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Room-temperature near-infrared 
up-conversion lasing in single-
crystal Er-Y chloride silicate 
nanowires
Rui Ye, Chao Xu, Xingjun Wang, Jishi Cui & Zhiping Zhou

Near-infrared up-conversion lasing in erbium(Er)-yttrium(Y) chloride silicate nanowires was 
demonstrated when pumped by 1476 nm laser at room temperature. The emission covers a very wide 
wavelength range (400–1000 nm). A clear threshold for 985 nm peak was observed at a launched 
average pump power of approximately 7 mW. Above threshold, the intensity increases linearly when 
turning up the pump power. The full width at half maximum at 985 nm decreases from 1.25 nm to 
0.25 nm when reducing the measurement temperature from 30 K to 7 K, which is the narrowest 
linewidth of 980 nm micro-lasers to date. Our demonstration presents a possible novel method of 
utilizing up-conversion mechanism in Er-Y nanowire to achieve tunable near-infrared laser, which 
breaks new ground in the exploration of nanoscale optoelectronic devices operating at near-infrared 
wavelength.

Near-infrared lasers are significant for optical data communication, spectroscopy and medical diagnosis. 
Semiconductor nanowires, such as InGaAs nanowires, are superior in reducing the footprint of three-dimensional 
device and efficient as high-gain material in a wide range of wavelengths, and hence are being extensively stud-
ied in the field of visible, near-infrared and ultraviolet nanowire lasers1–10. However, these lasers usually need a 
shortwave high power laser as the pump source, which have a large volume and cannot be integrated to sub-micro 
and nanometer scale. The limitation is a big hindrance to the future implement of micro-laser chip. Er3+ ions, 
however, can absorb infrared photons in 1480 nm–1580 nm and emit visible band (400 nm–700 nm) or near infra-
red (980 nm) photon through up-conversion process at 4I13/2 level of Er3+ 11. In the recent years, the remarkable 
up-conversion (UC) phenomenon of Er3+ has been studied and applied in lasers12, solar cells13, analytical sensors, 
in vivo imaging14 and so on. However, the low UC luminescence efficiency is still one of the main limiting fac-
tors. To obtain a higher UC luminescence efficiency, the distance between the Er3+ ions needs to be very short. 
Usually, the doping concentration of Er3+ ions is very low because of the constraint of solid concentrations in 
conventional Er3+ doped silicon or silica materials (1019 cm−3). Therefore, erbium silicates, due to the high density 
of Er ions(~1022 cm−3), 100 times higher than that of other Er3+ doped materials, have attracted much interest 
recently14–19. The erbium silicates thin films have been demonstrated with a large propagation loss due to the lat-
tice defects scattering, surface and side roughness induced during the micro-fabrication process17, which limits 
the further increase of UC efficiency. To reduce the propagation loss, Pan et al. fabricated the erbium silicates 
nanowires with a low propagation loss at 1530 nm due to high-quality single crystal nature18,19. However, UC 
luminescence properties of these erbium silicates nanowires are not yet studied up to now.

In this letter, we demonstrated the near-infrared up-conversion lasing in erbium(Er)-yttrium(Y) chloride 
silicate nanowires when pumped by 1476 nm laser at room temperature. The UC luminescence was observed 
with a wide wavelength range at 400–1000 nm. The 985 nm band emission due to the cooperative up-conversion 
of two 1480 nm photons, shows a much higher UC efficiency and has separated sharp emission lines with a full 
width at half maximum(FWHM) of only 0.25 nm under 77 K. A clear threshold for 985 nm peak was observed 
at a launched average pump power of approximately 7 mW at room temperature. Below threshold, the intensity 
increases exponentially with the pump power; Above threshold, it increases linearly when turning up the pump 
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power. And saturation has not been observed with the maximum pump power of 115 mW. Yttrium ions(Y3+) 
were further added to the nanowires to adjust the distance between Er3+ ions and optimize the optical properties. 
The properties of Er/Y silicate nanowires indicate its lasing potential in achieving high-gain 980 nm nanowires 
optical waveguide amplifiers and lasers.

