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Abstract
Background Cannabis sativa is seeing a global resurgence as a food, fiber and medicinal crop for industrial hemp 
and medicinal Cannabis industries respectively. However, a widespread moratorium on the use and research of C. 
sativa throughout most of the 20th century has seen the development of improved cultivars for specific end uses lag 
behind that of conventional crops. While C. sativa research and development has seen significant investments in the 
recent past, resulting in a suite of publicly available genomic resources and tools, a versatile and cost-effective mid-
density genotyping platform for applied purposes in breeding and pre-breeding is lacking. Here we report on a first 
mid-density fixed-target SNP platform for C. sativa.

Results The High-throughput Amplicon-based SNP-platform for medicinal Cannabis and industrial Hemp (HASCH) 
was designed using a combination of filtering and Integer Linear Programming on publicly available whole-genome 
sequencing and RNA sequencing data, supplemented with in-house generated genotyping-by-sequencing (GBS) 
data. HASCH contains 1,504 genome-wide targets of high call rate (97% mean) and even distribution across the 
genome, designed to be highly informative (> 0.3 minor allele frequency) across both medicinal cannabis and 
industrial hemp gene pools. Average numbers of mismatch SNP between any two accessions were 251 for medicinal 
cannabis (N = 116) and 272 for industrial hemp (N = 87). Comparing HASCH data with corresponding GBS data on a 
collection of diverse C. sativa accessions demonstrated high concordance and resulted in comparable phylogenies 
and genetic distance matrices. Using HASCH on a segregating F2 population derived from a cross between a 
tetrahydrocannabinol (THC)-dominant and a cannabidiol (CBD)-dominant accession resulted in a genetic map 
consisting of 310 markers, comprising 10 linkage groups and a total size of 582.7 cM. Quantitative Trait Locus (QTL) 
mapping identified a major QTL for CBD content on chromosome 7, consistent with previous findings.

Conclusion HASCH constitutes a versatile, easy to use and cost-effective genotyping solution for the rapidly growing 
Cannabis research community. It provides consistent genetic fingerprints of 1504 SNPs with wide applicability genetic 
resource management, quantitative genetics and breeding.
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Introduction
Cannabis sativa is an underutilized crop of high poten-
tial for food, fiber and medicinal markets. Female C. sativa 
flowers produce an abundance of terpenoids and cannabi-
noids, secondary compounds that are increasingly appre-
ciated for nutraceutical and medicinal applications [1–3]. 
C. sativa seeds are rich in polyunsaturated fatty acids and 
essential amino acids, making it a promising oil and protein 
crop [3, 4]. In addition, C. sativa is a prolific biomass accu-
mulator that produces high-value bast and hurd fibers, suit-
able for textiles and carbon-negative construction materials.

However, despite its versatility and being considered 
one of the earliest crops, C. sativa is still regarded as only 
semi-domesticated, lagging in development in respect to 
the extent of genetic improvement achieved for conven-
tional crops [5]. Modern breeding approaches to improve 
C. sativa for key domestication traits, specific end-uses 
and varying environments and cultivation practices are 
still in their infancy. This is largely due to tight regulation 
and prohibition, which limited research and development 
of C. sativa for the better part of the last century. While 
these restrictions have been easing recently, C. sativa has 
missed out on the green revolution and subsequent molec-
ular breeding technologies that have greatly enhanced the 
performance and adaptation of conventional crops.

Advances in genotyping, and the application of single 
nucleotide polymorphisms (SNPs) in particular, have 
significantly accelerated crop improvement over the last 
decades [6]. SNPs are abundant, biallelic, co-dominant 
and evenly distributed along the genome, enabling rapid, 
routine and cost-effective genotyping solutions ranging 
from targeted single trait marker selection [7, 8] to high 
density genome-wide marker applications [9–12]. In pre-
breeding, SNP platforms facilitate genetic diversity stud-
ies, Quantitative Trait Locus (QTL) discovery and QTL 
introgression. In breeding, SNP platforms enable inte-
grating marker assisted selection (MAS), backcrossing 
programs and genomic selection (GS) approaches. More-
over, SNPs contribute to increased efficiencies of quality 
control measures such as varietal identification, pedigree 
verification and seed purity assessment [13].

Next Generation Sequencing (NGS) and array-based 
technologies are the two dominant SNP detection sys-
tems, though amplicon based-systems have recently 
gained in importance [14, 15].

As a result of the recent resurgence in hemp and medici-
nal cannabis research and development, C. sativa refer-
ence genomes are now publicly available for Finola, a hemp 
seed variety, Purple Kush, a medicinal cultivar, and CBDRx 
[16–18], as well as a wealth of other high-density genotyping 

information. Untargeted NGS platforms, such as Genotyp-
ing-By-Sequencing (GBS) and RNA sequencing, have been 
used in C. sativa genetic diversity studies and have started 
to be utilized in quantitative genetic studies as well. Lynch 
et al. [19] analyzed 340 diverse varieties and demonstrated 
the existence of at least three major groups. McKernan et 
al. [20] sequenced 42 genomes and revealed extensive copy 
number variation in cannabinoid biosynthesis and pathogen 
resistance genes. Ren et al. [21] sequenced 110 accessions 
from worldwide origins and showed that C. sativa was first 
domesticated in East Asia, and current cultivars diverged 
from an ancestral gene pool represented by feral plants and 
landraces in China. Woods et al. [22] sequenced diverse 
samples of feral and domesticated lineages of C. sativa 
from U.S. and German (Leibniz Institute of Plant Genet-
ics and Crop Plant Research (IPK)) collections. In addition 
to published journal articles, commercial groups like Kan-
napedia [23] and Phylos (NCBI projects PRJNA347566, 
PRJNA510566), also provide publicly available sequences. 
RNA-Seq data from trichome of medicinal samples are 
available from studies investigating associations between 
transcript expression and metabolite abundance [24, 25]. 
In addition, Livingston et al. [26] generated RNA-Seq for 
Finola trichomes and other transcriptome data on for a wide 
range of tissues is publicly available [27].

While resequencing, GBS and RNA sequencing for 
SNP calling do not require upfront platform develop-
ment and minimize ascertainment bias typically asso-
ciated with targeted platforms, they require complex 
experimental protocols, sophisticated data analysis, and 
bioinformatics pipelines to process raw sequence data 
into useful genotypic matrices, adding to the cost and 
time of genotyping. This added cost in combination with 
a relatively high cost per sample currently limits the 
applicability of NGS platforms in breeding programs and 
pre-breeding applications such as QTL mapping [28].

