could affect their child’s
walking skills. No children were excluded from the study based on these responses. Further,
no children in the autism group were classified as toe-walkers. Hypotonia was confirmed
in 31.6% and the gross motor delay was confirmed in 26.3% of the children with autism.

Table 1. Participant Demographics (Mean ± Std. Dev.).

Characteristics Autism (n = 19) Control (n = 21)

Age (years) 10.47 ± 2.91 11.38 ± 2.91
Height (m) 1.42 ± 0.15 1.49 ± 0.14
Weight (kg) 41.20 ± 17.00 44.33 ± 16.36

Gender (#M, #F) (16 M; 3 F) (11 M; 10 F)

T-tests were used to test for significant differences (p < 0.05) in height, weight, and age
between the autism and control groups. No significant differences were found for height
[F(1, 38) = 0.67, p = 0.17], weight [F(1, 38) = 0.85, p = 0.56], or age [F(1, 38) = 0.98, p = 0.34].
As no significant between-group differences were found, we consider the characteristics
of the control group to approximate those of the autism group [28]. Parental consent and
child assent were obtained prior to each child’s participation in the study. Ethical approval
for this study was obtained from the University of New Brunswick Research Ethics Board.

2.2. Instrumentation

Data collection occurred at the Andrew and Marjorie McCain Human Performance
Laboratory at the University of New Brunswick (UNB). A 12-camera Vicon T160 motion
capture system (Oxford Metrics Group Ltd., Oxford, UK), sampling at 100 Hz, was used
to track the three-dimensional trajectories of thirty-two retro-reflective spherical markers
(9.5 mm diameter) placed directly on the skin of each participant. Six force plates (9281E,
Kistler Instruments, Winterthur, Switzerland), embedded in the lab floor, were used to
aid in the identification of key gait events (e.g., heelstrike, toe-off). The force plates
were integrated and synchronized to the motion caption system through a 128-channel
Vicon A/D board. Three-dimensional forces and moments were collected at a sampling
frequency of 1000 Hz. Additionally, two high-speed Basler digital video cameras (Basler
Inc., Ahrensburg, Germany) were used to obtain front and side images of each participant
during gait trials. A weight scale and stadiometer were used to obtain anthropometric
measures from each participant.

2.3. Experimental Protocol

Thirty-two (n = 32) retro-reflective markers (Figure 1) were placed on the skin of
each participant in accordance with a modified version of a previous multisegment foot
model [29]. Modifications included: (1) the use of an additional cuboid marker (the cuboid
was not assumed to coincide with the base of the fifth metatarsal, and (2) the formation of a
neutral calcaneus using a laser-level technique to guide marker placement [30]. Several
‘warm-up’ trials were conducted to allow the participants to adjust to the markers and
the lab environment. For each participant, a minimum of six successful dynamic trials
(i.e., clean force plate strikes, marker visibility, accurate marker labels, and non-playful
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gait) for both the left and right leg were measured at their self-selected walking speed.
Following the gait trials, participant weight and height were measured.
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Figure 1. (A) and (B) Photograph of reflective marker locations on a participant’s feet, and (C) Single
frame image of reconstructed three-dimensional marker trajectories from the Vicon motion capture system.

2.4. Biomechanical Data Processing

Three-dimensional trajectories of the reflective markers and force plate data were
exported to Visual3D (v6, C-motion Inc., Boyds, MD, USA) for processing using a custom
mechanical model. Marker trajectories were filtered with a 2nd order, low-pass Butterworth
filter with a cut-off frequency of 8 Hz. For each participant, trial selection involved the
computation of the mean walking speed across the 6 trials for each leg. The single gait
cycle that most closely approximated the individual mean walking speed of all gait cycles
(left or right) was selected as the single trial for analysis for each participant.

In accordance with a previous multisegment foot model [29], the rigid body model
consisted of five segments: (1) the shank (tibia and fibula), (2) the total or single segment foot
(SSF), (3) the calcaneus, (4) the midfoot, and (5) the forefoot (including all five metatarsal
bones). The proximal phalanx of the hallux and the 1st, 2nd, and 5th metatarsal bones
were modelled as line segments for the computation of planar angles. Joint angles were
computed from the relative orientations of the embedded coordinate systems using Euler
angles in an x-y-z sequence, corresponding to flexion/extension, adduction/abduction, and
internal/external rotation. Joint angle data were normalized to 100% of the gait cycle. Planar
angles included F2G: sagittal angle between the 1st metatarsal and the ground; S2G: sagittal
angle between the 2nd metatarsal and the ground; S2F: transverse angle between 1st and
2nd metatarsals; V2G: sagittal angle of the 5th metatarsal and the ground; S2V: transverse
angle between 5th and 2nd metatarsals; F2Ps: sagittal angle between 1st metatarsal bone
and proximal phalanx; F2Pt: transverse angle between 1st metatarsal bone and proximal
phalanx; and MLA: sagittal angle projection representing medial longitudinal arch.

