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Abstract

Background and Purpose: Microglia are resident immunocompenent and phagocytic cells of central nervous system (CNS),
which produce various cytokines and growth factors in response to injury and thereby regulate disease pathology. The
purpose of this study is to investigate the effects of microglial transplantation on focal cerebral ischemia model in rat.

Methods: Transient middle cerebral artery occlusion (MCAO) in rats was induced by the intraluminal filament technique.
HMO6 cells, human microglial cell line, were transplanted intravenously at 48 hours after MCAO. Functional tests were
performed and the infarct volume was measured at 7 and 14 days after MCAO. Migration and cell survival of transplanted
microglial cells and host glial reaction in the brain were studied by immunohistochemistry. Gene expression of neurotrophic
factors, cytokines and chemokines in transplanted cells and host rat glial cells was determined by laser capture
microdissection (LCM) and quantitative real time-PCR.

Results: HMO6 human microglial cells transplantion group demonstrated significant functional recovery compared with
control group. At 7 and 14 days after MCAO, infarct volume was significantly reduced in the HMO group. In the HMO6
group, number of apoptotic cells was time-dependently reduced in the infarct core and penumbra. In addition, number of
host rat microglia/macrophages and reactive astrocytes was significantly decreased at 7 and 14 days after MCAO in the
penumbra. Gene expression of various neurotrophic factors (GDNF, BDNF, VEGF and BMP7) and anti-inflammatory cytokines
(IL4 and IL5) was up-regulated in transplanted HMO6 cells of brain tissue compared with those in culture. The expression of
GDNF and VEGF in astrocytes in penumbra was significantly up-regulated in the HMO6 group.

Conclusions: Our results indicate that transplantation of HMO6 human microglial cells reduces ischemic deficits and
apoptotic events in stroke animals. The results were mediated by modulation of gliosis and neuroinflammation, and
neuroprotection provided by neurotrophic factors of endogenous and transplanted cells-origin.

Citation: Narantuya D, Nagai A, Sheikh AM, Masuda J, Kobayashi S, et al. (2010) Human Microglia Transplanted in Rat Focal Ischemia Brain Induce
Neuroprotection and Behavioral Improvement. PLoS ONE 5(7): e11746. doi:10.1371/journal.pone.0011746

Editor: Howard E. Gendelman, University of Nebraska, United States of America

Received December 1, 2009; Accepted June 24, 2010; Published July 23, 2010

Copyright: � 2010 Narantuya et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This study was supported by grants from the Canadian Myelin Research Initiative (SUK). The funders had no role in study design, data collection and
analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: anagai@med.shimane-u.ac.jp (AN); sukim@interchange.ubc.ca (SUK)

Introduction

Microglia are immunocompetent cells of central nervous system

(CNS), which are activated in response to injury and diseases, and

adopt a phagocytic and cytokine secreting phenotype [1–4].

Microglia are activated following in cerebral ischemia and express

a variety of proinflammatory cytokines including interleukin -1b
(IL-1b), interleukin -6 (IL-6) and tumor necrosis factor -a (TNF-a),

which induce in neuroinflammation and neurotoxicity [5–8]. It

also take part in neuroinflammation through chemokines, such as

monocyte chemotactic protein-1 (MCP-1) and macrophage

inflammatory protein -1a (MIP -1a), production and recruitment

to circulating immune cells [9–11].

Conversely, microglia is known to produce neurotrophic factors

such as glial cell line-derived neurotrophic factor (GDNF), brain-

derived neurotrophic factor (BDNF), basic fibroblast growth factor

(bFGF) and vascular endothelial growth factor (VEGF), potentially

provide trophic support to neurons in distress [12–14]. These

reports suggest that the phenotypic expression of microglia,

whether it is to be neuroprotective or neurodegenerative, depends

on the cue it receives during a particular disease process.

Regenerative medicine using stem cell-based cell therapy has

recently emerged as a therapeutic tool in various disease settings

[15]. Various cell types including neural stem cells, mesenchymal

stem cells (MSCs) and immortalized stem cell lines have been used

for stem cell based therapy in experimental settings, as well as
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clinical research of stroke in an anticipation that it may improve the

disease pathology. Indeed, several resent reports have implicated

the beneficial effects of cell-transplantation including neural stem

cells, MSCs and genetically engineered stem cell line [16,17].

Since microglia are able to act neuroprotectively in the CNS in

injury or disease, we hypothesized that microglial transplantation

could provide neuroprotection of neurons under cerebral ischemic

condition. We have previously generated an immortalized cell line of

human microglia, HMO6, which carries morphologic and pheno-

typic expression characteristic of primary human microglia [18,19].

To test our hypothesis, we intravenously transplanted HMO6

human microglia cells in rat model of transient ischemia, and

evaluated histopathological, molecular and functional recovery in

these ischemia model animals.