Materials and Methods
The single-crystal Er-Y chloride silicate nanowires were grown by the chemical vapor deposition method. First 
of all, ErCl3 micro beads(Alfa Aesar, 99.99%) were mixed with YCl3 micro powder (Strem Chemicals, 99.9%) and 
silicon powder(Strem Chemicals, 99.999%) according to the proportion of atomic and placed in a ceramic boat 
at the heating zone of the furnace. Afterwards, a Si substrate (100) pre-coated with dispersed Au particles was 
positioned downwind with a distances of 10 cm away from the center of tube furnace to collect the deposited Er-Y 
chloride silicate nanowires. During the process, the quartz tube was heated to 1080 °C in 40 mins and maintained 
for 180 mins with a constant N2 gas flow of 70 sccm. The temperature of the Si substrate position was approxi-
mately 650 °C. In the end, the tube furnace was cooled to room temperature naturally.

The scanning electron microscopy (SEM) images and in situ energy dispersive X-ray spectroscopy (EDS) anal-
ysis were performed using a Nova_NanoSEM430 equipped with an energy-dispersive X-ray detector. The high 
resolution transmission electron microscopy (HRTEM) images were collected by a Tecnai F20 Hi-Resolution 
transmission electron microscopy at 200 kV, equipped with a link EDS detector. X-ray diffraction (XRD) data 
were collected on the DMAX-2400 Materials Research X-ray Diffractometer. Photoluminescence (PL) was con-
ducted using a home build Near Infrared PL system based on a LABRAM HR800 Raman spectrograph. A contin-
uous wave laser at 1480 nm with a maximum power of 115 mW was focused to one port of the sample for optical 
excitation through a tapered fiber with a 3 μ m tip. The PL signal was collected through the objective and finally 
detected by a liquid nitrogen cooled CCD detector, shown in Fig. 1. The low temperature PL measurement was 
carried out in a cryostat (Janis ST500).

Results and Discussion
Figure 2a shows the SEM image of the as-grown Er-Y chloride silicate nanowires. The wires with varied diameters 
(200 nm–900 nm) and tens of micrometers length in high yield were deposited on the Si substrate. The inset of 
Fig. 2a shows an amplified SEM image of a representative nanowire with a diameter of about 650 nm. The single 
nanowire has a uniform diameter and a highly smooth surface, which can help to decrease the scattering light into 
the air at the surface. Figure 2b shows the HRTEM image taken at the surface of the sample. A large dark-bright 
contrast variation between the middle and outer sections indicates that the wire consists of the different masses 
materials. The TEM-EDS spectra collected from the darker and lighter interior regions are shown in the inset of 
Fig. 2b, respectively. The spectra of the core section shows peaks of elements Er, O, Cl, Si and Cu(from the copper 
grid), while that of the shell section only shows peaks of elements O, Si and Cu. It indicates that the investigated 
nanowire body consists of a highly crystalline core covered by a 10 nm-thick amorphous silicon oxide shell. The 
core has a lattice spacing of 0.58 nm, consistent with the {060} inter-planar distance of orthorhombic structure 
of Er3Cl(SiO4)2 (ECS). Figure 2c shows the XRD patterns of the Er chloride silicate nanowires and Er-Y chloride 
silicate nanowires, respectively. The signal collected from the nanowires is tiny and in the same order of magni-
tude to the noise, so the curves encountered a manual smooth processing to help detect characteristic peaks. The 
peaks marked with triangle and diamond markers are well indexed with an orthorhombic crystal ECS (JCPDS 
card: No. 00-042-0365). The Er3−xYxCl(SiO4)2 (EYCS) samples synthesized from the different amount of ErCl3 

Figure 1. The schematic diagram of PL measurement system. 
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and YCl3 presented similar XRD features with that of ECS. The small difference in size between Er3+ and Y3+ions 
could result in a small change of the lattice constant.

