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Abstract: Tumor vasculature proliferates rapidly, generally lacks pericyte coverage, and is uniquely
fragile making it an attractive therapeutic target. A subset of small-molecule tubulin binding agents
cause disaggregation of the endothelial cytoskeleton leading to enhanced vascular permeability
generating increased interstitial pressure. The resulting vascular collapse and ischemia cause down-
stream hypoxia, ultimately leading to cell death and necrosis. Thus, local damage generates massive
amplification and tumor destruction. The tumor vasculature is readily accessed and potentially a
common target irrespective of disease site in the body. Development of a therapeutic approach and
particularly next generation agents benefits from effective non-invasive assays. Imaging technologies
offer varying degrees of sophistication and ease of implementation. This review considers techno-
logical strengths and weaknesses with examples from our own laboratory. Methods reveal vascular
extent and patency, as well as insights into tissue viability, proliferation and necrosis. Spatiotemporal
resolution ranges from cellular microscopy to single slice tomography and full three-dimensional
views of whole tumors and measurements can be sufficiently rapid to reveal acute changes or long-
term outcomes. Since imaging is non-invasive, each tumor may serve as its own control making
investigations particularly efficient and rigorous. The concept of tumor vascular disruption was
proposed over 30 years ago and it remains an active area of research.

Keywords: imaging; bioluminescence; photoacoustics; magnetic resonance imaging; vascular dis-
rupting agents; inhibitors of tubulin polymerization; breast cancer; kidney cancer; lung cancer; com-
bretastatins

1. Introduction

Solid tumor growth beyond about 1-3 mm in diameter depends extensively on an-
giogenesis initiating neovasculature for the supply of nutrients and oxygen [1]. However,
tumor neovasculature is abnormal, in terms of both structure and function, and has been
proposed as a specific target for therapeutic intervention [2–6]. Notably, tumor endothelial
cells undergo rapid proliferation and vessels generally lack pericyte coverage [7,8]. Two
types of therapy have been proposed to target tumor-associated vasculature: angiogenesis
inhibiting agents (AIAs) inhibit the development of blood vessels a priori [9], while vascu-
lar disrupting agents (VDAs) specifically target existing neovasculature [4,5,10,11]. Many
small-molecule VDAs interact with the tubulin-microtubule protein system including the
well-characterized vinca alkaloid and colchicine binding sites, which are located separately
on the αβ-tubulin heterodimer [12,13]. In the late 1970′s, Pettit and co-workers discovered
the combretastatins in the South African bush willow tree, Combretum caffrum, of which
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combretastatin A-1 (CA1) [14] and combretastatin A-4 (CA4) [15] are two of the most
potent compounds, each exhibiting pronounced biological activity as inhibitors of tubulin
polymerization and as selective VDAs. VDA activity results from microtubule disruption in
activated endothelial cells, which initiates a signaling pathway characterized by profound
cytoskeletal and morphological changes [16,17]. Consequently, endothelial cells round
up, leading to enhanced vascular leakage, and detachment from each other and from the
underlying substratum to clog the tumor blood vessels [18]. Direct vascular disruption is
predicted to cause massive downstream starvation and hypoxiation, thereby potentiating
the local effect and generating extensive necrosis [4] (Figure 1).
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While the concept of vascular targeting was proposed some 30 years ago, we note a
dramatic recent increase in interest, particularly efforts to develop next generation agents:
6700 Web of Science citations of “combretastatin” in 2020 represented a 15-fold increase
since 2000. Several VDAs have been evaluated in clinical trials, though to date none has
received FDA approval [19–22]. Table 1 outlines the status of several VDAs and lists clini-
cal trials that included substantial imaging. Several VDAs (CA4P, DMXAA and ZD6126)
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underwent Phase 2 clinical trials and CA4P and AVE8062 reached Phase 3 [21,23]. CA4P
was granted the status of an orphan drug by the European Medicines Agency (EMA) and
Federal Drug Administration (FDA) [19]. Several clinical trials are listed at ClinicalTri-
als.gov, but only one is currently active: “Modulation Of The Tumour Microenvironment
Using Either Vascular Disrupting Agents or STAT3 Inhibition in Order to Synergise With
PD1 Inhibition in Microsatellite Stable, Refractory Colorectal Cancer (MODULATE)“ which
examines BNC105P and is organized by the Australasian Gastro-Intestinal Trials Group.
To date imaging, as a biomarker, has been incorporated into relatively few clinical trials
and the potential value and shortcomings were discussed extensively by O’Connor et al.,
particularly regarding the parameters measurable by DCE-MRI [24].

Table 1. Vascular disrupting agents. Status and use of imaging during recent clinical trials [19,25].

Agent Imaging Modality Tumor Type Trial References

CA4P
(fosbretabulin; Zybrestat)

DCE-MRI or -CT
a DWI-MRI
b 15O-PET

Lung cancer, ovarian,
renal, breast Phase 1

[26–29]
a [30]
b [31]

CA1P
(OXi4503)

DCE-MRI
15O-PET Various Phase 1 [32]

BNC105P DCE MRI Various Phase 1 21 patients;
now in Phase 2 [33]

CYT997 DCE-MRI Various 31 patients [34]

AVE8062
(Ombrabulin) DCE-US Various, mostly

ovarian 25 patients [35]

NPI2358
(Plinabulin) DCE-MRI Various 38 patients [36]

ZD6126 DCE-MRI Colon [37]

EPC2407
(Crolibulin) DCE- & DWI-MRI Various 11 subjects, Phase 1 [38]

MN-029
(Denibulin) DCE-MRI Various 34 subjects, Phase 1 [39]

DMXAA
(ASA404;

5,6-dimethylxanthenone-4-acetic acid;
vadimezan)

DCE-MRI Various Phase 1 [40]

Abbreviations. DCE: dynamic contrast enhanced; DWI: diffusion weighted imaging; MRI: magnetic resonance imaging, CT: computed
tomography; US: ultrasound; PET: positron emission tomography.

It is recognized that VDAs are ineffective as monotherapies, since a thin periph-
eral rim of cells, thought to receive nutrients from the host vasculature survives, even
after destruction of the tumor vasculature. While the tumor center may necrose, the
rim often repopulates rapidly. As such, several VDAs have been tested in combina-
tion with additional therapies [11,41], including radiotherapy [41–46], antiangiogenic
agents (such as bevacizumab) [47,48], traditional cytotoxic chemotherapy (e.g., carbo-
platin, paclitaxel) [41,49–54] and recently immunotherapy [55,56]. There is a current resur-
gence of interest in VDAs and frequent reports describe novel agents, many based on
the colchicine/combretastatin motif [57–72] (Figure 2A). These molecules are typically
hydrophobic and are modified as phosphate prodrugs to enhance aqueous solubility and
allow ease of delivery. The phosphates are intrinsically less active, particularly in terms
of tubulin binding, as assessed in cell free assays [73,74], but non-specific phosphatases
are abundant in cells providing rapid release of the active agents [75]. Recent reports
have explored the encapsulation of combretastatin and DMXAA in targeted nanoparti-
cles, sometimes in combination with co-encapsulated chemotherapy or anti-angiogenesis
drugs to enhance tumor retention and prolong effective release [76]. While combretas-



Molecules 2021, 26, 2551 4 of 36

tatins have seen substantial progress in clinical development (Phase I–III clinical trials,
Table 1), several other molecular structures can selectively lead to destruction of tumor
vasculature and examples are shown in Figure 2B. Notably, arsenic trioxide (Trisinox; ATO)
is used clinically to treat promyelocytic leukemia and has been shown to cause vascular
disruption in solid tumors [77–79], though at low doses it interferes with mitochondrial
activity and actually increased tumor oxygenation, as revealed by ESR and 19F MR oxime-
try [80]. Selective vascular destruction has also been achieved using antibody targeted
tissue factor (anti-VCAM-1.TF) [6,81] and physical approaches based on photodynamic
therapy [82–85], microwave heating [86] or high dose radiation [87] potentially enhanced
with high-z nanoparticles [88]. The application of imaging for non-invasive assessment of
vascular disrupting agent activity is presented in Table 2.

Table 2. Pre-clinical Imaging of VDAs.