Materials and Methods

Cell culture
A human microglial cell line, HMO6, was established by

isolating microglia from human fetal telencephalon tissue and

immortalizing it using a retroviral vector encoding v-myc [19].

HMO6 cells were cultured in medium consisted of Dulbecco’s

modified Eagle medium (DMEM; Nissui, Tokyo, Japan) supple-

mented with 5% fetal bovine serum, L-glutamine, amphotericin B

and gentamicin. After 24, 48, 60 and 72 h of growth, cells were

exposed briefly to trypsin and then collected by centrifugation.

HMO6 cells at final concentration of 36106 cells per 100 ml

DMEM were prepared for transplantation.

Middle cerebral artery occlusion (MCAO) model
All experimental protocol and procedures were approved by the

Ethical Committee of the Shimane University School of Medicine.

Adult male Sprague-Dawley rats (n = 60; 7–8 weeks old; CLEA

Japan,Tokyo) weighting 250 to 300 g were employed in our

experiments. Briefly, rats initially anesthetized with 4% halothane

and maintained with 1–2% halothane in 70% N2O and 30% O2

mixture using a face mask. Transient MCAO was induced using a

previously described method of intraluminal vascular occlusion

[20]. The right common carotid artery, external carotid artery and

internal carotid artery were exposed via a ventral midline incision.

A 4-0 monofilament nylon suture (Nescosuture, Tokyo, Japan),

with its tip rounded by coated with silicon (Xantopren L blue,

Heraeus Kulzer, Hanau, Germany) was inserted from the right

external carotid artery into of the internal carotid artery to block

the origin of the right middle cerebral artery. At 90 minutes after

MCAO, occluded animals were re-anesthetized with halothane

and nylon monofilament was removed, and the end of the external

carotid artery was tied. The rats were allowed to recovery from

anesthesia and returned to the cages.

Transplantation of HMO6 cells
In the study, MCAO rats were randomly divided into two

experimental groups: Transplantation (n = 30) and control (n = 30)

groups. Forty eight hour after MCAO animals were anesthetized

and HMO6 cells (36106 cells/rat) were injected through jugular

vein. In control MCAO animals, phosphate-buffered saline (PBS)

alone was injected. No immunosuppressant such as cyclosporine A

was utilized in the study as well as previous studies since

cyclosporine A reduces glial response and exerts neuroprotection

in experimental stroke.

Functional tests
Functional tests were performed at 1, 4, 7, 10 and 14 days after

MCAO by the modified neurological severity scores (mNSS).

mNSS was used to grade the various aspects of neurological

functions, which was adopted from a previous report, with some

modification [21]. The modified NSS (mNSS; Table 1) is a

composite of motor (i.e., muscle status and abnormal movement),

sensory (i.e., visual, tactile, and proprioceptive), beam balance, and

reflex tests, in which meticulous sensory examination for vision,

touch, and proprioceptive sensation was performed. The total

score for the test was 22 points. Increasing score indicates the

severity of injury. In a preliminary examination, rats with 12–16

points of mNSS had a stable stroke volume. Hence, we used rats

with 12–16 points for further examination.

Triphenyltetrazolium chloride (TTC) staining and
evaluation of infarct volume

Rats (8 rats in each group; n = 16) were decapitated under deep

anesthesia with an overdose of diethyl ether at 7 and 14 days after

MCAO. The brain was immediately removed and sectioned into 2

mm thick slices from the frontal pole to the cerebellum. These

Table 1. Modified NSS.

Motor Tests Points

Raising rat by the tail 3

1 Flexion of forelimb

1 Flexion of hindlimb

1 Head moved .10 to vertical axis within 30 s

Placing rat on the floor (normal = 0; maximum = 3) 3

0 Normal walk

1 Inability to walk straight

2 Circling toward the paretic side

3 Fall down to the paretic side

Sensory tests 6

1 Placing test (visual test)

2 Placing test (tactile test)

3 Proprioceptive test (deep sensation, pushing
the paw against the table edge to stimulate limb
muscles)

Beam balance tests (normal = 0; maximum = 6) 6

0 Balances with steady posture

1 Grasps side of beam

2 Hugs the beam and one limb falls down from the beam

3 Hugs the beam and two limbs fall down from
the beam, or spins on beam (.60 s)

4 Attempts to balance on the beam but falls off (.40 s)

5 Attempts to balance on the beam but falls off (.20 s)

6 Falls off: No attempt to balance or hang
on to the beam (,20 s)

Reflexes absent and abnormal movements 4

1 Pinna reflex (head shake when touching the auditory meatus)

1 Corneal reflex (eye blink when lightly touching the cornea
with cotton)

1 Startle reflex (motor response to a brief noise from
snapping a clipboard paper)

1 Seizures, myoclonus, myodystony

Maximum points 22

One point is awarded for inability to perform the tasks or for the lack of a tested
reflex.
doi:10.1371/journal.pone.0011746.t001
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sections were stained with 2% 2–3–5 TTC (Sigma) in normal

saline at 37uC for 30 minutes, after which sections rinsed 0.9%

saline solution for photography. TTC stained sections per animal

were photographed using digital high definition microscope

(Keyence VH-7000, Osaka, Japan). The six areas of infarction

between each adjoining slice were measured using NIH image

software, and then infarct volumes (mm3) were determined by

integrating the appropriate area with the section interval thickness.