Figure 3a shows the measured nanowire’s UC spectra at 400–1050 nm when pumped by 1480 nm laser at a 
power of 115 mW and its optical image (inset). The center wavelengths of the peaks are shown below the curves. 
The linewidths for 407 nm, 547 nm, 657 nm, 855 nm and 979 nm are 0.5 nm, 1.25 nm, 1.25 nm, 1 nm and 1.25 nm, 
respectively. The measured nanowire in this experiment has a diameter of 900 nm and a length of 20 μ m. The 
distance between fiber tip and nanowire port was adjusted to get the best coupling efficiency. Bright green light 
spreading over the sample was observed from the image. However, as shown in the spectra of Fig. 3a, the dom-
inant UC emission arises at 980 nm, which has intensity more 300 times than that of green UC. The 980 nm UC 
emission arises from the two photon cooperation up-conversion (CUC), while the green UC emission arises 
from the cooperation of three photons and more, which is more complicated and hence much harder to happen. 
Figure 3b shows the Er3+ energy levels involved in UC emission. At 1480 nm, pumping directly excites the upper 
sublevels of the 4I13/2 metastable manifold (the excited state is broadened into closely spaced sublevels due to Stark 
splitting), with ground to excited state transition (4I15/2 →  4I13/2 ), corresponding to both a 1520 nm–1570 nm 
signal band and 1460 nm–1500 nm pump band. Figure 3b(i) depicts the first-order CUC process, which explains 
850 nm and 980 nm light emission. Though both 880 nm and 980 nm band emission come from the first-order 
CUC, but the lifetime of photons at 4I9/2 is much shorter than that of 4I11/2, so the photons get through a rapid 
relaxation and accumulate at 4I11/2 in abundance. So the intensity of 980 nm emission is more 18 times than that 
of 850 nm emission. Then photons at 4I9/2 state encounter another CUC process and emit 410 nm light (blue), 
550 nm light (green), 660 nm light (red), shown in Fig. 3b(ii). Increasing the pump power gradually, the intensity 
of 985 nm and 860 nm light grows rapidly. After the pump power has been increased to about 25 mW, the light at 
the short wavelength band arises while the increasing rate of 860 nm and 985 nm remains the same. This further 
demonstrates that the emission at visible band comes from the second-order CUC process of photons at 4I9/2 state.

Figure 4a shows the spectra of the nanowire around 980 nm pumped by 1480 nm laser on 1 mW, 6 mW, 
15 mW, respectively. As previously discussed, the nanowires are highly ordered and crystalline, as a result, obvious 
multi-peaks with high signal to noise ratio in the spectra are observed even at very low pump power (1 mW). The 
FWHM of four main peaks is almost the same (~1.25 nm) and no obvious change in the value was observed when 
increasing the pump power. The similar single or multiple sharp peaks at the visible wavelengths were observed 

Figure 2. (a) SEM image of the as-grown ECS nanowires and amplified image of a representative nanowire 
(inset). (b) HRTEM image taken from the surface of the nanowire. Insets: EDS collected at the core and shell 
region. (c) XRD patterns of the ECS and EYCS nanowires.

Figure 3. (a) Up-conversion light emission spectra at visible and near infrared wavelength range. Inset: optical 
image of the pumped nanowire; (b) Erbium ion energy level involved in up-conversion emission. (i) The first-
order CUC. (ii) The second-order CUC.
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in Yang’s work, which explain them as different lasing modes20,21. The inset shows the corresponding four energy 
state model of active Er3+ ions, in which the Er3+ ions firstly absorb 1480 nm photons and accumulate at 4I9/2 state 
in abundance, which serves as the E1, then transmit to higher excited state E2 through the following UC process, 
after going through a rapid relaxation to lower excited level (E3), finally execute a downward transition to E4 
and give out the lasing. The process is similar to the traditional four energy state model for semiconductor lasers. 
The lasers using four energy state model are known for low threshold due to no electron accumulation in E4 and 
hence easy to realize population inversion condition. Similar to the traditional one, no much electrons accumu-
late at E4 and hence a low threshold is expected.