Agent Imaging Modality Tumor Type References

CA4P

a BLI, b MRI,
c MSOT/PAT,

d PET/CT, e EPR, f US,
g SPECT

Breast, liver, colorectal,
bladder, pancreatic, prostate,

lung, melanoma

a [5,89–93] cf. Figures 3 and 4
b [5,27,91,93–107]

c [92] cf. Figures 8 and 9
d [105,108], e [95]

f [109–112], g [113]

CA1P
a BLI, b MRI, c MSOT,

d PET/CT, f US
Colorectal, H&N, breast

a [5,114,115]
b [103,105,114,116,117]

c [118,119]
d [105], f [5,91]

BNC105P BLI Kidney [120]

AVE8062 BLI, MRI, FDG-PET, CE-US Colon, Ovarian, H&N [121–123]

NPI2358 DCE-MRI Breast, sarcoma [124]

ZD6126 DCE-MRI, BOLD MRI Colon, breast, prostate,
fibrosarcoma [11,37,125–128]

BPR0L075 BLI Breast [129]

EPC2407 BOLD MRI, DCE-MRI, MSOT, BLI,
US

Head & Neck, glioma,
prostate [130–132]

DMXAA a BLI, b MRI, c MSOT, d FDG-PET
Breast, colorectal, glioma,

kidney, H&N

a [133,134], b [91,96,134–138],
c [133,139,140] d [141]

OXi8007 BLI, MRI, US Breast, prostate [17,74,93] cf. Figures 5, 9 and 11

C118P MRI Liver (rabbit) [142]

ABT-751 MRI Glioma (rat) [143]

CA4P analogs BLI, US Breast, prostate, lung [66,74,144–147]

Targeted prodrugs BLI 4T1 breast [148]

Nanoparticles MRI, optical, MSOT 4T1, MCF-7 breast [149–153]

Conjugates MSOT Colon [154]
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Figure 2. Structures of small-molecule vascular disrupting agents. (A) Natural products and combretastatin-inspired
molecular structures found to be effective tubulin binding agents causing vascular disruption. Combretastatin A4 [15],
AVE8062 [155], combretastatin A1P [14], ZD6126 [156], BNC105P [157], CKD-516 [158], OXi8007 [17], colchicine, KGP18 [144],
OXi6916 [159] and SCB01A [160]. (B) Diverse molecular structures binding tubulin or causing vascular disruption: ABT-
751 [143], EPC2407 [131], DMXAA [138], arsenic trioxide [161], paclitaxel [162], TZT-1027 [163], NPI-235 [124], MN-029 [39]
and CYT997 [34]. While paclitaxel is a tubulin binding agent, we found no evidence for acute vascular shutdown (see
Figure 6e).
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Ultimately, therapeutic efficacy is determined by tumor growth delay and ideally
tumor control. However, a crucial intermediate assay is acute vascular disruption. Histori-
cally, this was evaluated histologically in excised tumor tissue. Blood vessels themselves
can be observed using antibody stains such as anti-CD31 [7,164,165] (Figure 3). However,
in the context of vascular disruption it is dynamic changes in flow, perfusion and vas-
cular patency that are critical. These have been measured using perfusion markers such
as Hoechst 33342 dye, indocyanine green, DiOC7, colored microspheres or radiolabeled
iodoantipyrine (IAP) (125I, 14C) to reveal extent of perfusion [17,75,157,166–168]. Pulse
chase approaches with differentially colored dyes, microspheres or lectins allow direct inter-
rogation of changes within specific blood vessels of individual tumors [169,170]. Given the
significance of VDAs, there have been several previous reviews [22]. [6,19,25,47,71,171,172],
but few have focused on the ability to examine activity non-invasively [5,132,173,174], the
emphasis of this current review.
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Figure 3. Efficacy of acute VDA activity revealed using dynamic BLI in orthotopic breast tumors. Left: BLI signal intensity
images overlaid as heat maps on gray scale photographs of mice at about 10 min after administration of luciferin at selected
time points following administration of (a) saline or (b) CA4P (120 mg/kg IP) to MDA-MB-231-luc xenograft tumor bearing
nude mice. See also Video S1; (c) CA4P to syngeneic 4T1-luc tumor in BALB/C mouse. All intensity maps have same heat
scale. Center: corresponding BLI intensity curves for the respective individual mice at left showing differential variation
over a period of 35 min following administration of luciferin at baseline (red), 2 h post (orange), 4 h (green) and 24 h (blue),
48 h (purple). (d) Tumor sections from four tumors showing vascular extent based on CD31 stain (green) and perfusion
marker Hoechst 33342 (blue) at different times following treatment with CA4P. Severely diminished perfusion was seen at
4 h, while controls tumors showed highly consistent extensive perfusion as seen in right hand column. Scale bar: 50 µm.

2. Imaging Technologies

Imaging provides non-invasive insights into VDA activity in vivo and potentially
early predictive biomarkers of therapeutic response. Many non-invasive imaging methods
are available [175], and diverse modalities have been applied to evaluate VDAs, including
radionuclide approaches, MRI, ultrasound, and more recently photoacoustic and optical
(Table 2), as discussed in the following sections. While the focus of this review is on
evaluating therapeutic vascular disrupting activity on tumors, it must be remembered that
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there may also be off-target toxicity [176], which can also be assessed by imaging. Many of
these technologies also allow translational imaging in patients, offering the potential for
companion studies of efficacy [177].

2.1. Bioluminescence Imaging (BLI)

BLI is likely the simplest imaging modality for pre-clinical cancer investigations and
has found widespread application to monitor tumor development, growth and metastatic
spread, particularly in mice [178,179]. Tumor cells must have been transfected to express
luciferase and luciferin substrate is required, though some other enzyme/substrate pairs
are becoming available [179]. Instrumentation simply requires a sensitive CCD camera and
dark observation chamber and the earliest instruments were built in individual laborato-
ries [89,180]. Sensitivity and ease of use were greatly improved in commercial systems,
which became available some 15 years ago and popularity was stimulated by the IVIS
systems developed by Xenogen and now produced by Perkin Elmer. There are currently
several manufacturers marketing systems with various levels of sensitivity, throughput
and additional capabilities.

In Vivo Optical Imaging Systems are available from: PerkinElmer (Waltham, MA,
USA) [181], Spectral Instruments (Tucson, AZ, USA) [182], Scintica (Webster, TX, USA) [183],
Sonovol (Durham, NC, USA) [184], Medilume (Montreal, QC, Canada) [185], Vieworks
(Anyang-si, Gyeonggi-do, Republic of Korea) [186]. Current systems can typically image
five mice simultaneously and in several cases include planar X-ray capability to provide
skeletal context. 3D capability has been developed based on multiple angle detection
using multiple cameras or mirrors [187–189] or depth resolved wavelength dependent
spectroscopy [189,190]. Anatomical context is normally provided by overlay on a gray
scale surface image of the mouse, but planar X-rays can provide skeletal co-registration,
which is particularly relevant for investigating bone metastases [191]. A recent innovation
is combination with ultrasound to reveal soft tissue anatomy and vasculature [184]. Mice
must be anesthetized and many systems have onboard vaporizers to deliver isoflurane in
air or oxygen, though injectable anesthetics such as ketamine/xylazine or pentobarbital
have been used. We favor oxygen carrier gas, which promotes survival, during the stress
of anesthesia. While imaging is non-invasive, mere anesthetization of animals with a high
tumor burden receiving an experimental therapeutic can cause animal loss. BLI is of course
limited to observing tissues, which have been transfected to express luciferase. Transfection
optimally generates a single high expressing clone, though cells selected for high luciferase
expression may no longer fully represent typical heterogeneous tumors. Meanwhile,
polyclonal approaches may suffer from differential cellular expression, whereby faster
growing clones, which may have lower expression, dominate tumor development in vivo.
A typical experimental approach is described in Appendix A. Luciferin is now readily
available from many sources and the price has fallen sufficiently that the luciferin substrate
required for a typical investigation costs less than $1 per mouse.

The reporter substrate luciferin can be injected directly into a tumor, but luciferin
has a remarkable ability to cross membranes including the placenta and blood brain
barrier and thus systemic delivery works effectively. Luciferin may be administered
intravenously (IV), but this leads to rapid clearance kinetics and is technically challenging
for routine use, particularly if multiple sequential doses are to be delivered. Traditional
administration was intraperitoneal (IP), but we favor subcutaneous (SC) in the fore-back
neck region [89,180,192]. Luciferin rapidly reaches the bloodstream, whereupon it is carried
to tumor cells wherever they are located in a mouse and undergoes a light emitting reaction
catalyzed by luciferase according to Equation (1).