Histological and immunohistochemical assessment
Experimental animals, two groups of 4 each (total n = 32) at 3,

5, 7 and 14 days after MCAO, were re-anesthetized and rat organs

were fixed by transcardial perfusion with saline, followed by 4%

paraformaldehyde (PFA) in 0.1mol/L phosphate buffer (PB,

pH 7.4) and 10% sucrose. The rat tissues (brain, liver, spleen,

lung, kidney) were immersed in 20% sucrose for 48 hours and then

were embedded in TissueTek OCT compound and frozen on dry

ice. The brain tissues were cut equally spaced (thickness 2 mm)

coronal blocks, followed by sections sliced into 10 mm in a cryostat.

To investigate the histological changes in the brain tissue,

haematixiine and eosine (H.E.) staining was performed.

For immunostaining, brain sections were incubated with mouse

monoclonal antibody specific to Human nuclei (1:100; MAB1281,

Chemicon, Temecula, CA) to evaluate the migration of trans-

planted HMO6 cells. Double immunohistochemical staining was

performed to identify glial cells accumulation with polyclonal

rabbit anti-GFAP antibody (1:100; Dako, Carpinteria, CA) and

monoclonal mouse anti - ED1 antibody (1:100; Serotec, Oxford,

UK). Sections were then incubated for 1 hour at room

temperature with secondary antibodies, Texas red- conjugated

goat anti-rabbit IgG (1:100,Chemicon) and FITC-conjugated goat

anti-mouse JgG (1:100; Chemicon). All sections were stained with

Hoechst 33258 (10 mg/ml, Sigma) as a nuclei staining. After

staining, sections were mounted with ultramount (Dako) and

visualized or photographed with fluorescence microscopy system

(Nikon, ECLIPSE, E600, Tokyo, Japan). ED1 is specific for

mouse/rat microglia/macrophages and not for human.

The terminal deoxynucleotidyl transferase (TdT) - mediated

dUTP-biotin nick – end labeling (TUNEL) method was used to

assess apoptotic cell death. Brain sections were stained by In Situ

Cell Death Detection Kit (Roche Diagnostics, Mannheim,

Germany). After quenching endogenous peroxidase activity with

0.3% H2 O2 in PBS, slides was placed in TdT. A dark brown color

indicating DNA breaks developed after incubation with 3, 39-

diaminobenzidine (DAB, Vector Lab, Burlingame, CA).

Laser capture microdissection (LCM)
Tissue preparation and staining: The animals, two groups of 6

each (total n = 12) at 5 days after MCAO, were deeply

anesthetized, decapitated and the brains were quickly removed.

The brain sections were snap frozen with liquid nitrogen and

stored at 280uC for further use. Ten-mm brain cryosections were

prepared, fixed in 75% ethanol for 30s. For detection of HMO6

cells, sections were incubated with anti- human nuclei, for

detection of rat glial cells, incubated with, anti- GFAP and anti-

ED1 antibody for 1 hour followed by secondary antibody for 30

minutes. During immunostaining, RNase inhibitor was added to

all reagents, and aqueous reagents were prepared in with

diethylpyrocarbonate (DEPC) treated distilled water.

Immunostaining-positive cells for human nuclei, GFAP or

ED1 were respectively isolated from ischemic hemispheres of

MCA occluded rats by LCM system (Arcturus, Mountain View,

CA), which was equipped with an inverted base microscope

system (Olympus, Tokyo, Japan). Microdissections of rat brain

sections were performed under 10x objective and target cells

were collected from each rat brain on an LCM Cap (CapSure

Macro Caps, Arcturus; Mountain View, CA). Following cells

collection, total RNA was isolated with the PicoPure RNA

isolation kit (Arcturus; CA) according to the manufacturer’s

instructions.

Real time PCR
Total RNA of HMO6 cell culture was isolated from confluent

HMO6 using RNA STAT reagent (TELTEST) according to the

manufacturer’s instructions. Briefly, confluent HMO6 cells of 60-

mm cell culture dishes were lysed and extracted with chloroform,

and the aqueous phase was transferred to a fresh tube. Total RNA

was precipitated with 2-propanol, washed once with 70% ethanol,

and re-suspended in a suitable volume of DEPC-treated water.

The total RNA concentration was determined by measuring the

OD values of the samples at 260 nm.