Despite of a wealth of high-density genotyping data for C. 
sativa being in the public domain, little effort has been made 
in utilizing the underlying variant information for the devel-
opment of targeted genotyping solutions for more applied 
purposes such as (pre-) breeding. Only a small number of 
QTL mapping studies have been published to date, covering 
a range of traits in hemp and medicinal Cannabis and indus-
trial hemp [18, 29–31]. They all relied on high-density geno-
typing to generate genetics maps and establish marker trait 
associations. While high-resolution maps of high marker 
density are of advantage for certain applications, they tend 
to be overkill for the mapping of QTL in segregating popula-
tions, where frequency of recombination rather than marker 
density is the limiting factor [32].
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Large-scale applications in C. sativa breeding with emphasis 
on population improvement necessitate routine genotyping of 
thousands of lines per season at the shortest turnaround time 
possible to make in-season decisions. The current complexity 
of GBS technologies are limiting in this context.

Here, we report the development of a High-throughput 
Amplicon-based SNP-platform for medicinal Cannabis 
and industrial Hemp – HASCH -, for the cost-effective 
amplification and sequencing of 1,504 highly informative 
SNP sites in a 384-plex protocol that has high accuracy 
and high efficiency. We demonstrate the applicability of 
HASCH for diversity studies, the establishment of genetic 
maps and QTL mapping approaches.

Materials and methods
Plant materials
A total of 376 samples were used in his study (Supplemen-
tary file 1) derived from the following plant materials.

  • IPK Genebank collection: 156 individuals from 55 
accessions, with 2–4 individuals per accession. These 
non-proprietary genebank accessions are publicly 
available from the Leibniz Institute of Plant Genetics 
and Crop Plant Research (IPK), Corrensstraße 3, 
06466 Gatersleben, Germany.

  • Australian private collection: 36 individuals from 
26 accessions, with four individuals from No. 8 and 
8 individuals from Futura. These accessions are 
proprietary materials from Kavasil Pty LTd (ABN 24 
150 989 629), Nimbin, NSW 2480, Australia.

  • Chinese commercial varieties: 4 single individuals 
from 4 accessions. These accessions are commercially 
available from The Hemp Corporation Pty Ltd, Hay, 
NSW, 2711, Australia.

  • 3 repeat control samples: derived from the IPK 
Genebank collection.

  • F2 mapping population: 153 lines of a feminized 
F2 population. A female CBD-dominant individual 
of IPK_57 was crossed with a male THC-dominant 
individual of IPK_36. A single female F1 progeny (of 
intermediate CBD/THC content) was selected and 
self-fertilized using STS treatment (see below) to 
generate a segregating F2 population.

  • Inbred lines: 24 samples from 6 inbred lines – 
F1- F4, derived from either the “IPK Genebank 
collection” or the “Australian private collection”.

C. sativa cultivation, sample, storage, processing of plant 
material and cannabinoid analysis were performed in strict 
adherence to Sect.  23(4)(b) and 41(b) of the NSW Drug 
Misuse and Trafficking Act 1985, held under the Author-
ity granted to Prof. Bronwyn Barkla of Southern Cross Uni-
versity, issued by the New South Wales Ministry of Health, 
Australia. The private “Australian private collection” was 

received and handled under a bilateral Material Transfer 
Agreement (MTA) between Southern Cross University and 
Kavasil Pty Ltd, while the “IPK genebank collection” was 
received and handled under the FAO governed Standard 
Material Transfer Agrement (sMTA) (https://www.fao.org/
plant-treaty/areas-of-work/the-multilateral-system/the-
smta/en/). The “IPK genebank collection” was imported 
from Germany to Australia under a federal Office of Drug 
Control (ODC) license to import No. 1,820,928.

Plant cultivation and sampling
Seeds were germinated on folded wet paper towels soaked 
in a 0.3% hydrogen peroxide solution and sealed in plas-
tic ziplock bags for 1–2 days, then transferred onto fresh 
paper towel soaked in water and returned to the ziplock for 
another 2–4 days. Germinating seeds were transferred into 
seedling trays with wet 70% cocopeat, 30% perlite potting 
mix with pH 6. Alternatively, seeds were directly germi-
nated in seedling trays with the potting mix. Half-strength 
Canna coco (CANNA) was sprayed on and around the 
seedlings in the trays every other day. Once the second 
pair of true leaves became visible, the seedlings were trans-
ferred to pots for further growth and development.

All accessions, but not the 153 lines of the F2 popula-
tion, were grown in pollen proof growth chambers. Seed-
lings were transferred to 9 L pots (4–5 seedlings/pot) with 
the same potting mix as before but supplemented with 
45  g of Osmocote exact standard 3–4 months (ICL) and 
45 g of Osmocote exact standard 5–6 months. After leaf 
samples were taken for DNA, each accession was sealed 
in a separate pollen-proof chamber, which prevented any 
cross-fertilisations between accessions. Plants were grown 
under long-day conditions (18  H L, 6  H D) until about 
25 cm high, when flowering was induced by switching to 
short-day conditions (12 h L, 12 H D). Watering was auto-
matic via periodic flooding of the chamber base (1–2 cm). 
Plants were unsealed and harvested once at least 70% of 
seed was considered matured. An inflorescence sample 
was obtained during seed harvest, which was dried before 
being ground into a powder for GC-MS analysis.

For inbreeding, the sex of the seedlings was determined 
using the MADC2 primers under previously published condi-
tions and female individuals were then selected for self-fertili-
sation [33]. Male flowers were then induced on a single branch 
through the application of 6mM silver thiosulfate (STS) every 
second day for five days once the photoperiod was reduced to 
12:12, for a total of three ~ 10 ml treatments [34].

The F2 population was generated from a controlled cross 
between tetrahydrocannabinol (THC)-dominant IPK_
CAN_36 (Male) and cannabidiol (CBD)-dominant IPK_
CAN_57 (Female). A selected female F1 individual was 
self-fertilized using STS treatment and the resulting all-
female F2 population was grown as described above with 
minor modification. Seeds were directly sown into 0.5  L 

https://www.fao.org/plant-treaty/areas-of-work/the-multilateral-system/the-smta/en/
https://www.fao.org/plant-treaty/areas-of-work/the-multilateral-system/the-smta/en/
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pots on trays with constant watering system under con-
trol conditions. Temperatures ranged from 27 ± 2º C and 
plants were grown for three weeks under long-day condi-
tions (18 H L, 6 H D) before switching to short-day condi-
tions (12 h L, 12 H D). Young, fully expanded leaves were 
collected and stored at -20 º C for DNA extraction. Apical 
flowers were collected and dried at 15º C and 15% relative 
humidity for subsequent CBD and THC quantification.

DNA extraction
Genomic DNA (gDNA) was extracted from leaf tissue of 
single plants using a Qiagen Plant mini kit. DNA integrity 
and quality was checked visually on 1% agarose gel, while 
DNA quantity was assessed using Qubit 2.0 (Thermo 
Fisher Scientific) fluorometric kits. DNA digestibility was 
checked using HindIII.