ATP + D-luciferin + O2 —– luciferase −→ oxyluciferin + AMP + PPi + CO2 + light (1)

Signal intensity generally increases for a period of about 5–15 min followed by decline
over the next 1/2 h, though specific kinetics depend on the extent of vascularization and
disease site (Figures 3–6). Highly reproducible series of images may be observed follow-
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ing repeat administration of luciferin over a period of several hours (Figure 3a), though
signal may increase over days due to tumor growth sometimes noticeable within 24 to
48 h (Figure 6a). Recognizing the dynamic variation in signal following administration of
luciferin, we favor observing a whole time course, rather than a single time point, and light
emission may be compared based on area under the light emission curve, maximum inten-
sity, or intensity at a specific time post administration. Since luciferin must be transported
to the tumor, vascular shutdown following administration of a VDA is revealed by reduced
light emission (Figures 3–6, Video S1). Indeed, very similar activity was observed in three
distinct breast tumors growing orthotopically in the upper mammary fat pad of SCID
mice indicating >80% signal reduction within 2 to 4 h following CA4P administration at
120 mg/kg IP (Figures 3 and 4). Reduced perfusion was confirmed using fluorescence mi-
croscopy, whereby anti-CD31 staining indicated extensive tumor vasculature, but Hoechst
33342 perfusion dye showed much less accumulation when administered 2 or 4 h after
CA4P (Figure 3c).
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Figure 4. CA4P response for BrCa and PCa with implanted spontaneous lung metastases. (a) Orthotopic MCF-7-luc human
breast cancer tumor in upper mammary fat pad response to CA4P treatment (120 mg/kg IP) assessed by BLI at 0, 2, and
24 h after treatment. BLI intensity images overlaid on photos of mice, (b) Equivalent results for MCF-7-luc lung colonization
tumor model generated by IV injection of tumor cells. Corresponding dynamic time course intensity traces are shown
for each time following administration of luciferin. At 2 h, there was about 80% reduced light emission corresponding to
vascular shutdown in mammary fat pad tumor, but less loss (60%) in the lungs. Similarly, orthotopic PC3-luc tumor (c) and
its spontaneous lung metastases (d) in SCID mouse at baseline, 2, 6 and 24 h following CA4P. (e) The PC3 tumors appeared
to be somewhat more resistant to VDA activity with less signal loss.

Optical techniques are subject to attenuation at depth due to absorption and scattering
of light, and thus superficial tumors are most easily detected, specifically subcutaneous,
or at disease sites near the surface such as mammary fat pad (Figure 3). However, light
can penetrate several millimeters and effective signal is observed by BLI in deeper tissues
such as the lungs [187,193–195], prostate [196–198], brain [199,200], pancreas [201,202],
liver [203,204], head and neck [114], bone [205,206] and kidney [138,207] in mice. The
most common implementation of BLI in oncology is simply to relate signal intensity to
tumor burden and indeed several studies have shown that there is a strong correlation for
untreated control tumors up to about 2 cm3 [89,208]. Beyond this size, absorption of light
emitted from deeper tissues by overlaying tumor causes attenuation and a signal intensity
plateau [208]. Acute vascular shutdown prevents substrate luciferin from reaching tumor
cells, thereby yielding less light and revealing ischemia, as we exploit to observe the effects
of VDAs (Figures 3–6).
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photos of mice. Corresponding signal intensity curves at right; (b) similarly, orthotopic RENCA-luc kidney tumor bearing
mouse at baseline, 4 and 24 h. Dynamic time course intensity traces are shown for each time following administration of
luciferin. At 4 and 24 h there was an approximately 80% reduction in light emission corresponding to vascular shutdown
and matching the MSOT observation in Figure 10; (c) BLI as predictive imaging biomarker. For groups of MDA-MB-231-luc
tumors (control, low and high dose OXi8007 as well as combination with carboplatin) there was a strong correlation between
the signal shutdown at 4 h after administering VDA and the tumor growth over the next 7 days (R2 > 0.8).

BLI of VDA activity has most commonly been applied to primary implanted tumors,
but investigations have also examined pseudometastases, such as breast tumor coloniza-
tion of the lungs, following tail vein injection of MDA-MB 231-luc cells (Figure 4b). Some
primary tumors effectively yield spontaneous metastases, which are readily observed,
although the primary tumor may need to be masked for effective imaging due to relative
signal intensities (Figure 4c,d). Dynamic BLI was initially applied to known VDAs to
establish the technique, e.g., CA4P [209] (Figures 3 and 4), CA1P [114], DMXAA [134,210],
BPR0L075 [129], and ATO [161]. It has also been validated by comparing changes in
BLI signal against alternative technologies such as MRI [209], ultrasound [161], photoa-
coustics [92] and histology (Figure 3), each of which has shown effectively correlated
data. This provided confidence to apply dynamic BLI to new agents such as the indole
OXi8007 [17,93], and efficacy is shown against orthotopic breast and kidney tumors in
Figure 5. BLI is particularly effective at demonstrating dose response for new potential
VDAs [17,66,74,145–147,211], as exemplified for a novel amino benzosuberene analog
(KGP321) of KGP18 (Figures 2A and 6). The combretastatins CA4P and CA1P and indole
analog OXi8007 and benzosuberene analog KGP265 are administered as water soluble
phosphate prodrugs, which are readily dephosphorylated releasing the active molecules,
which bind tubulin and cause microtubule disaggregation yielding vascular collapse and
ischemia, as evident from reduced BLI signal. Meanwhile, the microtubule stabilizing
therapeutic paclitaxel caused no signal loss over 48 h (Figure 6e) matching a reported lack
of change in BLI signal from 4T1-luc breast tumors growing as pseudometastases in the
mouse lung after IV injection of cells [212].

Dynamic BLI is very effective for initial evaluation of potential VDAs, providing high
throughput results with relative ease and low cost. There are distinct limitations, though
many are readily overcome: (i) requires transfected cells to express luciferase effectively
(many stably transfected cell lines are now available); (ii) requires administration of luciferin
substrate (currently readily available, cheap and non-toxic); (iii) requires optical imaging
system (typically cheapest of all available modalities); (iv) typically limited to mice due to
light scattering by tissues, although BLI has been reported in rats including prostate [198],
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brain [178,213] and lung tumors [214]. Other more sophisticated technologies provide
alternative imaging approaches.
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tions of VDA activity. MRI not only provides detailed anatomical images and high spatial 
resolution to reveal tumor location and heterogeneity, but can also provide insights into 
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Figure 6. Dose response of MDA-MB-231-luc MFP tumors to KGP321. Left: BLI signal intensity images overlaid as heat
maps on gray scale photographs of nude mice at 16 min following administration of luciferin at selected time points
following administration of KGP321. Center: BLI intensity curves for the respective individual mice at left show differential
variation over a period of 35 min following administration of luciferin at baseline (red), 2 h post (orange), 4 h (green) and
24 h (blue), 48 h (purple). (a) 10 mg/kg (n = 4); (b) 20 mg/kg (n = 3); (c) 30 mg/kg (n = 3); (d) 40 mg/kg (n = 3); (e) Paclitaxel
(20 mg/kg) showing no acute changes in BLI signal. (f) BLI relative intensity change curves showing variation over a period
of 48 h following administration of different doses of KGP321. Line colors 10 mg/kg (red); 20 mg/kg (green); 30 mg/kg blue)
and 40 mg/kg (purple). ANOVA based on Fisher’s PLSD indicated that over the 72 h-time course all doses 10–40 mg/kg
gave significantly different light emission from vehicle alone (p < 0.005), but there was no significant difference between the
doses. At 30 and 40 mg/kg there was significantly less light emission at 2 and 4 h compared with baseline (p < 0.05) and
this continued up to 72 h for 40 mg/kg (p < 0.0001). (g) Structure of KGP321, a novel aminobenzosuberene-based VDA.