To prepare first strand cDNA, mRNA was reserve transcribed

with reverse transcriptase enzyme (ReverTraAce, Toyobo, Osaka,

Japan) in a total 20 ml reaction mixture. To analyze mRNA level,

real time PCR was performed with SYBR PCR Master Mix

(power SYBR green, Applied Biosystems, CA) and an ABI Prism

7000 Sequence Detector system (Applied Biosystems, CA). The list

of primer sequences is provided in Table 2. After normalization

with GAPDH mRNA, the target gene mRNA level in a sample

was quantified by relative quantification method.

Statistical Analysis
Data were expressed as mean 6 standard error of the mean

(S.E.M). Experimental data were analyzed by analysis of variance

and means with ANOVA followed by Fisher’s PLSD test for the

difference between means. A values of P,0.05 and P,0.01 were

considered statistically significant.

Results

Neurological functional recovery
We investigated whether transplanted human microglial cell,

HMO6 improves neurological deficits after MCAO in rat. The

mNSS scores at 1 and 4 days were not significant different

between control group and HMO6 transplantation group.

However, neurological functional recovery was significantly found

at 7, 10 and 14 days after MCAO in the HMO6 transplantation

group compared with the control group (Figure 1A).

Measurement of Infarct volume and histological changes
Histological analysis of ischemic lesions indicated that at 7 days

after MCAO the mean infarct volume was 163617 mm3 in the

control group and 91616 mm3 in the HMO6 transplanted group

(44% reduction in infarct volume), and at 14 days after MCAO

the infarct volume was 214629 mm3 in the control and 127620

mm3 in the HMO6 group (41% reduction in infarct volume)

(Figure 1B). There were significant reductions in infarct volumes

following transplantation of HMO6 human microglia in MCAO

animals at 7 and 14 days after MCAO. Tissue damage with

disarrangement and vacuoles and cell infiltration in infarct core

and penumbra were higher in control groups compared to those

in transplanted groups during the time course (Figure 1C and

1D).

Apoptotic cells
Number of apoptotic cells was counted in the ischemic core and

the penumbra at 3, 5, 7 and 14 days after MCAO in brain sections

processed for TUNEL staining. Number of apoptotic cells at 3 and
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5 days in the core (Figure 2E) and the ischemic penumbra

(Figure 2J) were not significant different between the HMO6

transplantation group and the control group.

At 7 days after MCAO, the number of apoptotic cells within the

ischemic core was 70.965.9 cells/field in the control group and

30.467.6 cells/field in the HMO6 transplantation group respec-

tively (41% reduction in number of apoptotic cells) (Figure 2E). At

14 days after MCAO, the number of apoptotic cells within the

ischemic core was 45.766.6 in the control (Figure 2F) and

8.261.4 in the HMO6 group respectively (82% reduction in

number of apoptotic cells) (Figure 2H and 2E).

At 7 days after MCAO, the number of apoptotic cells within the

penumbra was 59.167.9 cells/field in the control group and

14.763.1 cells/field in the HMO6 transplantation group respec-

tively (75% reduction in number of apoptotic cells) (Figure 2J). At

14 days after MCAO, the number of apoptotic cells within the

penumbra was 20.962.1 in the control (Figure 2G) and 1.960.4

in the HMO6 group respectively (91% reduction in number of

apoptotic cells) (Figure 2I and 2J).

Migration of HMO6 human microglial cells
At 3, 5, 7 and 14 days after MCAO, migration of HMO6 cells

into brain was examined by human nuclei (HuN) staining. In the

brain, HuN-positive HMO6 cells were found in survive infarct

core and penumbra in the ipsilateral hemisphere, while in the

contralateral hemisphere HMO6 cells were not found. A peak of

HMO6 cell migration was found at 5 days after MCAO (Figure 3A

and 3B) as compared with 3, 7 and 14 days (Figure 3C and 3D).

Migration declined after the 7 day after MCAO and only a small

number of HMO6 cells was detected at 14 days after MCAO

(Figure 3E). HMO6 cells were also transplanted in healthy rats to

find out whether they enter into normal brains. However, HuN-

positive cells were detected only in optic chiasma.

Since HMO6 cells were transplanted intravenously, migration

and localization of HMO6 cells in other parts of body were

determined. The presence of HuN-positive cells was found in the

spleen, lung, liver and kidney at 3, 5, 7 and 14 days. HMO6 cell

migration in the spleen was significantly higher at 5 days (Figure 3F

and 3J) as compared with 7 and 14 days (Figure 3H and 3J).

Table 2. Primers for real time PCR.