The dependence of the integrated intensity on the pump power at different wavelengths is presented in Fig. 4b. 
All these curves share the same tendency. A clear threshold for 985 nm peak was observed at a launched average 
pump power of approximately 7 mW, shown in left inset. Below threshold, only amplified spontaneous emission 
is to be seen, which increases exponentially with the pump power. Above threshold, the output power increases 
linearly with the pump power. In our experiment, the saturation of the lasing power has not yet been observed. 
For very high pump powers, the laser power meets the maximum detection power limitation. However, in view of 
the curves for 860 nm, 836 nm, and 663 nm, potentials for further large augment are indicated and saturation has 
not been observed at the maximum measuring pump power, which indicates that no obvious thermal damage was 
induced in the nanowire so far. The right inset presents nonlinear response of laser output power with increasing 
pump power plotted on a double-log scale, showing threshold region as a ‘kink’ between the two linear regimes of 
spontaneous emission and lasing. The grey area is the region of amplified spontaneous emission. The good lasing 
properties can be attributed to the existence of nanowire cavity. The light is first pumped at the port without gold, 
then propagates and gets reflected in the nanowire, after several circles of propagation and mode-selection, finally 
gets out from the same port. The refractive index difference (between gain material Er-Y Silicate (n =  1.8) and 
air (n =  1) ) and the wire-like geometry enable strong two-dimensional confinement of photonic modes guided 
along the nanowire axis, and the end facets (one port with gold) provide superb optical feedback for these guided 
modes.

However, due to the thermal effect in the nanowire, the four main peaks in the 980 nm spectra are not com-
pletely separated from each other and the spectrum around the peaks increases at the same rate as the pump 
power. To further analyze the UC emission properties and exclude the influence of the thermal effect, we retest 
the spectrum property in the same nanowire under 77 K (liquid nitrogen). Figure 5 presents the spectra of 980 nm 
band at different measurement temperature of 80 K, 140 K, 180 K pumped by space coupling at a maximum 
pump power of 225 μ W. It is noted that the FWHM of the peak around 979.1 nm has an ultra-narrow value of 
0.25 nm. The inset of Fig. 5 shows the intensity and linewidth variation with the increase of the temperature. The 
intensity reaches its highest value at 77 K and then keeps decreasing when further increasing the temperature 
to 180 K. The peaks are finally overwhelmed by the background due to the limitation of the maximum pump 
power. The value of the linewidth keeps stable between 0.25–0.33 nm, indicating the crystal lattice constant did 
not change. Combined with the results measured at room temperature, a narrow-linewidth 980 nm lasing with 
1000-times-higher intensity is expected when the nanowire can be pumped by 110 mW or more at 77 K.

The proportion of the raw material (ErCl3 and YCl3 micro-powder) was changed to get the different ErxY3−x 
Cl(SiO4)2 nanowires with x =  3, 1.5, 0.6, 0.4, in order to further analyze the role of Y3+ in reducing the concen-
tration quenching. A blue shift of the emission wavelength was observed when more Y3+ ions were doped into 
the Er silicate. The wavelength of the strongest peak varies more than 10 nm (from 984.4 nm to 973.0 nm), which 
can be mainly attributed to two factors. Firstly, a slight increase in lattice constant occurred when Y3+ substitute 
a portion of Er3+ in the lattice (the lattice constant of Y is 0.90 Å and that of Er is 0.88 Å). Secondly, the distance 
between Er3+ ions is enlarged by adding Y in the silicate, so the band bending due to the interaction of the dif-
ferent Er3+ ions is reduced. It is also possible that the slight difference in geometric dimensioning of the different 
nanowires measured would have an influence on the peak wavelength, which may be demonstrated in future 

Figure 4. (a) Spectra at 950–1035 nm band under different pump power and the corresponding four energy 
state model (inset). (b) The dependence of the integrated intensity on the pump power; (i) Magnified view 
around the threshold point. (ii) Nonlinear response of laser output power with increasing pump power.
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works. A slight variation was observed in the intensity ratio between different peaks when increasing the pump 
intensity, which is due to the band gap renormalization. The variation of the peak wavelength induced by adding 
of Y3+ in the nanowires presents an available method towards the implement of tunable 980 nm LED or laser in 
the future. Moreover, when pumped at the same power, the sample(x =  1.5) showed the highest emission intensity 
at 980 nm, which indicates an optimal UC efficiency.