The multisegment foot (MSF) features were extracted from the relative angles between
4 rigid segments, namely, the shank (Sha), calcaneus (Cal), midfoot (Mid), and forefoot
(Met). The relative angle comparisons include Sha-Cal, Cal-Mid, Cal-Met, and Mid-Met.
The SSF features were extracted from the relative angles between the rigid shank and total
foot segment (Sha-Foot). For both the MSF and SSF mechanical models, the extracted
features included the relative angle value at heel-strike (HS) and toe-off (TO), range-of-
motion (ROM), maximum (MAX) and minimum (MIN) angles during stance (ST) and swing
(SW) phase, and their corresponding time occurrences (TIME). For the feature extraction
from planar angles, MAX and MIN values during stance were computed. A paired t-test
was used to test for significant (p < 0.05) differences in features between left and right gait
cycles across participants within each group. Results showed no significant differences
(p > 0.05) or asymmetry between limbs for any features, therefore, all left and right cycles
were pooled for each group. Independent t-tests for walking speed showed no significant
differences (p > 0.05) between groups (autism: 1.25 ± 0.28 m/s; control: 1.21 ± 0.16 m/s).
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Subsequently, throughout the document, the term feature(s) has been used to refer to
the feature(s) extracted from the corresponding SSF/MSF/Planar angles. The MSF, SSF, and
planar features, individually and combined, served as input to a support vector machine
(SVM) classifier with a linear as well as a radial basis function (RBF) kernel. Further details
are provided in Section 2.6.

2.5. Feature Selection

The recorded feature sets (as listed in the previous section) were used as input to
feature selection techniques that were followed by retrospective classification of autism and
control gait patterns. Feature selection methods were used to select a subset of the most
contributing features from the original features set. This dimensionality reduction method
was achieved by removing the redundant, irrelevant, or noisy features, and consequently,
reducing the training time. Based on a preliminary analysis, we used a wrapper-based
forward feature selection algorithm that follows an incremental greedy strategy for selecting
the most contributing feature subset. Wrapper methods use a specific classifier with a
cross-validation method to provide a classification score for each feature subset. The overall
MSF + SSF feature set (#features = 233) and the planar feature set (#features = 40) was
divided into sub-categories as explained in the following section and the forward feature
section was employed separately for each category. The specific feature subset where the
classification score plateaued was reported and further evaluation metrics were calculated.

2.6. Classification Models and Model Evaluation

A preliminary analysis investigated widely used machine learning models for biome-
chanical data, such as linear discriminant analysis, Naïve Bayes, k-nearest neighbors, and
support vector machines. Based on the results, the support vector machine algorithm was
chosen for the classification. For the SVM models, two different kernels: (1) linear and
(2) radial basis function (RBF), were used to develop the models while the gamma and
regularization parameters were varied [31]. Hyper-parameter tuning was performed to
obtain the model development parameters for highest classification performance. All data
analysis was performed using Python (PSF, Wilmington, DE, USA).

For the four sets of MSF relative angles (Sha-Cal, Cal-Mid, Cal-Met, Mid-Met), the clas-
sification models based on their respective features (e.g., max value at HS) were categorized
into: (1) one-level and two-level combinations, and (2) three-level and four-level combina-
tions, for easier presentation. Additionally, the all-combined feature set (MSF + SSF) was
included in the second category. Similarly, for the eight planar angles, the classification
models based on their respective features were categorized as (1) individual and (2) all
combined. For each of the categories, sequential feature selection was performed, and each
feature subset was modelled by the SVM classifiers. For each feature group, the subset with
the highest classification performance was reported as shown below. For the evaluation
of classification models according to their performance, leave-one-out cross-validation
(LOOCV) was performed, and the averaged model evaluation metrics were reported. Some
of the metrics investigated in this study are accuracy, specificity, sensitivity, positive predic-
tive value (PPV), negative predictive value (NPV) [32], Matthew’s correlation coefficient
(MCC) [33], and F1 score [34]. F1 score, which is the harmonic mean of precision and
sensitivity is calculated as:

F1 =
2PPV·sensitivity

2PPV + sensitivity
=

2TP
2TP + FP + FN

MCC score was calculated as:

MCC =
TP = TN·FP·FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
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where TP is true positive, FP is false positive, TN is true negative, FN is false negative. For
example, if a model classifies all 40 participants (A = 19; C = 21) as control, the model’s
accuracy is 52.5%, sensitivity is 0%, specificity is 100%, PPV is 0%, NPV is 58.5%, F1 score
is 0 and MCC is 0.