Genotyping by sequencing and SNP calling
The genotyping-by-sequencing data was generated fol-
lowing established methodology [35], with the follow-
ing changes: 100ng of genomic DNA were used, 3.6 ng 
of total adapters were used, the genomic DNAs were 
restricted with ApeKI enzyme and the library was ampli-
fied with 18 PCR cycles. Sequencing results were pro-
cessed by demultiplexing using axe-demux [36] then 
trimmed using GBS-PreProcess [37]. SNP calling was 
performed using TASSEL-GBS pipeline [38] against the 
CBDRx assembly. The samples used for GBS are listed in 
Supplementary file 2, and the demultiplexed sequences 
are also deposited in NCBI PRJNA1085665.

Generation of the initial HASCH SNP set
Identifying the HASCH SNPs set involved three steps: (i) 
collecting SNP datasets, (ii) filtering and (iii) optimiza-
tion. Three SNP datasets were used as initial inputs. The 
WGS7DS are sourced from whole genome sequencing 
(WGS) data of 383 samples deposited in NCBI and public 
sites [19–22]. The 21TRICH are sourced from RNA-Seq 
sequences of 21 trichome samples [24–27]. At the time of 
data collection (December 2022) these included all C. sativa 
WGS BioProjects with multiple samples, all samples used in 
C. sativa genome assembly projects and all trichome RNA-
Seq samples available in NCBI. The sample sequences used 
and their availability are listed in Supplementary file 3 while 
the variant calling pipeline used is described in the GATK-
Parabricks Benchmarking report [39]. The third set of SNPs 
is from GBS generated above. The three datasets in vcf file 
format were filtered to remove the indels and keep the SNPs 
only using this bcftools pipeline [40],

The GBS SNPs vcf file is available at DOI (https://
doi.org/10.25918/data.343), while the WGS7DS and 
21TRICH SNP matrices can be queried from the ICGRC 
CannSeek genotype viewer [41]. bcftools was used 
to merge the three data sets, then SNP statistics were 
updated using the bcftools fill-tags plugin. Next, only 
SNPs present in the GBS and (WGS7DS or 21TRICH) 
datasets and able to pass the following filter criteria were 
retained: FMISSING < = 0.6, MAF is set at > = 0.2, and 
(HWE > = 0.0001 or ExcHet > = 0.0001). The filtered set 
was used as input for optimization to identify 2,000 SNPs 
to be included in the SNP-panel. Integer linear program-
ming (ILP) was used to get the optimal set of markers.

Optimizing HASCH design
The goal for designing the SNP panel was to select subset 
of markers that provide a maximum of homozygous mis-
matches between all sample pairs in the input genotype 
set. The selected markers would further have to be evenly 
distributed across the genome to be usable for genetic 
map construction, and each target marker should have 
minimal SNP variation in its flanking region for effective 
primer hybridization.

Given initial genotype matrix G with N samples and K 
markers, encode gi, k as the number of alternate alleles for 
sample i in marker k, g ∈ {0,1, 2} , such that 0: homozy-
gous reference, 2: homozygous alternate, 1: heterozygous, 
for i = 1.N, and k = 1.K. Define ‘sample -pair’ matrix P as 
an N(N−1)

2  by K matrix, where pij,k = |gi,k − gj,k|i<j , or 
the number of allele mismatches between samples i and 
j at marker k. Missing alleles are encoded in matrix G as 
NA then set to zero in matrix P for markers in sample 
pairs involving them, which means being ignored.

Only homozygous mismatches between pairs were con-
sidered in the pairwise mismatch constraints, except in 
cases where pairs had purely heterozygous mismatches; 
only for these pairs heterozygous mismatches were con-
sidered. So, for each row pij: change 1s to 0, except if 
there is no 2 for the row, where 2 means homozygous 
mismatch, 1 is mismatch between homozygous and het-
erozygous, and 0 means matching alleles or missing in at 
least one of the samples. The goal was to identify the sub-
set of a fixed number of SNPs with the maximum num-
ber of polymorphisms that could be detected between all 
pairs in the sample set.

To maximize the number of polymorphisms for a fixed 
number of marker M from an input set of K markers, the 
following Integer Linear Programming formulation was 
defined.

https://doi.org/10.25918/data.343
https://doi.org/10.25918/data.343
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Objective: max
x

cTPWX  maximize number of pairwise 
mismatches

Subject to:

 

∑
Xk � M maximum of M markers to select

PX � 1 at least 1 marker can discriminate any sample pair
xk ∈ {0, 1} binary vector of length K, 1 if include marker k
c 1 − vector with length, N(N−1)

2

Additional constraints were imposed to evenly distrib-
ute the solution across the genome. Aiming at 2000 SNPs 
over a genome of roughly 1Gb, the genome was divided 
into equal regions of 500 kb length. For a given region R 
with D markers from xr+1 ending at xr+D, the constraint 
is.

xr+1 + xr+2 + · · · + xr+D ≥ 1 at least 1 marker in 
region R

To minimize the number of SNPs within the flanking 
region, a marker weight matrix W is introduced in the 
objective function, where W  is a K x K diagonal matrix 
of weights inversely proportional to the number of flank-
ing SNPs within 100 bp in the original unfiltered SNP set. 
The actual adjustment setting was determined by trial at 
w = 1-0.05n100-0.2n10, where n100 is the number of SNPs 
within 100 bp, and n10 is within 100 bp having neighbors 
within 10 bp.

To implement the above optimization problem, a 
Python script was written using the scipy.sparse module 
to perform the following:

a. given the vcf file, recode into a {0,1,2} genotype 
matrix using plink -–recode A.

b. divide the genome into regions of equal length, then 
for each region add the 

∑
r+D
i=r+1xi ≥ 1 constraint.

c. generate the weight matrix W from the list of 
flanking SNPs counts.

d. generate the P matrix from all pairwise combination 
of samples (row), where pij, k =|gi, k – gj, k| for all 
i < j . Then for each row, replace all 1’s with 0’s if 
there are 2’s

e. generate the input LP file following the objective, 
constraints, and boundary equations in the ILP 
formulation.

f. use an Integer Linear Programming software to get 
the optimal solution. We used Gurobi Optimizer [42] 
with academic license.

g. The solution is the vector of markers selected.
h. Process the solution to get the distribution of 

mismatching pairs.