Gene Sense Antisense
Gene bank ACC
number

human GDNF TTTAGGTACTGCAGCGGCTCTT TCACTCACCAGCCTTCTATTTCTG NM000514

human BDNF ATTACAATCAGATGGGCCACATG AGGGAGAAAGCAGAAACAAGACA M61176

human b-FGF CGACCCTCACATCAAGCTACA AACGGTTAGCACACACTCCTT NM002006

human VEGF GGCCAGCACATAGGAGAGATG AGGCCCACAGGGATTTTCTT AF022375

human BMP-7 CGTGGAACATGACAAGGAATTC CGTGACAGCTTCCCCTTCTG NM001719

human CNTF TGTGCGTGCTTGCATGTG ACCCTGAAGTGGAAGGACGTT NM000614

human IL-1b TTACAGTGGCAATGAGGATGA TGTAGTGGTGGTCGGAGATT NM000576

human IL-4 AACAGCCTCACAGAGCAGAAGAC GTGTTCTTGGAGGCAGCAAAG NM000589

human IL-5 TGGAGCTGCCTACGTGTATGC GCAGTGCCAAGGTCTCTTTCAC NM000879

human IL-6 CCTGAGAAAGGAGACATGTAACAAGA TGGAAGGTTCAGGTTGTTTTCTG M54894

human IL-8 CTGGCCGTGGCTCTCTTG TTAGCACTCCTTGGCAAAACTG NM000584

human IFN-g GTCCAACGCAAAGCAATACATG CCTTTTTCGCTTCCCTGTTTTAG NM000619

hu Fractalkine CATCACGTGCAGCAAGATGAC CGCATGATGCCTGGTTCTG NM134455

human MCP-1 GACCATTGTGGCCAAGGAGAT TGTCCAGGTGGTCCATGGA NM002982

hum GAPDH CCACATCGCTCAGACACCAT TGACCAGGCGCCCAATA M33197

rat GDNF CTCGAAGTAGAAGGCTAACA AGCGGAATGCTTTCTTAGG NM017017

rat BDNF TGTCCGAGGTGGTAGTACTTCATC CATGCAACCGAAGTATGAAATAACC NM012842

rat b-FGF GAGAGAGGAGTTGTGTCCATCAAG GCAGCCGTCCATCTTCCTT X61697

rat VEGF GAGGAAAGGGAAAGGGTCAAAA CACAGTGAACGCTCCAGGATT AF062644

rat IL-1b CACAGCAGCATCTCGACAAGA CACGGGCAAGACATAGGTAGCT NM31512

rat IL-4 CAGGGTGCTTCGCAAATTTTAC ACCGAGAACCCCAGACTTGTT NM_201270

rat IL-6 TCAACTCCATCTGCCCTTCAG AAGGCAACTGGCTGGAAGTCT M26744

rat IL-10 AGAAGCTGAAGACCCTCTGGATAC GCTCCACTGCCTTGCTTTTATT L02926

rat TNF-a CAGCCGATTTGCCACTTCATA TCCTTAGGGCAAGGGCTCTT X66539

rat TGF-b CGTGGAAATCAATGGGATCAG CAGGAAGGGTCGGTTCATGT NM021578

rat IL-8 GAAGATAGATTGCACCGA CATAGCCTCTCACACATTTC

rat MCP-1 CCAGAAACCAGCCAACTCTCA AAGCGTGACAGAGACCTGCAT NM031530

rat MIP-1a CATTCCTGCCACCTGCAAAT CAAGTGAAGAGTCCCTGGATGTG NM013025

rat iNOS AAGAACTCGGGCATACCTTCAG GTCATGAGCAAAGGCACAGAAC NM012611

rat GAPDH CAGCCTCGTCTCATAGACAAGATG AAGGCAGCCCTGGTAACCA AF106860

doi:10.1371/journal.pone.0011746.t002
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Number of HuN-positive cells was significantly higher at 3 days in

the lung as compared with 7 days and the number of cells was

much lower oncompared with 7 and 14 days (Figure 3J).

Effect of HMO6 transplantation on glial cell accumulation
Effect of HMO6 transplantation on glial reaction in the

ischemic core and the penumbra region was investigated with

ED1 and GFAP immunostaining. ED1-positive cells, representing

host rat microglia/macrophages, were found in the ischemic core

to penumbra of the ipsilateral hemisphere. Number of ED1-

positive cells was smaller in the penumbra as compared with the

ischemic core (Figure 4I and 4J). In the ischemic core, number of

round-shaped ED1 positive cells at 7 and 14 days after MCAO

was significantly decreased in the HMO6 transplantation group

as compared with control group. At 7 days after MCAO, the

number of ED1-positive cells was 90.466.4 cells/field in the

control group (Figure 4A) and 55.261.7 cells/field in the HMO6

transplantation group respectively (39% reduction in number of

apoptotic cells) (Figure 4C). At 14 days after MCAO, the number

of ED1-positive cells was 70.965.9 cells/field in the control

(Figure 4B) and 35.161.9 cells/field in the HMO6 group

respectively (50% reduction in number of apoptotic cells)

(Figure 4D).