2.2. Magnetic Resonance Imaging (MRI)

Historically, MRI was the most commonly used modality for non-invasive investiga-
tions of VDA activity. MRI not only provides detailed anatomical images and high spatial
resolution to reveal tumor location and heterogeneity, but can also provide insights into
pathophysiology and pharmacodynamics in response to interventions. Pre-clinical MRI
uses a high field magnet (typically, 3 to 11.7 Tesla available from two primary manufac-
turers for pre-clinical investigations: Bruker (Billerica, MA, USA) [215] and MR Solutions
(Guildford, Surrey, UK) [216]) to polarize the nuclear magnetic spins and radio frequency
stimulation to excite signals, most commonly the tissue water. Applied magnetic field gra-
dients provide spatial resolution and signal relaxation produces contrast. Typical images in
living mice have submillimeter in-plane resolution and millimeter slice thickness and may
be presented as two-dimensional tomographic or three-dimensional volume images. MRI
is particularly versatile in terms of pulse sequences, whereby combinations of excitation
pulses and gradients can interrogate specific aspects of physiology, such as perfusion, flow,
necrosis, and oxygenation [177]. Administration of paramagnetic contrast agents reveals
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flow, perfusion and vascular leakage, as applied in pre-clinical studies to develop many
VDAs and subsequent clinical investigations (Tables 1 and 3).

The most common application regarding VDA activity examines changes in tissue
contrast accompanying intravenous infusion of a paramagnetic contrast agent such as
gadolinium-DTPA (Gd-DTPA, Magnevist), referred to as dynamic contrast enhanced (DCE)
MRI. Spin lattice relaxation rate (R1 = 1/T1) is directly related to the concentration of small
molecule contrast agents. Following IV infusion of a contrast agent, the inflow, perfusion
and accumulation due to leakage and clearance are observed readily revealing changes
following administration of VDAs. Usually the initial area under the contrast curve (IAUC)
is used to examine perfusion, often characterized by the signal amplitude (%∆SI) and time
to reach maximum (TTM) (Figure 7). More sophisticated analysis can reveal perfusion
kinetics; to provide rigor with quantitative approaches the arterial input function (AIF)
is required or a reference tissue model may be applied [217] (Figure 7). The reference
tissue model compares the contrast agent curves in a tissue of interest (tumor) to that of a
reference region (muscle). A typical experimental approach is described in Appendix B.
Using reported values for the volume transfer constant of muscle, Ktrans, M, (0.1 min−1)
and the extravascular-extracellular volume fraction, ve, M, (0.1) in the muscle [217,218], it
is possible to extract the Ktrans and ve values for the tumor without knowledge of the AIF.
The contrast concentration curve, C(t), in tumor tissue is then given by [217]:

C(t) = R*CM(t) + R*[(KtransM/ve
M) − (Ktrans/ ve)]*0

∫
t CM(t′) * exp (−(Ktrans/ve)*(t − t′)dt (2)

where R = (Ktrans/ KtransM) and CM(t) is the contrast agent curve in muscle tissue. Ktrans/ve
is often referred to as kep.

Table 3. Imaging VDA activity using MRI.

MRI a VDA Tumor Type References

Perfusion/flow/vascular
permeability

DCE; DSC

CA4P, DMXAA, EPC2407,
ZD6126, CKD-516

Liver, colorectal, pancreatic,
breast, glioma, prostate,

carcinosarcoma, VX2, kidney,
H&N

[5,27,37,96,97,100,102–
106,117,124–128,131,132,135–

138,219–221]

Diffusion
DWI/IVIM CA4P, CKD-516 Liver, rhabdomyosarcoma, lung,

VX2 [98,102,104,117,219,222]

ASL CA1P Colorectal [116]

BOLD, OE-MRI,
19F oximetry ZD6126, CA4P, OXi8007 Breast, bladder [5,93–95,223]

CEST TNF-α SC colon tumors [224]

pH CA4P, DMXAA, ZD6126 Breast [91]

HP-pyruvate CA1P, CA4P Lymphoma, Breast [105,225]
a DSC: dynamic susceptibility contrast; IVIM: intra voxel incoherent motion; OE: oxygen-enhanced; CEST: chemical exchange saturation
transfer; HP hyperpolarized.

Widespread DCE investigations were used in the development of the combretastatins
(CA4P and CA1P) as well as DMXAA and ZD6126) [5,27,37,96,97,100,102–104,106,117,
124–128,131,132,135–138,219–221] and continue to be popular in pre-clinical development
(Table 3), since they may also be implemented readily in clinical trials (Table 1). Examples
of parametric images derived from DCE-MRI are presented in Figure 7, where tumor
heterogeneity is apparent at baseline, as well as in response to the novel vascular disrupting
agent OXi6197, the phosphate prodrug of OXi6196 (Figure 2A) a dihydronaphthalene
analog of combretastatin. It is apparent that the initial area under the curve is much lower
24 h after VDA, while the TTM is much greater in many regions. The extracellular-extra
vascular volume (ve) is considerably greater indicating enhanced vascular permeability.
Others have used polymeric or particulate contrast agents (e.g., ultra small paramagnetic
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iron oxide: USPIO), which are retained in the vasculature for longer periods giving a
sustained indication of vessel caliber and induced vascular leakage [106,127,128].

While MRI was incorporated into many clinical trials regarding anti-angiogenesis
agents, there have been far fewer trials with respect to vascular disrupting agents. In
principle, assessment of VDAs should be particularly easy since response is generally
acute and substantial, however in terms of DCE-MRI, various questions remain open:
which parameter is most relevant (e.g., changes in ve or Ktrans); when should imaging be
performed; what threshold serves as a useful predictive biomarker [24]?
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Figure 7. Multiparametric MRI assessment of ischemia and hypoxia in A549 human lung cancer in a rat model. The
combretastatin analog OXi6197 was used as an experimental VDA in an SC model in the leg [159]. Labels shown on T2W.
T-Tumor; M-Muscle; B-Bone marrow; S-Spine; T2* is a physical variation on T2. (A) DCE confirms decreased perfusion based
on area under the curve (AUC), time to maximum (TTM) and slope of DCE contrast curves following dose of 15 mg/kg
OXi6197; (B) Oxygen-sensitive parameters (BOLD and TOLD) show much smaller response in vascular oxygenation to an
oxygen gas breathing challenge after VDA. BOLD is sensitive to the amount of deoxyhemoglobin and has considerable
similarity to the MSOT measurements (Figures 8–10). Data in B were acquired prior to A.
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Figure 8. MSOT reveals progression of vascular shutdown. (a) Trans-axial MSOT images of nude mice with MDA-MB-
231-luc breast tumor. Color oxygenation maps overlaid on single wavelength anatomical grayscale images. Progression
of hypoxiation in a mouse treated with CA4P (120 mg/kg), with strong response to treatment (white arrows) resulting in
vascular impairment within 4 h. (b) Traces show vascular oxygen saturation response (sO2

MSOT) to O2-breathing challenge
at baseline, 4 and 24 h after CA4P. Yellow (whole tumor), red (tumor periphery), blue (tumor center), grey (spine, which
serves as effective control tissue). At 4 h, the response of the tumor periphery was depressed and at 24 h, it showed a very
different (sluggish) pattern. (c) Histogram of vascular oxygen saturation in tumor periphery before and after CA4P in a
second tumor bearing mouse; (d) Traces show concentration of HbO2 before CA4P and over 1 h following CA4P IP.

DCE-MRI has been used for many years and implementation and analysis are quite
straightforward and readily translated to human studies. A downside to DCE-MRI is
the need for the paramagnetic contrast agent; in rodents, this adds to the complexity
by requiring effective IV infusion, while in human subjects there is recent concern that
the gadolinium ions may cause kidney damage due to nephrogenic systemic fibrosis
(NSF), or from as yet unknown problems due to deposition and long-term retention in the
brain [226,227]. It appears that cyclic paramagnetic contrast agents have fewer potential
issues, but contrast agent administration is now avoided in patients when possible. As such,
various other MRI methods have been developed. Notably, arterial spin labeling allows
non-invasive observation of blood flow based on physical spin tagging alone [116]. It has
been effectively applied to colorectal cancer in mice revealing ischemia, but the method does
require adequate through-plane signal motion to reveal flow. Acute vascular shutdown is
the most obvious early effect revealed by MRI. Later effects may also be examined such
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as using diffusion-weighted imaging (DWI) to observe changes in cell structure, whereby
diffusion is restricted in well-structured tissue, but becomes more mobile with necrosis,
which occurs extensively within 24 h after VDA [98,102,104,117,219,222]. MR Elastography
indicated reduction in tumor viscoelasticity 24 h after ZD6126 at which time no significant
change in tumor apparent diffusion coefficient (ADC) was observed [228].