The low refractive index difference between EYCS (n =  1.6822–24,) and the SiO2 substrate (n =  1.4) or air 
(n =  1.0) induces a very low limiting factor and there exists large leakage loss to the substrate or air. To enhance 
the limiting factor, several ways can be adopted. For example, by embedding the EYCS nanowires into high-index 
silicon, the radiative efficiency of Er3+ in the double slot waveguides will be significantly improved25–27. Building 
an external cavity can provide light feedback, which will also help to enhance the proportion of the remaining 
light in the nanowires27–32. What’s more, in view of the high-intensity radiation over a wide wavelength range, 
there is a tremendous opportunity to achieve an effective and cheap monolithic white laser by adopting three 
parallel-placed Er-Y silicate nanowires if an additional grating or photonic crystal is etched and integrated into 
the surface of the nanowires to help separate light from blue, yellow and red band, respectively33–35. All these 
methods route towards efficient EYCS nanowires based micro-laser in the future work.

Conclusion
In conclusion, the 980 nm lasing properties of single-crystal Er-Y chloride silicate nanowires with ultra-narrow 
linewidth was demonstrated when pumped by 1476 nm laser. Well separated sharp emission lines within the visi-
ble and infrared band have a linewidth of only 0.25 nm at 77 K. A clear threshold for 985 nm peak was observed at 
a launched average pump power of approximately 7 mW. The superb linear relationship above threshold between 
emission intensity and pump power were presented. A two-order CUC process and a four energy state model was 
proposed and demonstrated to explain 980 nm up-conversion lasing mechanism. The Er/Y ratio in the nanowires 
was further varied to analyze the 980 nm up-conversion emission mechanism and a blue shift of the strong-
est peak in the band of the nanowires with higher ratio of Er/Y was observed. These 980 nm lasing properties 
of Er-Y chloride silicate nanowires presented above pave a new way of utilizing up-conversion mechanism in 
Er-Y nanowire to achieve tunable near-infrared laser and indicate its potential in future application in nanoscale  
optoelectronic devices operating at near-infrared wavelength.

References
1. Yan, R. X., Gargas, D. & Yang, P. D. Nanowire photonics. Nature Photon. 3, 569–576 (2009).
2. Yang, P., Yan, R. & Fardy, M. Semiconductor nanowire: what’s next? Nano Lett. 10, 1529–1536 (2010).
3. Johnson, J. C. et al. Single gallium nitride nanowire lasers. Nature Mater. 1, 106–110 (2002).
4. Duan, X., Huang, Y., Agarwal, R. & Lieber, C. M. Single-nanowire electrically driven lasers. Nature 421, 241–245 (2003).
5. Gradecak, S., Qian, F., Li, Y., Park, H.-G. & Lieber, C. M. GaN nanowire lasers with low lasing thresholds. Appl. Phys. Lett. 87, 173111 

(2005).
6. Agarwal, R., Barrelet, C. J. & Lieber, C. M. Lasing in single cadmium sulfide nanowire optical cavities. Nano Lett. 5, 917–920 (2005).
7. Zimmler, M. A., Bao, J., Capasso, F., Muller, S. & Ronning, C. Laser action in nanowires: observation of the transition from amplified 

spontaneous emission to laser oscillation. Appl. Phys. Lett. 93, 051101 (2008).
8. Qian, F. et al. Multi-quantum-well nanowire heterostructures for wavelength-controlled lasers. Nature Mater. 7, 701–706 (2008).
9. Chu, S. et al. Electrically pumped waveguide lasing from ZnO nanowires. Nature Nanotech. 6, 506–510 (2011).