In the penumbra at 7 days after MCAO, number of ED1-

positive cells was 68.264.4 cells/field in the control group

(Figure 4K) and 29.164.7 cells/field in the HMO6 transplantation

group respectively (57% reduction in number of ED1 cells)

(Figure 4K). At 14 days after MCAO, the number of ED1-positive

cells was 59.162.5 cells/field in the control (Figure 4K) and

23.761.1 cells/field in the HMO6 group respectively (60%

reduction in number of ED1 cells) (Figure 4K).

At 7 days after MCAO, number of GFAP-positive cells was

84.364.5 cells/field in the control group (Figure 4E and 4L) and

48.261.5 cells/field in the HMO6 transplantation group respec-

tively (43% reduction in number of GFAP cells) (Figure 4G and

4L). At 14 days after MCAO, the number of GFAP-positive cells

was 70.167.1 cells/field in the control (Figure 4F and 4L) and

30.261.7 cells/field in the HMO group respectively (57%

reduction in number of GFAP cells) (Figure 4H and 4L).

Gene expression of neurotrophic factors, cytokines and
chemokines in HMO6 cells in culture and brain tissue

Gene expression of neurotrophic factors, cytokines and

chemokines was determined in HMO6 cells in culture and the

brain by real time-PCR (Figure 5). The results showed that

expression of b-FGF and IL-8 in HMO6 cells were high, while

expression of GDNF, BDNF, CNTF, IL-5, IL-6, IFN-c, fractalk-

ine and MCP-1 was low and expression of VEGF, BMP-7, IL-1b,

IL-4 in HMO6 cells was not detected and under un-stimulated in

vitro culture conditions.

To study the actual gene expression in transplanted HMO6

cells in the brain, HMO6 cells from brain tissue at 5 days after

MCAO were isolated by the use of with LCM and gene expression

of neurotrophic factors, cytokines and chemokines was measured

by real time-PCR. Expressions of GDNF, BDNF, VEGF, BMP-7,

CNTF, IL-1b, IL-4, IL-5, IFN-c, fractalkine and MCP-1 were up-

regulated in HMO6 cells of brain tissue as compared with those in

culture. On the other hand, expressions of b-FGF, IL-6 and IL-8

were down-regulated in HMO6 cells of brain tissue compared

with HMO6 cell culture.

Gene expression of neurotrophic factors, cytokines and
chemokines in rat microglia and astrocytes of brain tissue

To determine the effect of the HMO6 transplantation on host

brain microglia and astrocyte, gene expression of neurotrophic

factors, cytokines and chemokines was investigated in rat glial cells

of the penumbra from brain tissue with the LCM at 5 days after

MCAO by real-time PCR.

There were no significant differences between transplanted

group and control group in expression of neurotrophic factors,

Figure 1. Effect of HMO6 transplantation on neurological
function, infarct volume and tissue damage. (A) Neurological
function of the experimental groups after MCAO was determined by
the modified Neurological Severity Scores (mNSS). The mNSS summa-
rizes the results of motor, sensory, reflex, and balance tests.
Transplantation of HMO6 human microglial cells enhanced neurological
functional recovery at 7, 10 and 14 days after MCAO. (B) Infarct volume
was calculated at 7 and 14 days after MCAO in the HMO6
transplantation and control groups based on TTC staining and NIH
image software. Data of mNSS and infarct volume is expressed as the
mean 6 SEM. *P,0.05, ** P,0.01, as compared with the control group.
H.E. staining of the penumbra lesion in a control rat (C) and a
transplanted rat (D) at 7 days after MCAO. Bar = 100 mm.
doi:10.1371/journal.pone.0011746.g001
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cytokines and chemokines in rat microglia/macrophages

(Figure 6A). The expressions of GDNF and VEGF in astrocytes

of penumbra were significantly up-regulated in the transplanta-

tion group as compared with the control group. Expressions of

BDNF, IL-1b, IL-4, IL-6, TNF-a, TGF-b, IL-8, MCP-1 and

MIP-1a were higher in astrocytes of transplanted brain than

those in astrocytes of control brain, though not significantly

different (Figure 6B).

Discussion

The major findings of the present study are that intravenous

transplantation of human microglial cells significantly improved

the ischemia-induced functional and morphological changes in the

ipsilateral hemisphere after t-MCAO.