Molecules 2021, 26, x FOR PEER REVIEW 18 of 38 

While spectral unmixing directly indicates relative concentrations of oxy- and de- 
oxyhemoglobin, spectral coloring can perturb effective quantitation at depth due to dif-
ferential light absorption by overlying tissues. Recent studies have sought to compensate 
for spectral coloring [242]. Rapid image acquisition reveals motion [247], which could 
compromise effective spectral unmixing indicating a need for image co-registration. Ac-
quisition of individual spectral frames can avoid averaging misregistered images, poten-
tially allowing corrections or deletion of offset images. Additionally, appropriate filtering 
algorithms can enhance signal to noise and contrast, though they may also introduce 
damping into transitions [248]. 

It should be noted that oxygen breathing challenge (the simplest theranostic) is rec-
ognized as optimal for assessing vascular patency, as we have often used for MRI 
[231,249,250] and we and others now apply to MSOT [92,240,244,245]. Exogenous vascular 

Figure 9. Photoacoustic assessment of vascular disruption in kidney tumors. (a) MSOT of orthotopic RENCA tumor in
BALB/C mouse. Transaxial 800 nm MSOT image showing tumor (T), spine (S), contra lateral kidney (K) and spleen (P).
(b) Dynamic contrast enhanced MSOT accompanying IV infusion of the blood pool agent Genhance. Similar curves were
observed at baseline (blue) and 24 h (red) in kidney. In tumor, inflow of Genhance was observed at baseline, but much
less at 24 h commensurate with vascular shutdown matching. Blue baseline and red 24 h after OXi8007 (350 mg/kg).
(c) Traces showing hemoglobin oxygen saturation derived from dynamic MSOT images in spine and tumor accompanying
oxygen-breathing challenge. Traces for the tumor showing baseline response, but no activity after 24 h indicating vascular
shutdown. Area under the curve indicates about 95% less signal. (d) H&E stained section of RENCA tumor (lower panel)
and contralateral kidney (upper panel) from resected tissue obtained 72 h after OXi8007. Extensive hemorrhage is seen
in the tumor. (e) Acute response of human RCC XP373 to CA4P. Distinct anatomy is apparent in the transaxial slice
MSOT image showing tumor (T) and contralateral control kidney (K). Red indicates predominant oxyhemoglobin and
blue deoxyhemoglobin in tumor at baseline. (f) Regional hypoxiation is seen in the tumor vasculature following CA4P.
(g) Dynamic changes were observed in tumor over 30 min following CA4P (120 mg/kg, IP), while contralateral normal
kidney showed no change as confirmed in (h) histograms, verifying selective activity against the tumor.
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Figure 10. Photoacoustic imaging showed increase of oxyhemoglobin from air (A) to oxygen breathing (B) at baseline
(tumor outlined in A and D). (D,E) Two days after the administration of VDA OXi6197 only minimal response to oxygen
was observed. (A, D: air breathing; B, E: oxygen breathing). Comparison of normalized (C) oxy-(∆HbO2) and (F) deoxyhe-
moglobin (∆Hb) at both time points. These data closely match the MRI obtained as part of the same study (Figure 7). Part of
this Figure adapted from [175].

Hypoxia may be observed using oxygen-sensitive MRI including Blood Oxygen Level
Dependent (BOLD) and Tissue Oxygen Level Dependent (TOLD) contrast [229–233]. In
principle, vascular disruption causes ischemia and yields hypoxiation. Deoxyhemoglobin
(Hb) is paramagnetic leading to accelerated dephasing in transverse relaxation and in-
creased R2* (1/T2*) related to [Hb] [126]. Indeed, Robinson et al. found a dose response
increase in R2* in both prolactinomas and RIF-1 fibrosarcomas following ZD6126 adminis-
tration [126]. However, vascular collapse could lead to exclusion of blood from the tumor
generating an opposite effect. Thomas et al. examined the BOLD response to a carbogen
breathing challenge before and after administration of CA4P (100 mg/kg) to rat bladder
tumor bearing mice and found much reduced response within 35 min [94]. The spin lattice
relaxation rate, R1, is directly sensitive to pO2. One day after administering OXi6197 to a
rat bearing a subcutaneous A549 lung tumor in the leg, the tumor R2* and R1 showed little
change under baseline air breathing conditions, but now there was much less response
to an oxygen gas breathing challenge (much reduced ∆R1 and ∆R2*) indicating impaired
perfusion and implying hypoxiation (Figure 7B). Changes in R1 and R2* appear to be
particularly effective at identifying tumor perfusion and lack of response is associated with
hypoxia [231].

Hb + O2 −→ HbO2 (3)

However, high concentrations of Hb, e.g., accompanying hemorrhage can also acceler-
ate R1, giving potentially anomalous results [233,234]. The signal changes observed using
TOLD in response to a hyperoxic gas breathing challenge are much smaller than seen in
DCE following Gd-contrast and thus TOLD must be performed first, as in Figure 7, or
separate cohorts of animals used [95].

Hypoxiation is expected to enhance metabolic dependence on glycolysis, but the ratio
of pyruvate to lactate was unchanged based on HP (hyperpolarized)-MRI [105], and others
reported decreased intrinsic lactate 24 h after ZD6126 [235]. 31P NMR indicated loss of
high energy phosphate metabolites (ATP and PCr) and increased lactate in HT29 tumors
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6 h following DMXAA [236]. Hypoxiation has been definitively examined using 19F MRI
of the reporter molecule hexafluorobenzene (HFB) following intra tumoral injection and
administration of OXi8007 IP [93]. Meanwhile, Diepart et al. [80] found increased pO2
based on 19F MRI of HFB in TLT tumors following administration of low dose ATO, which
acted as a mitochondrial inhibitor, as opposed to showing the vascular disrupting activity
observed at high doses [161].

MRI is particularly effective for observing the effects of VDA administration, but does
require substantial expertise, magnets and associated hardware. In pre-clinical studies, it
provides effective characterization of tumor heterogeneity, but suffers from low throughput
and need for sophisticated image acquisition and data analysis, thereby reducing efficiency.
The great strength is that observation may be made in rodents and reproduced in humans.
MRI may not be feasible if the subject has metal implants or a pacemaker, or is particularly
obese or severely claustrophobic.

2.3. Photoacoustics-Multispectral Optoacoustic Tomography (MSOT)

Photoacoustics has recently become feasible in many laboratories with the availability
of commercial small animal imaging systems, as well as experimental devices suitable for
patients in clinical trials (iThera (Munich, Germany) [237] and Fuji Visual Sonics (Toronto,
ON, Canada) [238]. Notably, the iThera MSOT and Fuji Visual Sonics LAZR-X systems
readily provide rapid high spatial resolution images (approaching 120 µm in plane) of
oxy- and deoxyhemoglobin. Single wavelength images may be acquired in 100 ms each,
but the need for signal averaging and acquisition of several wavelengths to allow spectral
unmixing for precise quantitation, typically provides temporal resolution of 1 to 20 s. While
the concept of photoacoustics was described over 100 years ago, it represents the newest
modality available for probing dynamic vascular disrupting activity in vivo. Pulsed light at
a specific wavelength is selectively absorbed by chromophores depending on concentration
yielding local thermoelastic expansion and generating shock waves, which are detected
using ultrasound transducers to provide spatial resolution. Oxy- and deoxyhemoglobin
are both abundant and strongly absorbing, with well-defined separate spectra allowing
vascular oxygen saturation to be estimated.

The iThera MSOT operates through excitation of a tissue plane (~1 mm thick) using
10 fiber optic excitation bundles and an array of 128, 256 or 512 acoustic transducers placed
toroidally around the subject providing a bore size of 4 cm, which is ideal for investi-
gating mice. Meanwhile, the LAZR excites and detects from a single direction, allowing
the interrogation of larger subjects, but providing less uniform excitation and detection.
The LAZR-X has the advantage of incorporating ultrasound excitation, which provides
enhanced anatomical imaging and Doppler flow detection. This is also available on the
iThera Acuity system, which is designed for larger animals and human investigations.
Several studies have reported dynamic vascular response of tumors in mice or rats to
vascular disruption caused by CA4P, CA1P and EPC2407 [92,118,119,130,239,240]. In most
cases, changes in [HbO2] and [Hb] are examined, thereby also revealing vascular oxygen
saturation (sO2). Ron et al. explored natural cycling hypoxia in human breast tumor
xenografts in mice [241]. Tomaszewski et al. showed rigorously that the response to an
oxygen gas breathing challenge provides a better picture of tumor oxygenation than a
static baseline measure of sO2 alone [240]. Additionally, blood flow and perfusion may be
revealed by DCE-MSOT following IV infusion of a strongly absorbing contrast agent such
as ICG, Genhance or gold nanoparticles [240,242,243].