Primer design and running of the HASCH platform by a 
commercial service provider
The 2000 final target SNPs, including 100  bp upstream 
and downstream flanking sequences were submitted to 
the commercial service provider Diversity Arrays Tech-
nology (DArT) (https://www.diversityarrays.com/) for 
multiplexed primer design using their proprietary algo-
rithm and design pipeline. After the amplicon selection 
process 1504 SNP targets (75%) were retained, consti-
tuting the final HASCH panel. Running of the HASCH 
panel, including multiplexed polymerase chain reaction 
(PCR), amplicon sequencing, de-multiplexing and SNP 
calling were performed by DArT, using in-house meth-
ods as part of their “DArTag” platform.

Multi-dimensional scaling
The WGS dataset was filtered with the 1504 HASCH 
positions using bcftools. TASSEL5 [43] was used to cal-
culate the distance matrix using identity-by-descent 
(IBD), and then multi-dimensional scaling MDS with 5 
components. The first three principal components (PC) 
were then plotted in 3d scatter plot using python ‘plotly’.

Concordance between HASCH and GBS
The HASCH and GBS vcf files for common samples gen-
otyped by both platforms (Supplementary file 4) were 
filtered to include only common samples and sites, and 
samples to have minimum 90% call rate using bcftools 
[40]. Bcftools -stats calculates the per-site discordance 
PSD, and genotype concordance by sample SNPs GCsS. 
From the documentation, non-reference discordance 
NRD.

 

NRD = 100 ∗ (xRR + xRA + xAA)
/ (xRR + xRA + xAA + mRA + mAA)

where x means mismatches, m means matches. AA, RR, 
and RA are homozygous alternate, homozygous refer-
ence, and heterozygous respectively. Simple discordance 
metric can be over optimistic due to typically large mRR. 
In NRD, mRR is excluded from the denominator [44]. 
Simple concordance C is calculated,

 

NRD = 100 ∗ (xRR + xRA + xAA)
/ (xRR + xRA + xAA + mRA + mAA)

The site and sample C and NRD distributions are plotted 
using python matplotlib.

Comparative phylogenies
HASCH and GBS datasets were filtered to use the same 
sample of one replicate from the IPK samples (Supple-
mentary file 5). HASCH sites were filtered to MAF above 
0.2 and missing rate below 0.1. GBS sites were filtered 

https://www.diversityarrays.com/
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to MAF above 0.3 and missing rate below 0.01. Each 
phylogenetic tree was calculated by Neighbour-Joining 
using TASSEL5. The resulting Newick files were com-
pared using VisualizeMatching SharedPhylogeneticInfo 
from the TreeDist R package to draw two trees side-by-
side with highlighted common branches. Branches shar-
ing the same set of nodes were checked manually and 
assigned similar color. The distance matrices by IBD were 
calculated by TASSEL5. All sample pairwise distances 
from HASCH were plotted in the y-axis, vs. from GBS in 
the x-axis in a scatter plot.

Comparative heterozygosity rates
Using the same HASCH and GBS datasets to gener-
ate the comparative phylogenies, the sample heterozy-
gosity were calculated for each set using bcftools stats. 
The Per-sample Counts (PSC) rows give the number of 
homozygous references, homozygous alternate and het-
erozygous. The percent heterozygosity was then calcu-
lated for each sample, and their distribution plotted using 
python matplotlib.

Mismatch SNPs in hemp HASCH and medicinal WGS7DS
Using only one replicate per sample and excluding the 
Inbred (Fn) samples from the HASCH dataset (Supple-
mentary file 6), the number of mismatches between 
homozygous sites were counted for all sample pairwise 
comparisons. Similarly, homozygous mismatch count 
distribution was plotted for drug type or type II samples 
from the WGS7DS (Supplementary file 7). The distribu-
tion of mismatch counts on all pairs was plotted using 
python matplotlib.

CBD quantification using GC-MS analysis
Analysis of CBD content was performed by GC-FID 
Chromatography using Agilent 6850  A gas chromato-
graph with Flame Ionization Detection (FID), with 
a BPX5 model no- SGE 054117 MS column (50  m х 
200  μm х 1  μm) (Phenomenex, Torrance, California, 
United States). Samples were directly injected from the 
auto sampler held at 50˚C for 1  min then increased to 
300 ˚C at 8 ˚C /min and held for 10 min making the total 
run time per sample 42.25  min. Hydrogen was used as 
the GC carrier gas at a flow rate of @1.2 mL/min. Hydro-
gen at a flow rate of @30 mL/min and compressed air at 
a flow rate of @300 mL/min were used as the combus-
tion gases. A CBD standard (Sigma Aldrich) was used for 
peak identification and generation of calibration curves 
for quantitation. Data were recorded and processed using 
Openlab Software (Version 3.6).

Genetic map and QTL mapping for CBD content
Genetic map and QTL mapping used combination of R/
qtl [45] and ASMap packages [46]. HASCH genotyping 

data of the F2 population was diagnosed for low call 
rate, as well as pairs of unusually similar genotype data 
in R/qtl. Monomorphic markers and markers with sam-
ple genotyping call rates of less than 90% were filtered 
out. The resulting genotype input was further filtered in 
ASMap for several parameters including segregation dis-
tortion, identical genotype data, evidence for genotyp-
ing error [47] and markers with duplicated information 
due to co-location on the same position. The linkage map 
construction was conducted using R/qtl. The threshold 
for placing two markers in same linkage group used an 
estimated recombination fraction maximum of 0.35 and 
minimum LOD score of 0.6. Inter-marker distances in 
centiMorgans (cM) were estimated using the kosambi 
function. Re-estimation of the final genetic map used 
Lander-Green algorithm [48] employed in est.map func-
tion of R/qtl. The genetic map was utilised for QTL map-
ping for cannabinoid content using log-transformed 
percent values in F2 population comprised of a set of 121 
individuals with detectable CBD contents. Single QTL 
model using Haley-Knott regression, two-dimensional 
scan, and multiple QTL analyses were carried out. Sin-
gle-QTL analysis used a density of 1 cM while the two-
dimensional scan used 2  cM. The final QTL model was 
obtained from “stepwiseqtl’ analysis. The 95% Bayes cred-
ible c intervals around the maximum likelihood estimate 
of the QTL location was estimated using the “bayes-
int” function. The proportion of phenotypic variance 
explained by the QTL was estimated using “fitqtl” func-
tion. The genetic and QTL map was drawn using Map-
Chart [49].

Results
HASCH platform design
SNP calling using the three datasets (WGS7DS, 
21TRICH and in-house GBS) against the CBDRx refer-
ence genome resulted in a total of 92,205,134 SNP, with 
90,601,645 (94.2%) from WGS, 5,408,878 (5.6%) from 
the 21TRICH RNAseq and 194,611 (0.2%) from in-house 
GBS (Fig. 1a).