To compare the models in each category, a summed ranking (SR) approach was
employed [21]. Each of the model evaluation metric was ranked from best to worst
numerically as one to N, where N is the total number of models in each comparison
category. Rankings from each of the metrics were summed and further ranked (best model
corresponds to the lowest summed ranking). Therefore, three summed ranking analyses
were performed: (1) SSF and MSF level-1 and level-2 feature combinations, (2) MSF level-
3 and level-4 feature combinations, and (3) Planar feature combinations. Additionally,
to summarize the findings, the averaged receiver operating characteristic (ROC) curve
obtained from different combinations at each level was plotted. The area under the curve
(AUC) was used to compare the multiple analyses, a final summed ranking was performed
using the top-3 models from each of the above-mentioned combinations.

2.7. Model Interpretation

For interpretation of the ML models, explainable AI methods involving local and
global importance were employed in the dataset. Local explainable methods, such as
Shapley Additive exPlanations (SHAP) [27] were implemented to understand the feature’s
importance. For each class label, the SHAP values for a particular input represent the
importance of each feature in classifying the input sample to that class. Positive SHAP
values indicate that the model tends to detect “autism” gait patterns, while negative
SHAP values indicate that the model tends to detect “control” gait patterns. For global
interpretability, the Shapley Additive Global importancE (SAGE) technique is implemented,
which estimates feature importance by a global decomposition of the model loss across
a whole data set [26]. The estimated SAGE value explains the influence of the features
considering not only the model but also implicitly the data via the loss function. Therefore,
while SHAP determines how much each feature contributes to individual prediction, SAGE
determines the extent to which the model depends on each feature in the whole dataset.
Both the SHAP and SAGE utilize an additive Shapley value which considers the correlation
between variables, and hence can be further utilized to form feature groups.

Therefore, for our dataset, SSF feature group (#features = 47), MSF feature groups
(#features = 186): Cal-Met, Cal-Mid, Mid-Met, and Sha-Cal, and the Planar feature groups
(#features = 40): MLA, F2Ps, F2Pt, V2G, F2G, S2G, S2F, and S2V were formed for analyzing
the feature importance. Subgroups comprising time variables and the 3D angle components
were also investigated for feature importance.

3. Results

The Section 3 is organized into two parts: (A) classification models and model evalua-
tion for reporting the classification performance of different SSF, MSF, and planar feature
models, and (B) model interpretation results explaining the model predictions.

3.1. Classification Models and Model Evaluation

The evaluation metrics for the classification models based on level-1 and level-2
combinations of MSF features are provided in Table 2.

The classification models were ranked according to their SR scores. The models using
SSF features (shown as Sha-Foot) in Table 2 were ranked 17th (accuracy = 0.838) and 18th
(accuracy = 0.838). The top-ranked model among level 1–2 combinations was based on
Cal-Met + Sha-Cal RBF features (accuracy = 0.938, F1 score = 0.943, specificity = 0.976).
The highest sensitivity (0.947) was obtained by the second-ranked RBF model based on
Mid-Met + Sha-Cal features. In the individual MSF feature group performance (level-1),
it was observed that the highest accuracy was obtained by linear model based on Cal-
Mid features (accuracy = 0.887, rank = 11) and the worst performing was model based
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on Sha-Cal features (accuracy = 0.762, rank = 26). Overall, the models based on level-2
combination (accuracy = 0.894 ± 0.038) performed significantly better (p < 0.001) than the
level-1 combinations (accuracy = 0.821 ± 0.037). It was also observed that 8 of the top
10 models were using an RBF kernel SVM and the remaining two utilized a linear SVM.
Overall, the RBF kernel models (accuracy = 0.880 ± 0.053) had higher accuracy than the
linear models (accuracy = 0.851 ± 0.047). All the 26 models had an MCC greater than 0,
which shows the classification of autism and control gait patterns were not random guesses.

Table 2. Classification models based on level-1 and level-2 combinations of SSF and MSF features.