Rich & Seshadri compared oxygen-sensitive MRI and photoacoustics to cross validate
the observations [130], while Tomaszewski et al. compared oxygen-enhanced-MSOT and
DCE-MSOT [240]. In other studies, immunohistochemistry was used to validate vascular
perfusion and hypoxiation [92,240]. The commercial systems can observe large blood
vessels and general oxygenation of the capillary bed (individual capillaries do not need to
be resolved). Meanwhile, much higher resolution photoacoustic microcopy has been used
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to examine the vascular tree and show oxygenation and hypoxiation in individual blood
vessels following administration of VDA [118].

Matching recent reports, we used an InVision 256-TF small animal imaging system
to reveal spatial heterogeneity of tumor vasculature (Figures 8–10). We have applied
three different paradigms to examine vascular disruption. Firstly, dynamic observation
revealed changes in tumor hemoglobin oxygen-saturation response (∆sO2) accompanying
an O2-breathing challenge (Figures 8–10). At baseline, the tumor center of MDA-MB-231
tumors showed little response, but the tumor periphery showed a significant change, as
also seen in the muscle surrounding the spine (Figure 8). Following administration of
VDA the response to oxygen gas breathing challenge was much smaller as seen in the
orthotopic MDA-MB-231 breast tumor (Figure 8), a syngeneic orthotopic RENCA kidney
tumor (Figure 9) and a subcutaneous human A549 lung tumor xenograft in the leg of
a rat (Figure 10). The response to an oxygen gas breathing challenge appears far more
effective at revealing vascular patency and hypoxia compared with baseline measurements
alone [244,245]. Secondly, progressive hypoxiation may be observed by continuous imaging
following administration of VDA (Figures 8 and 9). Histograms of vascular oxygenation
emphasized distinct hypoxiation (Figures 8 and 9). Response to oxygen gas challenge and
progressive hypoxiation are apparent in the video (See Video S2). Thirdly, DCE-MSOT
based on the pharmacokinetic distribution of a contrast agent such as ICG or Genhance
reveals changes in perfusion [242,243]. MSOT is often applied to a single imaging plane
through a tumor, but acquisition of multiple slices can readily provide 3D information. A
typical experimental approach is described in Appendix C.

Similar to the breast tumors in Figure 8, vascular disruption has also been observed
based on an oxygen gas breathing challenge at successive time points in orthotopic syn-
geneic RENCA tumors (Figure 9). In addition to detecting vascular shutdown based on
an oxygen gas breathing challenge DCE-MSOT showed much reduced perfusion based
on Genhance, while the contralateral kidney was largely unaffected by VDA (Figure 9b).
MSOT is particularly well suited for investigations of the kidney and renal cell carcinoma
(RCC) because of the extensive vasculature. The RENCA tumors also expressed luciferase
and could have been assessed using BLI, but such transfection is not feasible in primary
tumors (PDX and GEM models). We have also observed hypoxiation in human XP373
explant tumors following administration of OXi8007 IP (Figure 9). Hong et al. used MSOT
to show that application of DMXAA could enhance the local trapping of gold nanoparticles
in CT26 tumors thereby increasing the effectiveness of photothermal excitation and tumor
growth delay [133]. Photoacoustic imaging revealed the uptake of gold nanoparticles and
BLI was used to assess tumor progress following therapy. Liu et al. used MSOT to examine
the activity of a novel poly(L-glutamic acid)-CA conjugate (PLG-CA4) designed to restrict
transport and enhance accumulation in tumors [154]. In addition to evaluating changes in
vascular oxygenation they added an IR820 fluorochrome allowing direct visualization of
the PLG-CA4 itself. While most MSOT studies of VDA activity have been performed in
tumor bearing mice, we have also observed vascular disruption in lung tumor xenografts
growing in the leg of a rat (Figure 10). The A549 lung tumor has extremely sparse vascu-
lature [246], but this is initially highly responsive to an oxygen gas breathing challenge.
Two days after administration of the novel combretastatin analog OXi6197, the remaining
vasculature showed minimal response, matching the MRI performed on the same tumors
(Figure 7).

While spectral unmixing directly indicates relative concentrations of oxy- and de- oxy-
hemoglobin, spectral coloring can perturb effective quantitation at depth due to differential
light absorption by overlying tissues. Recent studies have sought to compensate for spec-
tral coloring [242]. Rapid image acquisition reveals motion [247], which could compromise
effective spectral unmixing indicating a need for image co-registration. Acquisition of
individual spectral frames can avoid averaging misregistered images, potentially allowing
corrections or deletion of offset images. Additionally, appropriate filtering algorithms
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can enhance signal to noise and contrast, though they may also introduce damping into
transitions [248].

It should be noted that oxygen breathing challenge (the simplest theranostic) is recog-
nized as optimal for assessing vascular patency, as we have often used for MRI [231,249,250]
and we and others now apply to MSOT [92,240,244,245]. Exogenous vascular contrast
agents can also be used (e.g., ICG or Genhance) [240,242,243] and could be particularly
relevant for sparse vasculature where there is little hemoglobin signal (e.g., Figure 10).

MSOT directly reveals relative spatial and temporal variations of oxy- and deoxy-
hemoglobin concentrations without the need for exogenous reporter molecules or cell
transfection with reporter genes [245,251,252]. While investigators often present sO2, it
should be noted that values of [HbO2] and [Hb] are not strictly quantitative and thus
vascular oxygen saturation should be described as sO2

MSOT. Limited anatomical contrast
is also observed (Figures 8 and 9). MSOT is however, a complicated procedure requiring
considerable practice to achieve effective images and requiring sophisticated analysis.
While all tissue may be observed in a mouse, the method becomes ineffective in melanin
rich dark skinned mice. Rigorous hair removal essential, effective optical and acoustic
contact are required using acoustic gel and it is important to ensure there are no bubbles.
Some systems require mice to be immersed under water with breathing via a snorkel.
Rapid image acquisition means that respiratory and cardiac motion may be observed
and potentially co-registration should be applied to minimize motion artifacts. Animals
are imaged individually. Photoacoustics may be enhanced with the development of new
contrast agents, an area of active investigation [252,253].

2.4. Other Modalities

Ultrasound imaging (US) applies sound waves to a subject and receives echoes, which
provide anatomical structures with exceedingly high spatial and temporal resolution. Blood
flow and vasculature may be observed using color- or power-Doppler methods. These
approaches have been applied to assess VDA activity in various species ranging from
mouse to rat, rabbit, dog and human subjects [5,74,91,109–112,161]. Use of high frequency
sound waves provides finer spatial resolution, but limits depth of signal penetration. Sound
waves are also subject to severe scattering by bones and do not transmit through air. US
can be entirely non-invasive, but Doppler methods do require sufficient flow to provide an
observable signal. Examples of color-Doppler imaging of VDA activity are presented in
Figure 11, for subcutaneous human tumor xenografts. The lung tumor showed very sparse
vasculature, while much stronger flow was seen in the prostate tumor, with each showing
substantial diminution after about 1.5 h. A typical experimental approach is described in
Appendix D. Observation of low flow regions may be enhanced using microbubble con-
trast [5], as exploited extensively by Abma et al. in canine subjects [109,254]. Alhasan et al.
compared power Doppler with dynamic BLI showing consistent diminution in flow fol-
lowing administration of ATO based on both methods [161]. Meanwhile, fluorescent signal
from constitutively expressed mCherry in transfected tumor cells showed no changes over
24 h following ATO.