The merger of all in-house GBS SNPs with intersec-
tions of WGS7DS and 21TRICH resulted in an initial 
SNP set of 194,611 SNP (grey area in Fig.  1a). Filtering 
for 0.6 call rate (Fig. 1b) and 0.2 minor allele frequency 
(MAF) (Fig. 1c) yielded a filtered set of 57,251 SNPs with 
31,781 SNP (55,5%) common to all three data sets and 
25,470 (44.5%) common to WGS7DS and in-house GBS 
(Fig. 1d).

Integer Linear Programming (Fig. 1e) was used to select 
2,000 target SNPs from the filtered set that fulfilled the 
constraints of (i) at least 1 SNP per 500 kb, (ii) maximum 
number of polymorphic homozygous SNPs in pairwise 
comparisons between all sample entries (N = 590) and (iii) 
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Fig. 1 HASCH design. The initial SNP set comprised (Grey area in a) the merger of in-house GBS, with their intersections with public WGS (WGS7DS) 
and RNAseq (21TRICH) data. The (b) Call Rate and (c) Minor Allele Frequency (MAF) distribution were plotted and a cut off of at 0.6 Call Rate and 0.2 MAF 
(blue lines and arrows) were used as a filter. (d) The filtered set consisted of 57,251 SNPs, with 25,470 common to GBS and WGS, and 31,781 common to all 
three datasets. (e) Integer Linear Programming was used to select 2,000 SNPs from the filtered set, maximizing the number of pairwise polymorphisms. (f) 
After primer design, 1,504 targets were retained, and their MAF plotted against genotype frequencies, with Hardy-Weinberg proportions superimposed 
as lines. Orange = aa (q2). Green = Aa (2pg), Blue = AA (p2)
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minimize number of SNP in 100 bp regions flanking tar-
get SNPs.

After the proprietary amplicon selection process from 
Diversity Array Technologies (DArT), 1504 targets (75%) 
were retained (Supplementary file 8). Of these 1,289 
(86%) were common to GBS, WGS, and RNAseq and 
215 (14%) common to GBS and WGS. Plotting genotype 
frequency by MAF revealed a near Hervey Weinberg 
distribution skewed towards high minor allele frequen-
cies (MAF) and low heterozygous (2pq – green) rates 
(Fig. 1f ).

Of the 1504 SNPs, 1,069 markers (71%) localized 
within coding region of annotated CBDRx gene models, 
and 435 (29%) were located within intergenic regions 
(Supplementary file 9). Transition SNPs comprised 63% 
of the SNPs, including 476 A/G and 476 C/T. Transver-
sions SNPs made up 37% of the total polymorphisms 
with 122 A/C, 115 G/T, 204 A/T, and 111 C/G.

Autosomal chromosomes had between 110 and 194 
markers per chromosome, while the X-chromosome con-
tained 203 markers (Fig. 2a, Supplementary file 8). Three 
markers located on scaffolds not assigned to CBDRx 
pseudochromosomes. The average physical distance 
between two adjacent SNPs across the whole genome in 
the HASCH set was 566 kb (Fig. 2b). More than 50% of 
the markers are spaced from each other at a distance of 
474 kb or less.

Type I = THC dominant; Type II = THC-CBD balanced; 
Type III = CBD dominant, Hemp types = CBD dominant, 
Drug types = THC dominant, NLD = Narrow leaf drug 
type; BLDT = Broad leaf drug type.

To test the utility of the final HASCH in discriminating 
within a broad germplasm set we extracted the respec-
tive HASCH SNP data (N = 1504) from the publicly avail-
able WGS7DS data on 383 accessions and constructed 
a multi-dimensional scaling (MDS) plot across the first 
three principal components (PC) (Fig.  3). Entries were 
color-coded using the annotations of Cannabis types 
provided by the data owners. PC1 broadly separated 
low-THC Hemp-types (Type III, Hemp-type and Hemp), 
including “Basal Cannabis”, from high-THC Drug-types 
(Type I, Drug-type, Narrow leaf Drug type (NLDT), 
Broad Leaf Drug type (BLDT) and Feral Drug types). 
Type II accessions of intermediate THC and CBD con-
tent were found dispersed across both the Hemp-type 
and the Drug-type clusters. PC 2 separated Basal Can-
nabis from Hemp-types. PC2 and PC3 distinguished well 
within Hemp-types and Drug-types. Unknown samples 
scattered throughout the plot and were easily associ-
ated with certain Cannabis types based on their cluster 
proximity.

Fig. 2 HASCH SNP distribution. (a) Genome-wide distribution of the final 1,504 target SNPs across the CBDRx reference, and (b) corresponding distribu-
tion of intervals between adjacent SNPs
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HASCH platform validation
SNP call rates and heterozygosity were empirically deter-
mined in the HASCH using 376 independent DNA sam-
ples (Supplementary file 10). The mean call rate across 
all SNPs was 97% (Supplementary file 11), and the mean 
heterozygosity observed among SNPs was of 25%.

Genotypic concordance between HASCH outputs and 
GBS outputs was estimated and averaged across overlap-
ping SNPs in 163 commonly genotyped samples (Fig. 4). 
Filtering for 0.9 Call rate in HASCH and GBS resulted in 
a set of 1,385 overlapping SNPs. Concordance and Non-
Reference Discordance (NRD) [44] values across SNPs 
(N = 1,385) averaged at 0.916 (Fig. 4a) and 0.116 (Fig. 4b) 
respectively. Average concordance across samples 
(N = 163) was 0.925 (Fig.  4c) while average NRD across 
samples was 0.097 (Fig. 4d).

To compare utility for phylogenetic studies, the GBS 
data for one replicate each of the 55 IPK accessions were 
filtered for MAF above 0.3 and call rate of 1.0, resulting 
in 5,582 SNP. HASCH data for the same 55 accession 
and replicate was filtered for 0.9 call rates and 0.2 MAF 
resulting in 1,252 SNPs. Phylogenetic trees obtained with 
both SNP set were near identical (Fig. 5a) and genetic dis-
tances based on identity by descent (IBD) where highly 
correlated (Fig.  5b) with the squared Spearman’s rank 
correlation (r2_sp) at 0.833 and the squared Pearson’s 
correlation coefficient (r2_p) at 0.829.

To test the utility of HASCH in determining levels 
heterozygosity we compared the filtered HASCH and 
GBS genotyping datasets for the same samples. While 
the average percentage of heterozygosity in the 55 lines 
for the 1,252 HASCH SNPs was 31.5% (Supplementary 
Fig.  1a), it was 40.1% for the 5,582 GBS SNPs (Supple-
mentary Fig. 1b).

In addition, we genotyped a small set of lines that had 
been successively inbred from F1 to F4 (Supplementary 
Fig.  2), demonstrating that HASCH was able to moni-
tor reducing levels of heterozygosity through successive 
rounds of inbreeding from around 30% at F1 to around 
less than 10% at F4.