Segment Method Accuracy Sensitivity Specificity PPV NPV F1 MCC SR

Cal-Met + Sha-Cal RBF 0.938 0.895 0.976 0.971 0.911 0.943 0.877 15
Mid-Met + Sha-Cal RBF 0.938 0.947 0.929 0.923 0.951 0.94 0.875 23
Cal-Met + Sha-Foot Linear 0.925 0.868 0.976 0.971 0.891 0.932 0.853 27
Cal-Mid + Mid-Met RBF 0.925 0.895 0.952 0.944 0.909 0.930 0.850 34
Cal-Met + Cal-Mid Linear 0.925 0.842 1 1 0.875 0.933 0.858 34
Sha-Cal + Sha-Foot RBF 0.925 0.921 0.929 0.921 0.929 0.929 0.850 35
Cal-Met + Mid-Met RBF 0.912 0.868 0.952 0.943 0.889 0.920 0.826 47
Cal-Met + Cal-Mid RBF 0.912 0.921 0.905 0.897 0.927 0.916 0.825 54
Cal-Met + Sha-Foot RBF 0.900 0.868 0.929 0.917 0.886 0.907 0.800 61
Cal-Mid + Sha-Cal RBF 0.900 0.816 0.976 0.969 0.854 0.911 0.807 63

Cal-Mid Linear 0.887 0.868 0.905 0.892 0.884 0.894 0.774 75
Cal-Met + Sha-Cal Linear 0.887 0.868 0.905 0.892 0.884 0.894 0.774 75
Mid-Met + Sha-Cal Linear 0.875 0.842 0.905 0.889 0.864 0.884 0.750 93
Cal-Mid + Mid-Met Linear 0.850 0.763 0.929 0.906 0.812 0.867 0.705 104

Cal-Met Linear 0.838 0.737 0.929 0.903 0.796 0.857 0.682 113
Sha-Cal RBF 0.838 0.868 0.810 0.805 0.872 0.840 0.677 120
Sha-Foot Linear 0.838 0.842 0.833 0.821 0.854 0.843 0.675 120
Sha-Foot RBF 0.838 0.842 0.833 0.821 0.854 0.843 0.675 120
Cal-Mid RBF 0.838 0.763 0.905 0.879 0.809 0.854 0.678 121
Cal-Met RBF 0.812 0.632 0.976 0.960 0.745 0.845 0.655 122

Sha-Cal + Sha-Foot Linear 0.838 0.816 0.857 0.838 0.837 0.847 0.674 125
Cal-Met + Mid-Met Linear 0.838 0.789 0.881 0.857 0.822 0.851 0.675 125
Cal-Mid + Sha-Cal Linear 0.825 0.816 0.833 0.816 0.833 0.833 0.649 145

Mid-Met RBF 0.775 0.816 0.738 0.738 0.816 0.775 0.554 164
Mid-Met Linear 0.787 0.789 0.786 0.769 0.805 0.795 0.575 165
Sha-Cal Linear 0.762 0.658 0.857 0.806 0.735 0.791 0.528 170

Linear: Linear SVM, RBF: Radial Basis Function kernel SVM; Sha: Shank, Cal: Calcaneus, Mid: Midfoot, Met:
Metatarsus, Foot: Total Foot; NPV: Negative Predictive Value: PPV: Positive Predictive Value, MCC: Matthew’s
Correlation Coefficient, SR: Summed Rank.

Table 3 lists the evaluation metrics for the classification models based on level-3 and
level-4 combinations of SSF and MSF features. The classification models were ranked based
on their SR scores.

The top-ranked model was and RBF kernel SVM based on level-4 MSF parameters: Cal-
Met, Cal-Mid, Mid-Met, and Sha-Cal (accuracy = 0.963, F1 score = 0.965, specificity = 0.976,
sensitivity = 0.947). Similar results were obtained for the (SSF + MSF) RBF model, which is
a combination of the single segment foot and multisegment foot features. The level-3 com-
bination of Cal-Met + Mid-Met + Sha-Cal had similar accuracy but slightly lower specificity
(0.952). Overall, the level-4 combination RBF model (accuracy = 0.963) did not perform
significantly better as compared to the level-3 combination RBF (accuracy = 0.946 ± 0.017)
models. Nine of the top ten models utilized the RBF kernel SVM. The RBF kernel models
(accuracy = 0.950 ± 0.015) performed significantly better (p < 0.001) than linear SVM models
(accuracy = 0.906 ± 0.025). All 18 models had an MCC greater than 0, which shows the
classification of autism and control gait patterns were not random guesses.

Table 4 shows the evaluation metrics for the models based on planar features and their
combinations. The best performing model based on individual planar feature groups
(level-1) models was based on MLA features using an RBF kernel (accuracy = 0.762,
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F1 = 0.808). Combining all 8 planar feature groups improved the accuracy to 0.912. There was
no significant difference (p = 0.229) between RBF kernel models (accuracy = 0.715 ± 0.039)
and linear models (accuracy = 0.693 ± 0.029).

Table 3. Classification models based on level-3, 4 and 5 combinations of SSF and MSF features.