10. Xiao, Y. et al. Single-nanowire single-mode laser. Nano Lett. 11, 1122–1126 (2011).
11. Auzel, F. et al. Upconversion and anti-stokes processes with f and d ions in solids. Chem. Rev. 104, 139 (2004).
12. Lu, T. et al. On-chip green silica upconversion microlaser. Opt. letters. 34(4), 482–484 (2009).
13. van Sark, W. G., de Wild, J., Rath, J. K., Meijerink, A. & Schropp, R. E. Upconversion in solar cells, Nanoscale Res. Lett. 8, 1 (2013).
14. Dong, B. et al. Temperature Sensing and In Vivo Imaging by Molybdenum Sensitized Visible Upconversion Luminescence of Rare‐

Earth Oxides. Adv. Mater. 24, 1987 (2012).

Figure 5. Spectra of the nanowire around 979 nm in different measurement temperature and the 
dependence of emission intensity and linewidth of the 979.1 nm peak to the temperature (inset). 



www.nature.com/scientificreports/

6Scientific RepoRts | 6:34407 | DOI: 10.1038/srep34407

15. Henke, B. et al. Saturation effects in the upconversion efficiency of Er-doped fluorozirconate glasses. J. Phys.: Condensed Matter. 
22(15), 155107 (2009).

16. Guo, R. et al. Suppression of second-order cooperative up-conversion in Er/Yb silicate glass. Opt. Mater. 935–939, 35 (2013).
17. Wang, L., Guo, R., Wang, B., Wang, X. & Zhou, Z. Hybrid silicate waveguides for amplifier application, IEEE Photon. Tech. Lett. 

900–902, 24 (2012).
18. Pan, A. et al. Single-crystal erbium chloride silicate nanowires as a Si-compatible light emission material in communication 

wavelength. Opt. Mat. Express 1, 1202 (2011).
19. Wang, X. et al. A. High Gain Submicrometer Optical Amplifier at Near-Infrared Communication Band. Phys. Rev. Lett. 115, 027403 

(2015).
20. Huang, M. H. et al. Room-temperature ultraviolet nanowire nanolasers. Science 292, 1897 (2001).
21. Bulović, V., Kozlov, V. G., Khalfin, V. B. & Forrest, S. R. Transform-limited, narrow-linewidth lasing action in organic semiconductor 

microcavities. Science 279, 553 (1998).
22. Wang, B. et al. Photoluminescence quantum efficiency and energy transfer of ErRE silicate (RE =  Y, Yb) thin films. J. Phys. D: Appl. 

Phys. 45, 165101 (2012).
23. Bradley, J. D. & Pollnau, M. Erbium‐doped integrated waveguide amplifiers and lasers. Laser & Photon. Rev. 5, 368 (2011).
24. Wang, X., Jiang, L., Guo, R., Ye, R. & Zhou, Z. Spontaneous emission rate and optical amplification of Er3+  in double slot waveguide. 

Sci. China Phys., Mech. & Astro. 58, 1 (2015).
25. Tengattini, A. et al. Toward a 1.54 m electrically driven erbium-doped silicon slot waveguide and optical amplifier. J. Lightwave Tech. 

31, 391 (2013).
26. Guo, R. et al. Optical amplification in Er/Yb silicate slot waveguide. Opt. Letters 37, 1427 (2012).
27. Zhang, M., Peh, J., Hergenrother, P. J. & Cunningham, B. T. Detection of Protein–Small Molecule Binding Using a Self-Referencing 

External Cavity Laser Biosensor. J. Am. Chem. Soc. 136, 5840 (2014).
28. Liles, A. A., Debnath, K. & O’Faolain, L. External-cavity hybrid laser with silicon photonic crystal cavity-based resonant reflector. 