HASCH genotyping information on 87 diverse Hemp-
type accession were used in pairwise comparisons to 
assess the number of polymorphic SNPs between any 
two accessions. The average polymorphic SNPs across all 
pairwise combinations (N = 3,741) was 272 (Fig. 6a).

Similarly, HASCH information on 116 diverse Drug-
type accessions filtered from the WGS7DS dataset 
revealed an average number of polymorphic SNP in pair-
wise comparisons (N = 6670) of 251 (Fig. 6b).

Genetic map and QTL mapping using HASCH
The utility of the HASCH for the construction of a 
genetic map was determined using HASCH data on 
a feminized F2 population derived from a cross of a 

Fig. 3 In silico analysis of HASCH utility to discriminate diverse Cannabis germplasm. Multi-dimensional scaling plot showing the first three principal 
components (PC) using the ,1504 target SNP of the HASCH taken from publicly available genotype data from diverse accessions with respective chemo-
type classifications (N = 383). Blue colorations indicate Hemp types (dark blue = Type III, blue = Hemp-type, turquoise = hemp); red colorations indicate 
drug types (salmon = Type I, red = Drug type, orange = Drug type feral, light pink = NLDT (Narrow leaf drug type), dark pink = BLDT (Broad leaf drug type); 
Green colorations indicate intermediate and basal types (dark green = Type II; green = Basal Cannabis); dark grey coloration indicates “unknown”. Type 
I = THC dominant; Type II = THC-CBD balanced; Type III = CBD dominant, Hemp types = CBD dominant, Drug types = THC dominant, NLD = Narrow leaf 
drug type; BLDT = Broad leaf drug type
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CBD-dominant line (IPK_57) and a THC-dominant line 
(IPK_36). From the 153 F2 samples, one sample had no 
genotype call in all markers. Sample diagnosis resulted 
to dropping five samples identified to have 80–100% 

matching genotype data with other sample, as well as one 
sample with no genotype call in all markers.

Filtering for monomorphic markers and markers with 
less than 90% sample call rate, resulted in 647 SNPs, 
which were further reduced to 313 SNPs by filtering in 

Fig. 4 Concordance and non-reference discordance (NRD) between GBS and HASCH of samples that were genotyped with both platforms. Concordance 
by (a) SNP site (N = 1385) and (b) Samples (N = 163) as well as non-reference discordance (NRD) by (c) SNP site (N = 1385) and (d) Samples (N = 163) for 
common SNPs filtered to above 0.9 Call Rate in the HASCH data. bcftools stats was used to get the Per Site Discordance (PSD), and Genotype concordance 
by sample (GCsS). Black lines indicate averages (avg.)
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preparation for linkage map construction in ASMap 
(Supplementary file 12). These 313 SNPs were anchored 
to 12 linkage groups in linkage map construction in R/qtl 
[45]. Two of these linkage groups were composed of two, 
and one unlinked marker respectively, and were later 

dropped in the map. The remaining ten linkage groups 
corresponded to nine autosomes and the X chromo-
some of the C. sativa genome. Based on marker naming, 
which carried the chromosome and physical position, no 
marker was misplaced on another chromosome. The plot 

Fig. 5 Comparison of HASCH with matching GBS genotyping data of the same sample for each IPK accession for phylogenetic and genetic distance 
analysis. (a) Phylogenetic tree comparison using filtered GBS (MAF > 0.3, no missing call, 5582 SNPs) and HASCH (MAF > 0.2, call rate > 0.9, 1252 SNPs). 
Branches with the same set of nodes are coloured the same. (b) Corresponding correlations (r2_sp = Spearmans, r2_p: Pearsons) of genetic distances 
(Identity by Descent) between the GBS and HASCH results
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linkage map was arranged based on chromosome num-
ber (Fig. 7a). The linkage map covered a total of 582.7 cM 
of the genome. Chromosome 6 with 73 cM was the lon-
gest, while chromosome 7 with 37.3 cM was the shortest. 
The mean inter-marker distance across all chromosomes 
was 1.93  cM, with the largest inter-marker distance of 
26.9 cM observed in chromosome X.

Utilising this linkage map, a single putative QTL for 
cannabidiol content, qCBD7, was consistently discovered 
in chromosome 7 in all methods explored in our QTL 
analysis. This QTL had an LOD score of 21.9, well above 
the threshold based on 1000 permutation test at 5% sig-
nificance level, and explained 57% of the phenotypic vari-
ance for the cannabidiol content in the F2 population. 
The Bayes credible confidence QTL interval estimate 
was located between 21.3 and 24.7 cM of chromosome 7, 
with maximum likelihood estimate at 22.5 cM. Scrutiniz-
ing markers located at the short genetic distance covering 
the QTL confidence interval revealed three peak mark-
ers at 22–38  Mb physical position (Fig.  7b), as well as 
one peak marker at 63 Mb. The phenotypic values for the 
allele states of the peak marker at 63 Mb demonstrated a 
good marker trait association (Fig. 7c).

Discussion
While genotyping technologies and software can now 
identify millions of genetic markers, there is need to 
reduce marker densities to be manageable, informative 
and cost-efficient for routine applications. The qual-
ity, informativeness and utility of fixed SNP sets largely 
depends on input data selection and SNP selection meth-
ods from the input data.

For input data selection we decided on a combination 
of publicly available and de-novo generated raw datasets 

called in-house against the CBDRx reference (Fig.  1). 
The bulk of input data was low coverage WGS7DS data 
(65% of samples and 94.2% of SNPs). The 21TRICH 
RNAseq data (4% of samples and 5.4% of SNPs) and in-
house GBS data (31% of samples and 0.2% of SNPs) of 
higher read depth served to build confidence into the 
SNP calls. The incorporation of RNAseq expression data 
further anchored the majority of SNPs (71%) in existing 
gene models. This was intentional to reduce the number 
of heterozygous calls and increase the number of poly-
morphic SNPs in pairwise comparisons. SNPs in cod-
ing regions are subject to selection pressure and thus are 
more likely to get fixed through either natural or artificial 
selection [50]. The in-house GBS data further served as 
comparator to the HASCH data generated on the same 
DNA samples for downstream validation (Figs. 4 and 5).