Positron Emission Tomography (PET) uses coincidence detection of gamma rays
following annihilation of a positron to determine the site of radioactive decay in a subject
following administration of a positron-emitting isotope. Typical isotopes include 15O, 11C
and 13N for labeled gases and water. Meanwhile, 18F FDG is now routinely used to assess
metastatic spread based on the metabolic hyperactivity of tumors. PET is exceptionally
sensitive allowing the use of very low concentrations of tracer, but spatial resolution is
typically much poorer than MRI and temporal resolution is slow. The biggest obstacle to
routine use is the need to safely handle radioactivity and the rapid decay of isotopes that
have typically been used to assess flow (T1/2

15O = 122 s). There has been comparison
of FDG PET and 13C hyperpolarized NMR of pyruvate [105]. Uptake of 18F-FDG in
subcutaneous U251 glioblastoma xenografts was reduced following administration of
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DMXAA, likely due to both vascular disruption impeding delivery of FDG and also cell
death after 24 h [141].
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Figure 11. Color-Doppler ultrasound of tumor vascular oxygenation. A549 human lung tumor xenograft growing in hind
leg of rat was imaged (a) before and (b) 90 min after administration of OXi6197 IP (15 mg/kg). A catheter with solution
of OXi6197 was secured IP to avoid moving the animal during the experiment. Tumor outlined in orange, yellow arrows
indicate regions of substantial flow, which was initially very sparse and diminished following administration of VDA.
Transmit Frequency: 16 MHz Similar study of subcutaneous human prostate tumor PC-3 xenograft in a SCID mouse
observed (Transmit Frequency: 24 MHz) (c) immediately after and (d) about 80 min after injection of OXi8007 (350 mg/kg
IP). This tumor was initially far better vascularized, but tumor perfusion was essentially halted by 80 min (green arrow),
as published for other time points previously [74]. Heat scale bar representing flow in the range ±64.2 mm/s. Both
investigations were performed using a Vevo 2100.

Single photon emission computed tomography (SPECT). Other radioisotope ap-
proaches have explored SPECT/CT of 131I-Hoechst 33258 (131I-H33258) in W256 tumor-
bearing rats as an early predictive biomarker of tumor response to CA4P based on its
avidity for necrotic tissue [113]. Planar scintigraphy was used to explore hypoxia in sub-
cutaneous RIF-1 tumors following DMXAA or CA4P [255]. In each case 99mTc-labeled
HL-91 (Prognox) and VDA were administered simultaneously and mice imaged 3 h later
revealing increased uptake of 99mTc and hence increased hypoxia. Studies additionally
applied 86RbCl to assess perfusion, though this required sacrifice and correction for residual
radioactivity from the 99mTc.

Optical imaging. Tissue perfusion may be effectively observed based on fluorescent-
tagged substrates, though this is typically limited to superficial tissues. Dynamic contrast
enhanced fluorescent imaging (DyCE FLI) has been applied to examine perfusion of
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subcutaneous tumors implanted in the backs of mice and reduced flow was observed
following administration of CA4P [256]. Laser Doppler flowmetry can directly reveal flow,
though signal is limited to very superficial tissues. Optical microscopy has been applied to
tumors in superficial dorsal window chamber modes where vascular disruption could be
assessed at high resolution, showing shutdown or individual vessels, as well as induced
hyperactive permeability and leakage of contrast agents [257]. Hyperspectral imaging
revealed changes in vascular oxygen saturation.

2.5. Optimizing Combination Therapy

As mentioned in the Introduction, effective treatment with VDAs will likely require
combination therapy, specifically to overcome the peripheral surviving tumor tissue ring
observed in most studies [11,41,56,258]. Imaging should be particularly effective in facili-
tating optimal combination based on timing and extent of acute vascular changes. Notably,
enhanced permeability may promote delivery of additional drugs, though ischemia may
limit access. Consequent hypoxia is expected to reduce the efficacy of radiation therapy,
though could promote hypoxia activated pro-drugs [259].

Building on earlier DCE MRI evaluations of tumor perfusion following VDA treat-
ment [106], Fruytier et al. established that delivery of gemcitabine was diminished in TLT
hepatocarcinomas growing intramuscularly in mice 2 h after CA4P. They elegantly showed
changes in vascular perfusion and permeability based on DCE-MRI, as well as assessing
uptake and metabolic conversion of gemcitabine using 19F NMR spectroscopy [107]. Such
an approach could allow effective determination of optimal timing of combined therapy by
establishing both the pharmacokinetics and uptake of a particular therapeutic agent, as
well as the pharmacodynamic vascular perturbation caused by the VDA.

Folaron et al. examined “vascular priming” to enhance the efficacy of several common
chemotherapeutic drugs through combination with DMXAA. They specifically applied dy-
namic BLI to examine tumor growth and DCE-MRI to evaluate changes in tumor perfusion
and permeability in relation to the efficacy of irinotecan, docetaxel, and doxorubicin [134].
Intriguingly, they found increased BLI signal 1 h after DMXAA suggesting enhanced de-
livery of luciferin substrate, but significantly diminished signal at 24 h. consistent with
vascular collapse, as confirmed by DCE-MRI.

Delivery of chemotherapeutic agents can be enhanced through active targeting and
encapsulation in nanoparticles to improve local retention. Sun et al. designed a “coopera-
tive polymeric platform” for tumor-targeted drug delivery. Recognizing that the peptide
GNQEQVSPLTLLKXC (A15) is a substrate of activated blood coagulation factor XIII (a
transglutaminase), they created A15 peptide-decorated poly(L-glutamic acid)-cisplatin con-
jugates as coagulation-targeted nanoparticles [140]. They then exploited the VDA DMXAA
to induce hemorrhage in tumors yielding “a unique coagulation environment”. Using
MSOT they were able to convincingly show elevated uptake of such fluorescently (NIR830)-
labeled NPs after administration of DMXAA and ultimately demonstrate enhanced tumor
growth delay in mice.

Zhao et al. showed distinct hypoxiation of 13762NF rat breast tumors within 30 min of
30 mg/kg CA4P using near infrared spectroscopy and additionally found that the tumors
became essentially unresponsive to an oxygen gas breathing challenge at 2 h, although
some response was restored after 24 h [260]. This coincided with greatest tumor growth
delay being achieved when tumors were irradiated (5 Gy), while rats breathed oxygen 24 h
after CA4P, whereas other sequences of treatment were less effective. Diepart et al. used 19F
MRI to determine that tumor pO2 increased transiently for about 2 h after administration
of ATO (5 mg/kg) to mice [80]. This suggested tumor irradiation at 90 min following ATO
would be particularly effective, as indeed observed.

VDA induced hypoxia has also been explored to promote activation of bioreductively-
activated prodrugs [148,261]. Notably, Shen et al. developed a paradigm for modulation of
host immunological responses during cancer treatment by exploiting CA4 and the immune
modulator Imiquimod (IMQ) [261]. Noting that TIE2+ tumor-associated macrophages
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(MΦ) and endothelial progenitor cells have been reported to infiltrate tumors after treat-
ment with CA4P, thereby promoting tumor angiogenesis, [262], it was reasoned that the
immune modulator IMQ could potentially convert immature plasmacytoid dendritic cells
(pDCs) into their active form, leading to the robust infiltration and priming of natural killer
cells and cytotoxic T-lymphocytes in treated tumors. To seek tumor specificity a biore-
ducible prodrug hs-IMQ was prepared and co-administered with CA4 in poly(L-glutamic
acid)-graft-methoxy poly(ethylene glycol nanoparticles (NPs). The NP depots ensured
longer-term delivery/release of CA4, which induced additional tumor hypoxia promoting
nitroreductase activity and IMQ release. Therapeutic efficacy in 4T1 breast tumors in mice
was enhanced. Pimonidazole was also administered to reveal increased hypoxia in tissue
slices commensurate with release of IMQ. In vivo imaging was not applied, but this study
represents an ideal opportunity for applying 18F-miso PET, oxygen-sensitive MRI or MSOT
to examine the dynamic evolution of hypoxia non-invasively.

3. Discussion

Diverse imaging modalities are available to provide non-invasive insights into the
mode of action of vascular disrupting agents. Technologies offer various levels of reso-
lution, sophistication, complexity and cost in terms of implementation as summarized
in Table 4. The simplest observations are sensitive to flow and perfusion and readily
reveal acute changes indicative of vascular disruption. Dose response may be determined
efficiently since each tumor serves as its own control. The more sophisticated methods
additionally reveal tumor heterogeneity and heterogeneity of response. Beyond flow
and ischemia, other technologies can reveal hypoxiation, necrosis and more subtle patho-
physiology and metabolism. Imaging has become increasingly routine in small animal
preclinical research and is increasingly encouraged in companion studies to optimize
clinical trials. Ultimately, assessment of the pharmacokinetics of drug delivery together
with the pharmacodynamics of tumor pathophysiological response should enable more
effective personalized medicine tailored to optimizing therapeutic efficacy based on predic-
tive/prognostic imaging biomarkers.

Table 4. Comparison of imaging modalities.