Previous studies have reported that intravenous transplantation

of neural stem cells (NSCs), MSCs and human umbilical cord

Figure 2. Effect of HMO6 transplantation on apoptosis. TUNEL positive cells were shown in the HMO6 transplantation (C, D, H and I) and
control group (A, B, F and G) at 3 (A-D) and 14 (F-I) days after MCAO. Number of apoptotic cells was determined in the infarct core (E) and the
penumbra (J). Number of apoptotic cells is expressed as the mean 6 SEM. Bar = 20 mm, *P,0.05, ** P,0.01, as compared with the control group.
doi:10.1371/journal.pone.0011746.g002

Figure 3. Distribution of human nuclei positive cells after HMO6 cell transplantation. Human nuclei (HuN, FITC) positive cells were
detected by fluorescence microscope at 5 (A and B) and 14 (C and D) days after MCAO in the infarct core (A and C) and the penumbra (B and D) of the
brain. Histogram (E) shows the number of HuN-positive cells in infarct core (empty bars) and penumbra (solid bars), counted at X400 magnification.
HuN-positive cells in internal organs were shown at 5 (F and G) and 7 (H and I) days in the spleen (F and H) and lung (G and I). Histogram (J) shows the
number of HuN-positive cells in spleen, liver, kidney and lung, counted at X400 magnification in the time course after MCAO. Number of HuN-positive
cells is expressed as the mean 6 SEM. Bar = 20 mm, * P,0.05 vs. infarct core at 3 and 14 days, ** P,0.01. vs. penumbra at 3, 7 and 14 days. # P,0.05
vs. spleen at 7 and 14 days, ## P,0.05 vs. lung at 7 and 14 days.
doi:10.1371/journal.pone.0011746.g003
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blood cells (HUCBC) significantly improves neurological deficits

after experimental stroke [15,17,21,22], which raised the possibil-

ity of cell therapy for ischemic stroke. Most of stem cells/precursor

cells are believed to enter into brain through disrupted blood-brain

barrier and migrate to the ipsilateral hemisphere, especially to the

ischemic border zone expressed as penumbra [15,23], which is

also supported by our data that HMO6 cells transplanted in

healthy rats did not enter the brains except optic chiasma. HMO6

human microglial cells transplanted in MCAO rats also were

found in penumbra, however, the cell density was higher along

infarct core. As expression of cytokines and chemokines are

upregulated in the penumbra, transplanted microglial cells

carrying respective receptors are thought to be chemo-attracted

and recruited and migrate along the infarct core [9,24]. Tissue

damage in the infarct core and penumbra was not induced by

HMO cell transplantation and migration, rather an improvement

of histological tissue architecture was observed. On the contrary,

migrated HMO6 cells almost disappeared from the brain 14 d

after MCAO. Fate of HMO6 cells localized in the lesion should be

determined in the further study.

In the rodent MCAO studies, TUNEL-positive cells in the

ischemic lesion peaked at about one week after MCAO and were

continuously seen for several weeks [25,26]. Previous reports have

indicated that systemically transplanted stem cells reach the

ischemic lesion and have a neuroprotective effect to reduce

apoptotic neuronal cell death in host neurons and that reduction of

stroke volume began after the event. Neuroprotective effect to

reduce the number of apoptotic cells was found at 7days after

MCAO in the present study and then, infarct volume of both PBS

control and HMO transplantation groups continued to increase

up to two weeks as seen in previous studies [27,28]. The reason

remains elusive, but various factors including apoptotic signal

pathway, necrosis and repair process might affect it. Transplan-

tation of bone marrow stromal cells and GDNF-gene modified

NSCs reduced the number of TUNEL-positive cells, caspase-3-

positive cells and also neuronal degeneration from the acute phase

to several months after MCAO [25,29,30], which was consistent

with microglial transplantation in this study.

Brain injury following focal cerebral ischemia triggers activation

of microglia and astrogliosis and induction of released free

Figure 4. ED1 and GFAP positive cells in the penumbra. Immunohistochemical reactions to ED1 (A-D: FITC) and GFAP (E-H: Texas red) were
shown at 7 (A, C, E and G) and 14 (B, D, F and H) days after MCAO. Double staining with anti-ED1 and anti-GFAP antibodies was detected in the
penumbra of the HMO6 transplantation group (J) and control group (I) at 7 days after MCAO. Histograms show the density of ED1-positive microglia/
macrophages (K) and GFAP-positive astrocytes (L) in the HMO6 transplantation and control groups of 7 and 14 days after MCAO. Number of positive
cells is expressed as the mean 6 SEM. Bar = 20 mm, ** P,0.01 compared to the control group.
doi:10.1371/journal.pone.0011746.g004
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radicals, inflammatory cytokines and proteases [31,32,33,34].The

activated microglia releasing reactive oxygen species, nitric oxide,

chemokines and inflammatory cytokines[35,36] leading to accu-

mulation and activation of more blood born and resident immune

cells. Moreover, these microglial inflammatory products are highly

neurotoxic. The study in cerebral ischemic model demonstrated

that the application of immunosuppressant (FK506) reduced

delayed neuronal death by glial/microglial inhibition [37]. In the

present study, significantly fewer number of host rat ED1-positive

microglia/macrophage was detected in the infarct core and

penumbra in HMO6 human microglia-transplanted brains. It

appears that transplantation of HMO6 human microglia in the

ischemic brain induces reduction in host glial activation that leads

to abated neurotoxicity. In addition, transplanted HMO6 human

microglia showed increase expression of several neurotrophic

factors and Th2 type cytokines, which might be involved in glial

inhibition and also protection of host neurons. In the transplanted

brain, the number of GFAP-positive astrocytes in the penumbra

was lower indicating curtailed astrogliosis in the lesion site.