Feature selection methods have been applied to opti-
mize marker panels for specific end uses and can be 
classified into filters, wrappers or embedded methods 
[51]. The traditional and fastest approach is the filtering 
method. Each marker has some statistical or biological 
attributes, and filtering sets a cut-off for continuous, or 
specific values for categorical properties. The selection 
is independent for each marker. For SNPs the typical fil-
tering criteria include Minor Allele Frequency (MAF), 
heterozygosity rates, read depth, distribution across the 
genome, local SNP density and Linkage Disequilibrium 
(LD). Wrapper methods create models that consider only 
a subset of markers as inputs to fit with training datas-
ets, with the objective of finding the smallest subset that 
best fits the training set. Wrapper methods tradition-
ally use statistical linear models, for example Best Lin-
ear Unbiased Prediction (BLUP) in genomic selection. 
Heuristic models utilizing machine learning approaches 

Fig. 6 Marker utility in pairwise sample comparisons. Pairwise homozygous SNP mismatches within (a) industrial Hemp Diverse set (N = 87) based on 
HASCH genotyping data and (b) medicinal Cannabis diverse set (N = 116) based on HASCH training data. For N samples, the number of homozygous 
mismatches between every N(N-1)/2 sample pair combination were counted. Black lines indicate averages
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and artificial intelligence, specifically decision trees and 
genetic algorithms have been used recently [52, 53]. 
Embedded methods combine filters to reduce input size, 
and wrapper methods for accuracy with respect to the 
training set. The training set are usually phenotypes of 
interest and must be available for the samples used in the 
genotype dataset.

While there are many potential applications from 
heuristic methods to address SNP selection challenges, 
employing optimization based on mathematical pro-
gramming remains limited. Most notable is the iden-
tification of haplotype blocks and selection of tag SNPs 
using software like Haploview and Tagger [54–57]. Infor-
mative SNPs were also selected for paternity inference 

Fig. 7 Genetic map and QTL mapping for CBD content in a F2 mapping population. (a) Genetic map of a segregating F2 population derived from an 
THC-dominant IPK_CAN_36 (Male) and CBD-dominant IPK_CAN_57 (Female) cross based on 313 markers. (b) The genetic markers in their physical loca-
tion in the genome. (c) The genetic position of qCBD content for F2 lines of different peak marker alleles at 62 Mb (N = 212)
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using integer linear programming (ILP) by Nishiyama 
[58]. ILP has wide application to computational biology 
[59], but to our best knowledge has not been utilized to 
solve marker selection problems in genotyping platform 
design.

Subset selection from the discrete set of markers 
to optimize an objective function is a combinatorial 
problem. Recent algorithms from Machine Learning 
approaches such as genetic algorithms and decision trees 
can be used on these problems, however they need heu-
ristics and implementation-specific settings to represent 
specific biological requirements. ILP enabled formula-
tion of our requirements into simple linear equations. 
Our main goal was to identify a minimal set of SNPs that 
could differentiate all samples from WGS, RNAseq and 
in-house GBS data. For design purposes, we fixed the 
number of markers to be at most M = 2000, 

∑
x ≤ M

, and formulated a related problem of maximizing the 
count of polymorphisms, ctPWx , across all sample 
pairs. Additional considerations to satisfy included: (i) all 
sample pairs must be distinguishable by a subset of mark-
ers in the solution PX ≥ 1; (ii) for application to QTL 
mapping the markers must be evenly distributed across 
all chromosomes; (iii) the presence of variants in proxim-
ity to target variants should be minimal as they can inter-
fere in primer design and hybridization, represented with 
diagonal matrix W with weight wkk for marker k.

We used our ILP approach on a filtered set of 57,251 
SNP (Fig.  1) to determine a subset of 2,000 SNPs that 
maximizes homozygous mismatches. After primer 
design, the resulting final 1504 SNP had an even cover-
age of the genome with an average of 567 kb between two 
adjacent SNP and a minimum of 110 SNPs per chromo-
some (Fig.  2) at an average MAF of 0.32. Uniform SNP 
distribution in combination with high MAF maximizes 
utility for most breeding and pre-breeding applications. 
In QTL mapping this increases the number of poly-
morphic SNPs between any two potential parents and 
enhances the chances to detect recombination events 
while minimizing the distance of peak markers to the 
causal variation. In phylogeny, equal distribution and 
high MAF ensure that a diverse set of genetic markers is 
available, enhancing the resolution and accuracy of phy-
logenetic trees especially if certain regions are overrep-
resented or underrepresented. Rare variants may have 
limited impact on association studies, so a higher MAF 
improves statistical power in association or genomic 
selection studies. Twenty-three gaps of over 2  Mb were 
found after filtering with the proprietary primer design 
(Fig. 2, Supplementary data 8). There is an opportunity to 
fill these gaps in genome coverage through supplemen-
tation. Unlike fixed arrays, the amplicon-based design is 
flexible, allowing for inclusion of additional markers to 
fill gaps, replace markers of low call rate and to add value 

through addition of specific trait markers as they become 
available to the public domain. The designed density and 
even distribution was seen as suitable for biparental QTL 
mapping studies, which was further empirically tested. 
Although the HASCH primer design and running in 
production were outsourced to DArT, the 2000 SNP tar-
gets we provide (Supplementary file 13) can be utilized 
to design in-house amplicon panels. Open source primer 
design software and protocols for highly multiplexed 
PCR like PrimerMapper, V-primer or Ultiplex, based on 
Primer3 [60–63], are available and should provide work-
able solutions. In HASCH primer design 496 of the origi-
nal 2000 targets (25%) were excluded. While it is likely 
that different primer selection approaches would result 
in slightly different final sets, it is not expected overall 
performance for the demonstrated use cases would be 
affected.

To test the utility and accuracy of the HASCH, results 
were compared to GBS results acquired for the same 
samples. Concordance was high, in respect to both 
SNP (Fig.  4a) and samples (Fig.  4b) indicating that the 
HASCH reliably calls SNPs, including heterozygous 
alleles. However, at 92% average SNP concordance was 
lower than reported for a comparable amplicon panel 
in rice (1k-RicA) where rates of 99% were reported [64]. 
This is likely due to the fact that inbreeding rice has sig-
nificantly lower rates of heterozygosity, then outcrossing 
C. sativa. In the respective studies rice had an average 
heterozygosity rate of 1.5%, while for C. sativa it was 25%. 
Heterozygous calls are more difficult to ascertain than 
homozygous calls. In addition, the rice study was able 
to draw on a higher abundance of high-quality data for 
design. In terms of call rate, HASCH at 97% and 1k-RiCA 
with an average call rate of 95% were comparable.

A HASCH-based MDS plot, filtered from the WGS7DS 
data, was able to discriminate between and within drug- 
and hemp-types (Fig.  3) suggesting broad utility across 
the genetic diversity of the C. sativa gene pool.

To demonstrate the versatility of HASCH in genetics 
and pre-breeding applications a number of case studies 
were investigated. Comparison between phylogenetic 
trees constructed either by heavily filtered GBS SNP data 
(N = 5,582) or less stringent filtered HASCH SNP data 
(N = 1,252) with 404 overlapping SNP targets, showed 
high levels of congruence in tree structure (Fig. 5a). This 
finding was further supported by high levels of correla-
tion in genetic distances between entries calculated 
using either data set (Fig. 5b). However, when compared 
to untargeted GBS, HASCH seemed to underrepresent 
the true rates of heterozygosity (Supplementary Fig.  1). 
This type of ascertainment bias (or sampling bias) was 
expected due to HASCH design criteria (Fig.  1), which 
selected for fixed SNPs that maximize pairwise homozy-
gous mismatches within the available dataset. However, 
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when tested on successively inbreed cultivars HASCH 
was able to detect a reduction of heterozygous loci for 
each round of inbreeding.