Segment Method Accuracy Sensitivity Specificity PPV NPV F1 MCC SR

MSF (combined) RBF 0.963 0.947 0.976 0.973 0.953 0.965 0.925 15
MSF + SSF RBF 0.963 0.947 0.976 0.973 0.953 0.965 0.925 15

Cal-Mid + Mid-Met + Sha-Cal RBF 0.963 0.974 0.952 0.949 0.976 0.964 0.925 21
Cal-Mid + Sha-Cal + Sha-Foot RBF 0.963 0.974 0.952 0.949 0.976 0.964 0.925 21
Cal-Met + Cal-Mid + Sha-Cal RBF 0.950 0.895 1 1 0.913 0.955 0.904 35
Cal-Met + Sha-Cal + Sha-Foot RBF 0.950 0.895 1 1 0.913 0.955 0.904 35
Cal-Met + Cal-Mid + Mid-Met RBF 0.950 0.921 0.976 0.972 0.932 0.953 0.901 39

MSF + SSF Linear 0.950 0.921 0.976 0.972 0.932 0.953 0.901 39
Cal-Met + Cal-Mid + Mid-Met Linear 0.938 0.921 0.952 0.946 0.930 0.941 0.875 57
Cal-Met + Mid-Met + Sha-Cal RBF 0.938 0.947 0.929 0.923 0.951 0.940 0.875 58
Cal-Met + Cal-Mid + Sha-Foot RBF 0.912 0.895 0.929 0.919 0.907 0.918 0.825 76
Cal-Mid + Sha-Cal + Sha-Foot Linear 0.912 0.895 0.929 0.919 0.907 0.918 0.825 76

MSF (combined) Linear 0.912 0.895 0.929 0.919 0.907 0.918 0.825 76
Cal-Met + Cal-Mid + Sha-Foot Linear 0.900 0.842 0.952 0.941 0.870 0.909 0.803 93
Cal-Met + Mid-Met + Sha-Cal Linear 0.887 0.895 0.881 0.872 0.902 0.892 0.775 103
Cal-Met + Sha-Cal + Sha-Foot Linear 0.887 0.868 0.905 0.892 0.884 0.894 0.774 108
Cal-Mid + Mid-Met + Sha-Cal Linear 0.875 0.816 0.929 0.912 0.848 0.886 0.752 113
Cal-Met + Cal-Mid + Sha-Cal Linear 0.875 0.868 0.881 0.868 0.881 0.881 0.749 119

Table 4. Classification models based on planar features.

Segment Method Accuracy Sensitivity Specificity PPV NPV F1 MCC SR

Planar_All RBF 0.912 0.868 0.952 0.943 0.889 0.920 0.826 7
Planar_All Linear 0.875 0.868 0.881 0.868 0.881 0.881 0.749 21

MLA RBF 0.762 0.553 0.952 0.913 0.702 0.808 0.557 30
S2G RBF 0.762 0.605 0.905 0.852 0.717 0.800 0.539 33
V2G RBF 0.738 0.579 0.881 0.815 0.698 0.779 0.486 46
MLA Linear 0.738 0.526 0.929 0.870 0.684 0.788 0.502 48
F2G RBF 0.725 0.553 0.881 0.808 0.685 0.771 0.462 58
S2V Linear 0.725 0.579 0.857 0.786 0.692 0.766 0.457 62
S2G Linear 0.700 0.421 0.952 0.889 0.645 0.769 0.447 64
S2V RBF 0.713 0.658 0.762 0.714 0.711 0.736 0.423 70
F2Ps Linear 0.700 0.711 0.690 0.675 0.725 0.707 0.401 74
F2G Linear 0.700 0.500 0.881 0.792 0.661 0.755 0.415 76
F2Ps RBF 0.700 0.579 0.810 0.733 0.680 0.739 0.401 80
S2F Linear 0.662 0.395 0.905 0.789 0.623 0.738 0.351 91
F2Pt Linear 0.662 0.684 0.643 0.634 0.692 0.667 0.327 96
V2G Linear 0.662 0.447 0.857 0.739 0.632 0.727 0.336 99
F2Pt RBF 0.662 0.658 0.667 0.641 0.683 0.675 0.324 99
S2F RBF 0.662 0.579 0.738 0.667 0.660 0.697 0.322 102