Group IV Photonics (GFP), 2015 IEEE 12th International Conference on. IEEE (2015).
29. Belt, M. & Blumenthal, D. J. Erbium-doped waveguide DBR and DFB laser arrays integrated within an ultra-low-loss Si3N4 platform. 

Opt. Express 22, 10655 (2014).
30. Pollnau, M. Rare-earth-ion-doped channel waveguide lasers on silicon. IEEE J. Quantum Electron. 21, 414 (2015).
31. Belt, M. et al. Arrayed narrow linewidth erbium-doped waveguide-distributed feedback lasers on an ultra-low-loss silicon-nitride 

platform. Opt. Letters 38, 4825 (2013).
32. Guo, R. et al. Optical amplification in Er/Yb silicate strip loaded waveguide. Appl. Phys. Lett. 99, 161115 (2011)
33. Fan, F., Turkdogan, S., Liu, Z., Shelhammer, D. & Ning, C. Z. A monolithic white laser. Nature Nanotech (2015).
34. Wang, Z. et al. Room-temperature InP distributed feedback laser array directly grown on silicon. Nature Photon. 9, 837–842 (2015).
35. Korn, D. et al. Lasing in silicon-organic hybrid waveguides. Nature commun. 7 (2016).

Acknowledgements
This work was partially supported by National Natural Science Foundation of China Grant No. 61377056, 
61635001, 61535002 and Program for New Century Excellent Talents in University.

Author Contributions
X.W. conceived the idea. R.Y. and C.X. fabricated the samples and performed the measurements. J.C. and Z.Z. did 
the discussions. All authors discussed the results and contributed to writing the manuscript.

Additional Information
Competing financial interests: The authors declare no competing financial interests.
How to cite this article: Ye, R. et al. Room-temperature near-infrared up-conversion lasing in single-crystal 
Er-Y chloride silicate nanowires. Sci. Rep. 6, 34407; doi: 10.1038/srep34407 (2016).

This work is licensed under a Creative Commons Attribution 4.0 International License. The images 
or other third party material in this article are included in the article’s Creative Commons license, 

unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, 
users will need to obtain permission from the license holder to reproduce the material. To view a copy of this 
license, visit http://creativecommons.org/licenses/by/4.0/
 
© The Author(s) 2016

http://creativecommons.org/licenses/by/4.0/

	Room-temperature near-infrared up-conversion lasing in single-crystal Er-Y chloride silicate nanowires
	Materials and Methods
	Results and Discussion
	Conclusion
	Acknowledgements
	Author Contributions
	Figure 1.  The schematic diagram of PL measurement system.
	Figure 2.  (a) SEM image of the as-grown ECS nanowires and amplified image of a representative nanowire (inset).
	Figure 3.  (a) Up-conversion light emission spectra at visible and near infrared wavelength range.
	Figure 4.  (a) Spectra at 950–1035 nm band under different pump power and the corresponding four energy state model (inset).
	Figure 5.  Spectra of the nanowire around 979 nm in different measurement temperature and the dependence of emission intensity and linewidth of the 979.



 
    
       
          application/pdf
          
             
                Room-temperature near-infrared up-conversion lasing in single-crystal Er-Y chloride silicate nanowires
            
         
          
             
                srep ,  (2016). doi:10.1038/srep34407
            
         
          
             
                Rui Ye
                Chao Xu
                Xingjun Wang
                Jishi Cui
                Zhiping Zhou
            
         
          doi:10.1038/srep34407
          
             
                Nature Publishing Group
            
         
          
             
                © 2016 Nature Publishing Group
            
         
      
       
          
      
       
          © 2016 The Author(s)
          10.1038/srep34407
          2045-2322
          
          Nature Publishing Group
          
             
                permissions@nature.com
            
         
          
             
                http://dx.doi.org/10.1038/srep34407
            
         
      
       
          
          
          
             
                doi:10.1038/srep34407
            
         
          
             
                srep ,  (2016). doi:10.1038/srep34407
            
         
          
          
      
       
       
          True
      
   