The HASCH was specifically designed to have high lev-
els of homozygous polymorphic SNP between any two 
parents (Fig.  6). While the average number of polymor-
phic SNPS between any two industrial Hemp or medici-
nal Cannabis accession was only in the order of around 
250 SNPs (Fig.  6) the number is likely to be higher in 
actual crosses, where parents tend to be genetically more 
distant.

Parents of the F2 population in our proof of concept 
study shared a total of 647 polymorphic SNPs. The 313 
segregating markers comprised a genetic map of 10 link-
age groups, which is consistent with published de-novo 
assemblies [18] and genetic maps [18, 29, 31]. With a 
total size of 582.7 cM the genetic map was considerably 
smaller than that of published Cannabis sativa genetic 
maps based on WGS/GBS data. Using 1,235 total segre-
gating markers Grassa et al. [18] reported a linkage map 
consisting of 10 linkage groups with a map distance of 
818.6 cM and a mean inter-marker distance of 0.66 cM. 
Woods et al. [29] used 1,817 markers in the genetic map 
that identified 10 linkage groups. While they did not 
report the total distance of their genetic map, their Fig. 2 
suggests to be > 1000 cM. While typically a shorter map 
length map is preferred [65], differences in map lengths 
could be attributed to difference in the chromosomal 
recombination frequency that are specific to each map-
ping population used, the genetic distance between the 
parents, size of the population, as well as marker type and 
density used [66].

QTL mapping using HASCH platform for total CBD 
content reliably detected qCBD7, a major QTL on 
Chromosome 7 with a short genetic distance (3.4  cM) 
of confidence interval with very high phenotypic vari-
ance explained (Fig. 7a). Three peak markers in our QTL 
confidence intervals had physical positions at 22-38 Mb, 
overlapping with the genomic region at 26-31  Mb har-
bouring 13 cannabinoid synthase homologs in the 
CBDRx genome reported by Grassa et al. [18], dem-
onstrating the utility for HASCH in QTL mapping and 
detection. An additional peak marker is at 63 Mb showed 
good marker trait association (Fig. 7b), which merits fur-
ther investigation.

Collectively, comparison between GBS and HASCH 
performance and a number of genetic case studies sug-
gest HASCH to be of high utility in applied C. sativa 
research and development. With 1504 genome-wide tar-
get SNPs HASCH sits at the lower end of mid-density 
genotyping platforms and fills a gap that is not covered 
by untargeted approaches such as GBS or higher den-
sity arrays that range in the order of several 10,000 SNPs 
and are typically one order of magnitude more expensive 

[67, 68]. Conversely running multiple single target assays 
(e.g. KASP or PACE markers) is not cost efficient any-
more above a maximum of ~ 50 targets [6, 69]. Amplicon 
based SNP platforms in the range of 100–2000 SNPs have 
been demonstrated as versatile tools in pre-breeding 
and breeding applications for a number of crops includ-
ing rice [64], buckwheat [70] and Japanese cedar [71]. 
At 384-plexing the HASCH platform is suitable to run 
two QTL mapping populations per batch. As opposed to 
untargeted approaches such as GBS, fixed SNP sets has 
the advantage of generating a complete SNP matrix of 
the same positional composition every run with minimal 
processing of raw data required. This makes amplicon 
panels accessible to researchers with minimal computa-
tional infrastructure and capacity. Furthermore, it greatly 
facilitates downstream analyses and enables meta analy-
ses between experiments and/or populations. These fea-
tures make HASCH attractive for breeding applications 
such as genomic prediction. While we did not test for 
HASCH utility in this respect, the 1kRiCA for rice [64], 
a SNP amplicon panel of similar design with an average 
physical marker interval of 372  kb, was demonstrated 
to predict performance for major agronomic traits with 
acceptable accuracies. Thus, investigating HASCH, with 
an average interval of 566  kb, for suitability in genomic 
prediction applications, such as the generation of 
genomic estimated breeding values (GEBV), is merited. 
Low cost per sample and fast turn-around time of geno-
typing solutions are crucial in a breeding context, where 
costs per sample constrain population sizes and in-sea-
son data analysis is required to make selection decisions 
for the next cycle. In our experience, running HASCH 
over GBS reduces genotyping cost by 5–8 times per 
sample, at a turnaround of 2–3 weeks compared to 2–3 
months for GBS. The script to generate the input file for 
ILP optimization from vcf file is available at DOI (https://
doi.org/10.5281/zenodo.11149359). It is expected to be 
usable for any vcf file regardless of species, ploidy, chro-
mosome number, or nomenclature, and is limited only by 
the information available in the vcf and plink files. Het-
erozygosity affects the solution by limiting the marker 
choices to avoid potential interference during primer 
hybridization. They are ignored in mismatch count 
except when essential, and could be revised to penalize 
their presence thus favoring highly homozygous targets, 
if desired.

Taken together our ILP approach resulted in HASCH, 
a genotyping solution of high utility for selected use cases 
and potential for other breeding applications. We expect 
ILP will serve as a valuable tool in the development of 
custom genotyping platforms for other underdeveloped 
plant and animal species.

https://doi.org/10.5281/zenodo.11149359
https://doi.org/10.5281/zenodo.11149359
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Conclusion
Our study demonstrates the feasibility of Integer Linear 
Programming (ILP) to design a mid-density genotyping 
panel from heterogenous source data. In the absence of 
readily available high-confidence targets, and provided 
the design criteria and objectives can be expressed as 
linear equations, ILP is more explainable than machine 
learning and less biased than filtering methods. This 
makes ILP an attractive approach for the design of 
genotyping solutions for other species of limited public 
domain NGS data. Further evaluation using more con-
straints or weights is recommended as more information 
about the markers or samples becomes available.

HASCH is the first publicly available mid-density geno-
typing platform for C. sativa. Its design specifications and 
validation results across a broad range of distantly related 
cultivars suggest robust utility for a variety of applications 
in medicinal cannabis and industrial hemp research and 
development, particularly in respect to genetic resource 
management and (pre-) breeding. Through a number 
of phylogenetic and quantitative genetic case studies 
we demonstrated that HASCH performs comparable 
to high-density untargeted genotyping platforms, while 
being cheaper and faster and requiring minimal bioinfor-
matics capacity for data management and analysis.
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