The ROC summary plots were used to compare different combinations of SSF, MSF,
and planar feature groups as shown in Figure 2. It was observed that the SSF features
performed the worst (AUC = 0.794). The averaged MSF level-1 feature groups had a similar
lower performance (AUC = 0.803), however, the performance increased for MSF level-2
(AUC = 0.902) and further for MSF level-3 (AUC = 0.931). The performance plateaued as
MSF level-4 did not contribute to a better classification (AUC = 0.930). Similar results were
obtained for combining the MSF features with the SSF features (AUC = 0.932), where the
performance was similar to MSF level-3. The planar features resulted in lower performance
(AUC = 0.913) as compared to the higher-level MSF combinations.
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Figure 2. ROC curve summary plot for comparing different SSF, MSF feature groups combination
levels (level 1–4), combined MSF + SSF features, and planar features. The MSF level-1, level-2, and
level-3 curves are obtained by averaging the performance of different MSF feature combinations
in each category. The SSF, MSF level-4, MSF + SSF combined and planar features ROC curves are
obtained from specific feature-set based models. The area under the curve (AUC) values are provided
in the legend entry.

3.2. Model Interpretation

For global interpretation, Figure 3A,B shows the SAGE feature groups and individual
feature ranking, respectively. It was observed that max/min and time to max/min biome-
chanical features for Mid-Met contributed the most to the model (SAGE > 0.04). From the
individual feature ranking, it was observed that the features associated with the Mid-Met
segment ranked three out of five. Sha-Foot features did not appear until feature-rank 7
(i.e., MSF features are #1–6 and contribute the most to the model compared to SSF). For local
interpretation, a SHAP water fall plot (Figure 3C) was provided to briefly display feature
contribution for an individual autism case (A14). The direction and magnitude of a feature
are presented as follows: the right arrows indicate the contribution of a feature towards
the autism category (red) and the left indicates a contribution toward the control category
(blue), and the length of the arrows determines the magnitude of a feature effect. The
results show that the top-3 features are from the Mid-Met segment (SHAP values > 0.06).
This is similar to the global interpretability obtained using SAGE value. Thirteen of the
top-14 features are MSF parameters, with only one SSF parameter (rank = 4).

Figure 3D shows the individual MSF kinematic results of participant A14 (shown by
the red line) for the Mid-Met segment. The dorsiflexion/plantarflexion, inversion/eversion,
and internal/external rotation angles (top-bottom) for the Mid-Met segment are shown in
the respective order. The Mid-Met angle shows decreased eversion and increased internal
rotation across the entire cycle compared to control data. This result corroborates the
findings using SAGE and SHAP plots. Figure 3E illustrates the ranking of planar feature
groups using the SAGE grouping values. Results indicate that the F2G feature group had
the highest SAGE value (0.08) as compared to other feature groups.
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Figure 3. (A) SAGE values for feature groups for dorsiflexion/plantarflexion, inversion/eversion,
and internal/external rotation angles corresponding to the X, Y and Z components, respectively of
MSF and SSF features, (B) SAGE values for individual feature ranking showing the 15 top most
ranked features (C), SHAP waterfall plot for local interpretation of a sample autism case (A14), red
arrow shows prediction contribution towards the autism category and blue arrows shows prediction
contribution towards the control category (D) Mid-Met angle values in the three planes for A14
(shown by red line vs. control mean +/− 1SD shown by green), and (E) SAGE values for planar
feature groups.

4. Discussion
4.1. Classification Evaluation of Autism Gait Patterns

To date, no previous studies have examined the classification of MSF versus SSF kine-
matics in children with autism versus neurotypical controls. Table 2 presented the rankings
of SSF and MSF group level 1–2 combinations. The SSF models had an accuracy of 0.838
and ranked low compared to the other MSF features and their combinations. Additionally,
all of the top ten models had level-2 combinations (0.90 < accuracy < 0.938), i.e., the feature
set comprised of two MSF feature groups. Specifically, the RBF for level-2 combinations
of MSF features (accuracy = 0.918 ± 0.015) was greater than level-1 combinations of MSF
features (accuracy = 0.820 ± 0.027). This suggests that a combination of two MSF features
might provide additional variation to the data and can result in higher accuracy than the
SSF model for classifying gait patterns in children with autism.

This trend was also observed while analyzing MSF level-3 and level-4 combinations
(Table 3). It was observed that out of the level-3 and level-4 combinations of MSF features,
maximum accuracy of 0.963 could be achieved for classifying autism gait patterns. Specifi-
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cally, three models: level-4 MSF features, MSF + SSF (level-5), and Cal-Mid + Mid-Met +
Sha-Cal (level-3), had the highest accuracy of 0.963 among all models. This was greater
than other level-3 combinations of MSF with an average accuracy of 0.946 ± 0.017 using
an RBF kernel. This suggests that although a level-4 combination of all MSF features, as
well as a further combination with SSF, features, resulted in the highest accuracy of 0.963,
comparable classification performance can be achieved using a combination of three MSF
feature groups only. This performance was greater than any of the level-1 and level-2 MSF
feature combinations. The high MCC value of all Table 3, models (MCC > 0.749), suggests
that the classification results were reliable and balanced between both the classes.