Modality Cost Throughput Spatial
Resolution

Temporal
Resolution

Need for
Contrast Agent Ease of Use

BLI $ High 5–10 mice Surface planar 1 s Yes Easy

MRI $$$$$ Usually single subject 200 µm in plane
× 2 mm s-mins Typically, yes Sophisticated

methods available

MSOT $$$ Single subject 120 µm in plane
by 200 µm s No

Image quality very
sensitive to

meticulous setup

US $$ Single subject 100 to 1000 µm Sub second Often Fairly easy

PET/CT $$$$$ Typically, 1–4 mice or
single larger subject 3 mm isotropic mins Yes

Issues of
radioactivity:

expense/safety

4. Materials and Methods

The results presented in Figures 1–11 are all unpublished though in many cases
closely analogous to investigations presented previously. All studies were approved by the
UTSW Institutional Animal Care and Use Committee and performed in line with State and
Federal guidelines. Specific details are presented in the text and figure legends and general
description of the technologies in the Appendix for each technology.
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5. Patents

1. Kevin G. Pinney, Haichan Niu, Depoprosad Mondal, “Benzosuberene Analogues and
Related Compounds with Activity as Anticancer Agents” (United States Patent: US
10,807,932 B2), issued 20 October 2020.

2. Kevin G. Pinney and Madhavi Sriram, “Combretastatin Analogs with Tubulin Binding
Activity” (United States Patent: US 8,394,859), issued 12 March 2013.

3. David J. Chaplin, Klaus Edvardsen, Kevin G. Pinney, Joseph Prezioso, Mark Wood,
“Compositions and Methods with Enhanced Therapeutic Activity” (United States
Patent: US 8,198,302), issued 12 June 2012.

4. Kevin G. Pinney, Feng Wang, Maria Del Pilar Mejia, “Indole-Containing and Combre
tastatin-Related Anti-Mitotic and Anti-Tubulin Polymerization Agents” (EP 1 214 298
B1), issued 30 May 2012.

Supplementary Materials: The following are available online, Video S1. Dynamic BLI of MDA-MB-
231-luc breast tumor following injection of luciferin and effect of VDA (OXi8007 250 mg/kg IP).
Video S2. Dynamic MSOT of MDA-MB-231 breast tumor with respect to an oxygen gas breathing
challenge and following administration of CA4P (120 mg/kg, IP) showing tumor heterogeneity and
the effect of VDA.

Author Contributions: Conceptualization, L.L., M.L.T., K.G.P. and R.P.M.; methodology, L.L., D.O.,
R.S., H.Z.; software, D.O., H.Z.; validation, L.L., D.O., H.Z., R.P.M.; formal analysis, L.L., D.O., R.P.M.;
investigation, L.L., D.O., H.Z., M.L.T., K.G.P. and R.P.M.; resources, L.L., M.L.T., K.G.P., R.P.M.; data
curation, L.L., D.O., H.Z.; writing—original draft preparation, L.L., R.P.M.; writing—review and
editing, L.L., G.C., M.L.T., K.G.P., R.P.M.; supervision, K.G.P., R.P.M.; project administration, K.G.P.,
R.P.M.; funding acquisition, L.L., M.L.T., K.G.P., R.P.M. All authors have read and agreed to the
published version of the manuscript.

Funding: Studies were facilitated in part by grants from the National Institutes of Health National
Cancer Institute (5R01 CA140674 and 1R01CA244579-01A1 to KGP, MLT, RPM, LL), Mateon Thera-
peutics, Inc. (to KGP, MLT), Cancer Prevention and Research Institute of Texas (CPRIT, RP100406,
RP140399, to KGP, MLT, RPM, LL), and infrastructure provided by the Southwestern Small Animal
Imaging Resource (SW-SAIR) supported in part by 1U24 CA126608 and P30 CA142543 and Shared
Instrumentation grants S10 OD018094-01A1, 1S10 RR024757, and S10 RR031859.

Institutional Review Board Statement: All animal procedures were approved by the Institutional
Animal Care and Use Committee of the University of Texas Southwestern Medical Center.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Acknowledgments: Jenifer Gerberich, Ramona Lopez, Luis Vasquez and Maoping Li acquired
preliminary BLI data. 4T1 tumor cells were kindly provided by Professor Edward Graves (Stanford),
XP373 by James Brugarolas (UTSW), human lung cancer A549-luc cells by Jerry Shay (UTSW) and
RENCA-luc by Hans Hammers (UTSW). David J. Chaplin of Mateon Therapeutics, Inc. kindly
provided CA4P. Erin E. Moore, MA of the Creative Services group kindly generated Figure 1.

Conflicts of Interest: The funders had no role in the design of the study; in the collection, analyses,
or interpretation of data; in the writing of the manuscript, or in the decision to publish the results.
KGP holds several patents relevant to the synthesis and use of vascular disrupting agents.

Sample Availability: The authors are eager to establish collaboration and can provide materials
upon execution of appropriate Materials Transfer Agreement and financial support to cover expenses.

Appendix A. Typical Procedure for BLI

BLI: For effective bioluminescence imaging mice bearing luciferase transfected tumors
(e.g., MDA-MB-231-luc) are anaesthetized (O2, 2% isoflurane), placed on the heated bed
of an IVIS Spectrum instrument and injected subcutaneously in the fore-back neck region
with 80 µL of a solution of luciferase substrate, D-luciferin (sodium salt, 120 mg/kg, as
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40 mg/mL solution in saline). Mice are maintained under anesthesia (2% isoflurane in
oxygen, 1 dm3/min,) while baseline bioluminescence imaging is performed often over a
period of 30 min. VDA is administered after baseline BLI and BLI is repeated, with new
luciferin injections at later times, e.g., 4, 24, 48, 72 and 96 h. Between 3 and 10 mice may
generally be imaged simultaneously. Quantitative data as photon flux were automatically
normalized for camera aperture, camera to subject distance and exposure time. For each
mouse a region of interest (ROI) was selected, which was readily identified based on the
appearance of the tumor in the photograph and more importantly the emitted light. Since
there is essentiality, no background signal, contours may extend beyond the tumor without
significantly altering the measured light intensity [129,256].

Appendix B. Typical Procedure for MRI

MRI: Magnetic resonance imaging is typically performed on a tumor bearing mouse
or rat using a horizontal bore scanner. Anesthesia is induced at 3% isoflurane in air
and maintained with isoflurane (1.5%) in air (1 L/min) and the animal is kept warm
using a circulating warm water blanket. Animal body temperature and respiration are
monitored with a small animal physiological monitoring system. T1 maps (spin echo)
are acquired during initial air breathing and with an oxygen challenge prior to DCE.
Interleaved BOLD (multi-echo gradient echo) and TOLD (gradient echo) MRI are acquired
during an oxygen breathing challenge (from air to 100% O2 after about 10 min). For DCE
(spin echo) gadolinium contrast (e.g., 0.1 mmol/kg body weight Gadovist) is injected
IV and a series of T1-weighted images is acquired over a period of 20 min, ideally with
sufficient time resolution to capture the transient rapid inflow of contrast. Extensive image
processing provides images revealing changes in signal sensitivity and parametric functions
such as transport functions [209,246].

Appendix C. Typical Procedure for MSOT

MSOT: Animals are anesthetized in an induction chamber (isoflurane/oxygen). As
needed, they are shaved and NAIR used for thorough depilation. Degassed warmed
acoustic gel is applied to the torso/tumor regions to be imaged and a nose cone (snorkel)
applied to maintain anesthesia. For imaging with the InVision 256-TF small animal imaging
system the animal in wrapped in a polyethylene membrane and placed in an animal holder
which is placed in the imaging chamber where the water temperature is maintained at
35 ◦C. Multi wavelength data sets are acquired to image oxy- and deoxyhemoglobin.
Dynamic observations are performed with a preliminary oxygen challenge, followed by a
short stabilization period on air, VDA administration in situ IP, and continuous imaging
for 60 min. Oxygen gas challenge may be repeated at later times. Contrast agent such
as Genhance may also be infused to examine tumor perfusion by analysis with DCE-
MRI [92,240,242].

Appendix D. Typical Procedure for US for Dog and Mouse

Ultrasound: Skin over tumor must be thoroughly shaved and depilated with NAIR
lotion to ensure complete local hair removal. The animal is anesthetized (2% isoflurane in
oxygen), and acoustic gel applied to ensure effective ultrasound coupling to the solid-state
transducers, typically 24 MHz) (Typical Procedure for US for Dog [109], Mouse [161]). Data
may be acquired using B and color- or power-Doppler modes. Contrast may be enhanced
by IV infusion of a microbubble contrast agent.
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