Recently, it is proposed that astrocytes contribute to delayed

neuronal death by release of cytotoxic cytokines after ischemia

[38,39]. The present results of abated astrogliosis and the

reduction in the number of TUNEL-positive cells in the penumbra

are in good agreement with these studies.

In the HMO6-transplanted group, reduced infarct volume and

reduction in the number of glial cells in penumbra were observed

from 7 days after MCAO and onward. It appears that the

transplanted HMO6 human microglial cells attenuate glial

reaction of host glial cells, which leads to reduce infarct volume,

by increased expression of neurotrophic factors, cytokines and

chemokines. It is interesting to note that several neurotrophic

factors such as GDNF, BDNF, BMP-7, CNTF and VEGF were

upregulated in the transplanted HMO6 human microglial cells as

compared to HMO6 cells in culture. Increased expression of these

trophic factors in transplanted HMO6 cells might have resulted

from inducing signals at the microenvironment of the ischemic

brain. In the present results, anti-inflammatory cytokines such as

IL-4 and IL-5 were also increased although IL-1b, a proin-

flammatory cytokine and MCP-1, a chemokine, were also

increased. These results indicate that the gene expression in the

transplanted HMO6 human microglial cells was dramatically

changed in the microenvironment of ischemic brain lesion site.

Previous reports demonstrated that transplantation of gene-

modified human MSCs overepressing GDNF, BDNF, or VEGF

after cerebral ischemia reduce infarct volume and ameliorate

neurological deficits [40,41,42]. High levels of GDNF, BDNF and

VEGF were found in transplanted HMO6 cells in ischemic lesion

site and responsible for restration of behavior and neuroprotec-

tion. BMP-7, a trophic factor expressed by HMO6 cells, is a

member of transforming growth factor-b superfamily, the

receptors are found in neuron and astrocytes [43] and known to

promote neuroregenerative effect in stroke rats [44]. Since BMP7

was highly expressed in HMO6 cells in penumbra, it is one of the

neuroprotective factors secreted by the transplanted HMO6

human microglial cells in the ischemic brain.

Previous studies have demonstrated that the brain transplanta-

tion of human neural stem cells overexpressing VEGF or GDNF

in cerebral hemorrhage stroke animal models promoted functional

recovery and neuronal protection [45,46]. The transplantation of

bone marrow stromal cells also promoted expression of VEGF in

host brain, and enhance angiogenesis and functional repair in the

ischemia brain [47]. The present study showed that the

transplantation of HMO6 cells in the ischemic brain induced a

significant up-regulation in expression of GDNF and VEGF in

Figure 5. Gene expression in HMO6 cell in vitro and in vivo. Gene
expression of neurotrophic factors, cytokines and chemokines in the
HMO6 cell of culture (open bars) and brain tissue (solid bars) was
analyzed by quantitative real-time PCR. Glyceraldehyde-3- phosphate
dehydrogenase (GAPDH) was used as a reaction standard. Gene
expression was determined in culture HMO6 cells under normal
condition. HMO6 cells of brain tissue were isolated from infarct core
and penumbra at 5 days after MCAO by laser capture microdissection
(LCM). Values represent mean 6 SEM from three experiments.
doi:10.1371/journal.pone.0011746.g005

Figure 6. Gene expression in rat glial cells. Gene expression of
neurotrophic factors, cytokines and chemokines in rat ED1-positive
microglia/macrophages (A) and GFAP-positive astrocytes (B) was
analyzed by quantitative real-time PCR. ED1- and GFAP-positive cells
were isolated from penumbra of the HMO6 transplantation and control
groups at 5 days after MCAO by laser capture microdissection.
Glyceraldehyde-3- phosphate dehydrogenase (GAPDH) was used as a
reaction standard. Expressional levels of each factor were calculated in
the transplantation and control groups. Values represent mean 6 SEM
from three experiments. **P,0.01 compared to the control group.
doi:10.1371/journal.pone.0011746.g006

Microglial Transplant in Brain

PLoS ONE | www.plosone.org 8 July 2010 | Volume 5 | Issue 7 | e11746



ischemic penumbra. The upregulated GDNF and VEGF in the rat

brain might be one of cause for neuronal recovery because those

factors can support neuronal survival and attenuate neuronal

apoptotic death [48,49].

In conclusion, the present study demonstrated that the

intravenously transplanted human microglia migrate to ischemic

area, and provide neuroprotection via producing neurotrophic

factors and cytokines and reducing endogenous glial response.

Selective accumulation of transplanted microglia in lesion core

and penumbral area indicate that that microglia could be an

effective vehicle for transfer of therapeutic genes for gene therapy

in neurological diseases including cerebral ischemic disease.
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