The combined planar features model (Planar_All), which used features from all 8 pla-
nar groups, had the highest accuracy (0.912) using an RBF kernel. The linear model
counterpart resulted in a slightly lower accuracy (0.875). The MLA RBF model resulted
in an accuracy of 0.762, sensitivity of 0.553, and specificity of 0.952, which although the
highest among all the individual planar feature models, was lower than the combined
models. This suggests that a combination of planar feature groups can present a higher
accuracy for classifying autism gait patterns.

Table 5 provides a summary of all the top performing models, which also corroborates
the ROC summary plot provided in Figure 2.

Table 5. Summary of top-performing models.

Segment Method Accuracy Sensitivity Specificity PPV NPV F1 MCC

Cal-Met + Cal-Mid + Mid-Met +
Sha-Cal RBF 0.963 0.947 0.976 0.973 0.953 0.965 0.925

All (MSF + SSF) RBF 0.963 0.947 0.976 0.973 0.953 0.965 0.925
Cal-Mid + Mid-Met + Sha-Cal RBF 0.963 0.974 0.952 0.949 0.976 0.964 0.925

Cal-Met + Sha-Cal RBF 0.938 0.895 0.976 0.971 0.911 0.943 0.877
Mid-Met + Sha-Cal RBF 0.938 0.947 0.929 0.923 0.951 0.94 0.875
Cal-Met + Sha-Foot Linear 0.925 0.868 0.976 0.971 0.891 0.932 0.853

Planar-All RBF 0.912 0.868 0.952 0.943 0.889 0.92 0.826
Planar-All Linear 0.875 0.868 0.881 0.868 0.881 0.881 0.749
Sha-Foot RBF 0.838 0.842 0.833 0.821 0.854 0.843 0.675

From both Table 5 and Figure 2, it can be confirmed that the MSF combination of
features resulted in higher accuracy than SSF features for classifying autism gait patterns.
Specifically, the level-3 combination models had very high average classification perfor-
mance (accuracy = 0.946, AUC = 0.931).

While comparing the RBF SVM and linear SVM models, it was observed that for level-
3 and level-4 combinations, the RBF kernel models (accuracy = 0.950 ± 0.015) performed
significantly higher (p < 0.001) than linear SVM models (accuracy = 0.906 ± 0.025). It was
also observed that for the level-2 combinations, the RBF kernel (accuracy = 0.918 ± 0.015)
performed significantly higher (p < 0.001) than the linear SVM (0.870 ± 0.039). For level-1
combinations, the accuracy of the RBF kernel (0.820 ± 0.027) was not significantly different
(p = 0.678) than the linear SVM (0.822 ± 0.048). This suggests that with increasing feature
space, the data tends to be linearly inseparable and thus a more complex non-linear
hyperplane might be better suited for classification.

4.2. Feature Rankings and Model Interpretability

From Tables 2–5, a particular trend for the Mid-Met features was observed. The
level-1 feature combinations (Mid-Met only) resulted in lower accuracy (0.775 for RBF,
ranked 24 in Table 2) compared to the other three MSF feature groups (such as Cal-Mid,
accuracy = 0.887 for linear, ranked 11 in Table 2). However, it was observed that a level-2
combination of Mid-Met and Sha-Cal resulted in a higher accuracy (0.938 for RBF, ranked 2
in Table 2) and a level-3 combination of Cal-Mid, Mid-Met, and Sha-Cal resulted in even
higher accuracy (0.963 for RBF, highest accuracy in Table 3). This suggests that although
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the Mid-Met features have lower classification performance independently, they provide
relatively higher classification performance with a combination of other MSF features.

The model interpretability analysis using SHAP and SAGE is discussed next which
suggests that the Mid-Met features contributed most to the best-performing models
(Figure 3A–D). It was observed that max/min and time to max/min biomechanical
features for Mid-Met contributed the most to the model (SAGE > 0.04). The features
related to the Mid-Met segment were the magnitude of inversion/eversion at toe-off
(Mid_Met_AngleY_TO) as feature #1 and the minimum internal/external rotation dur-
ing stance (Mid_Met_AngleZ_Min_ST) as feature #2. In this individual case, the forefoot
showed decreased eversion and internal rotation with respect to the midfoot across the
entire cycle compared to control data (Figure 3B,C). As shown in Figure 3, the primary
feature contributing to the classification of this participant as having an autism gait pattern
is the magnitude of eversion of the midfoot-forefoot at toe-off (Mid_Met_AngleY_TO),
followed by the magnitude of external rotation (or minimum internal rotation) during
stance (Mid_Met_AngleZ_MIN_ST). These findings suggest differences in the kinematic
coupling between foot segments for autism gait patterns versus control that can impact
foot stability and propulsion.

For the planar angle comparisons, Figure 3E suggests that F2G contributed most to
the best-performing planar features model (accuracy = 0.912, AUC = 0.913). As such, the
upward/downward orientation of the first metatarsal relative to the ground during stance
contributes to the differentiation of ASD versus neurotypical gait, with ASD showing
significantly (p < 0.05) reduced mean max values in stance (ASD: 84.15 ± 15.29; Control:
91.38 ± 10.47). While these planar projection angles are less reliable, they affirm the need
to examine forefoot dynamics.

4.3. Comparison with Previous Studies

To our knowledge, this is the first paper to analyze multisegment foot kinematics in
children with ASD. To date, it is also the first to apply machine learning techniques to
multisegment foot kinematic data for any population. As such, comparison to previous
work is limited. A previous study [17], examining autism gait classification using hip, knee,
and ankle (SSF) kinematics using an ANN model, reported an accuracy of 91.7%. The
present study reported lower accuracy for SSF features (83.8%), however, this may be due to
the use of only ankle kinematic features and an RBF SVM model for classification. Moreover,
MSF feature combinations were able to achieve a higher accuracy of 96.3%. Three ankle
features from the previous study [17], namely, MAX ankle plantarflexion during stance,
and MAX internal and external foot rotation across the gait cycle were included in the
present study. Individual feature rankings (Figure 3B) showed that the internal/external
rotation range of motion for the SSF model did not appear until feature-rank 7. Therefore,
MSF features provide insight into complex foot mechanics in ASD, while also providing
high classification accuracies compared to most SSF models.

Hasan et al. [35] also compared the performance of multi-joint kinematic versus kinetic
features using two different classifiers. Linear discriminant analysis (LDA) and quadratic
discriminant analysis (QDA) were used to classify ASD gait patterns from a statistically
reduced set of nine kinematic and sixteen kinetic features, which included SSF parameters,
namely MAX ankle dorsiflexion angle in stance, MAX plantarflexion angle in swing, MAX
sagittal and transverse moments, and MAX eccentric ankle power. Results suggested
that the LDA classifier with kinetic gait features was the most effective for classifying
ASD gait patterns (82.5%). This differed from previous work [17], which achieved higher
classification rates using ankle and knee kinematic features only. Similarly, the highest
reported classification accuracy of 99.3% was achieved using principal component analysis
and linear discriminant analysis for data reduction on full-body three-dimensional joint
position data in children with ASD and controls [15]. A recent study extracted kinematic
features from a markerless-based data acquisition [16] that resulted in a classification accu-
racy of 92% using a rough set classifier [19]. In contrast, previous research has investigated
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the classification of ASD and control gait patterns using temporal-spatial, kinematic, and
kinetic features [7,14–18]. High classification accuracy of 95.8% has been achieved by com-
bining all of these features using a support vector machine (SVM) classifier [14]. Variability
in feature sets, data reduction and classification techniques, and accuracy suggest there is
more research needed to reach a consensus on which gait parameters best discriminate ASD
gait from neurotypical controls. Interestingly, this research also shows that gait patterns in
ASD and controls can be successfully grouped.

5. Conclusions

Gait patterns in children with autism were compared to controls using linear and RBF
SVM models based on planar, SSF, and MSF kinematic features. Results suggested that
combinations of MSF kinematic features retrospectively classified autism patterns with an
accuracy of 96.3%, which is higher than using SSF kinematic features alone (83.8%). The
RBF kernel models had an overall better performance than the linear models. Additionally,
through interpretability approaches, we identified that features of the relative angles
between the metatarsal and midfoot had the highest contribution to the classification of
autism gait patterns. Furthermore, the performance plateaued for a combination of three
MSF features. The combination of all planar features resulted in an accuracy of 91.2%,
with the F2G contributing the highest. This study demonstrated that kinematic features
from a multi-segment foot model, supported by ML models, can provide an accurate
classification of gait patterns in children with autism versus controls. Further research is
needed using higher sample sizes to validate the ML model. Additional kinematic and
kinetic features, as well as EMG data, should also be considered for future work. Additional
markerless motion capture studies may also benefit children with sensory sensitivities and
yield more natural movement patterns. The application of ML models, combined with
model interpretability, can facilitate an increased understanding of gait patterns in autism,
and in turn, the potential for optimized treatment programs and improved function and
quality of life.
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