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Diabetes and its complications have become a worldwide concern that influences human
health negatively and even leads to death. The real-time and convenient glucose detection
in biofluids is urgently needed. Traditional glucose testing is detecting glucose in blood and
is invasive, which cannot be continuous and results in discomfort for the users.
Consequently, wearable glucose sensors toward continuous point-of-care glucose
testing in biofluids have attracted great attention, and the trend of glucose testing is
from invasive to non-invasive. In this review, the wearable point-of-care glucose sensors
for the detection of different biofluids including blood, sweat, saliva, tears, and interstitial
fluid are discussed, and the future trend of development is prospected.
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INTRODUCTION

Diabetes has become one of the most common chronic diseases caused by modern lifestyles (Bonora
et al., 2021). The reduction in the number of the pancreatic β-cells leads to the shortage of insulin or
the resistance from the target cells and results in type-1 diabetes or type-2 diabetes, respectively (Xiao
et al., 2019a). Globally, 5–10% of the patients with diabetes have type-1 diabetes, while type-2
diabetes comprises 90–95% global diabetes (American Diabetes Association, 2014). Together with
the complications, diabetes leads to a large number of premature mortalities in humans every year
and is be the 7th leading cause of death according to the prediction of theWorld Health Organization
(WHO) (Van Dieren et al., 2010; Adeel et al., 2020). As a result, continuousmonitoring of the glucose
level in biofluids is much needed (Kim et al., 2019; Villena Gonzales et al., 2019; Phan et al., 2021).
The most traditional detected biofluid is blood. However, the collection of blood is invasive and thus
causes discomfort and inconvenience for the users. Furthermore, invasive collection hinders
continuous monitoring of blood glucose (Lee et al., 2018). Consequently, more research studies
are toward sweat (Bariya et al., 2018), saliva (Mani et al., 2021), tears (Guo et al., 2021), and
interstitial fluid (Kim et al., 2018) as alternatives to develop non-invasive, continuous, wearable, and
point-of-care monitoring of glucose (Yoon et al., 2020).

Unlike the traditional diagnostic tests which need to analyze the sample in a laboratory and obtain
the results after hours and even several days, point-of-care testing (POCT) has been applied in
resource-limited areas and hospital emergency rooms (Narinx et al., 2020; Raiten et al., 2020;
Holmström et al., 2021). Although the pain brought by blood collection can be alleviated, it is not
suitable for continuous blood glucose monitoring, especially during exercise (Muñoz Fabra et al.,
2021). Besides the fast analysis time and less pain for patients, compared with the routine diagnostic
test, point-of-care testing is normally easy to use, portable, and inexpensive and has less risk for
infections (Darwish et al., 2018; Nichols, 2020; Shrivastava et al., 2020). Therefore, point-of-care
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testing displays great potential not only in continuous, long-term
monitoring of various kinds of diseases including diabetes (Zhang
et al., 2020) but also in food safety analysis and environmental
monitoring (Xu et al., 2020; Zaczek-Moczydlowska et al., 2021).

In this review, wearable glucose sensors in point-of-care
testing are divided into six classifications according to the
sensing target: blood, sweat, saliva, tears, interstitial fluid, and
urine. Additionally, the prospect of wearable glucose sensors
toward POCT is outlook.

BIOFLUIDS DETECTED

Blood
The glucose level in blood is themost traditional indicator and the
gold standard for diabetes (Lee et al., 2018). Although blood
testing is invasive, blood glucose testing possesses satisfactory
sensitivity both for testing in the laboratory and the finger prick
test at home, is reliable and low cost, and is a well-established
technique (Wang and Lee, 2015). Therefore, blood glucose is
regarded as the gold standard for diabetes diagnosis, and the
wearable sensors toward the detection of blood glucose play a
significant part in the health care of diabetes patients (Makaram

et al., 2014). Blood glucose testing is mostly used in our daily life
and has also been applied for point-of-care testing. However, the
sensitivity of commercial blood glucose instruments is not high
enough so the patients should test their blood glucose level several
times to make the result precise. The commercial blood glucose
instruments are unwearable and not portable, thus causing
inconvenience for users. Some studies have been conducted to
address these concerns.

For example, in Hekmat et al., a point-of-care platform toward
the sensing of blood glucose was constructed (Hekmat et al.,
2021). Using a micro-assisted method, ternary nickel cobalt
sulfide was decorated on the commercial cotton fabrics to
form the Ni-Co-S@CFs electrodes (Figure 1(i)). The method
was facile and just needs one step. The unique structure of the
electrode enabled the sensor with satisfactory repeatability, long-
term stability, outstanding selectivity, low detection limit, and a
wide sensing range, and it can be used in alkaline media. Besides,
this sensor could also detect the glucose level in saliva. Although
all these advantages and many other evolutions have been made
for the blood glucose sensor, the traditional blood sample
collection method is invasive and thus causes discomfort for
the patients and increases the risk of being infected (Lee et al.,
2018). The invasive collection method also prevents the

FIGURE 1 | (i) Schematic diagram showing the fabrication process of Ni-Co-S@CF electrodes (Hekmat et al., 2021). (ii) Prospective toward the long-term glucose
monitoring application of point-of-care wearable glucose sensors, iGLU 2.0 (Joshi et al., 2020).
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point-of-care detection from being continuous (Rodin et al.,
2019). These are also shortcomings in the commercial blood
glucose instruments. As a result, Joshi et al. designed a new
wearable point-of-care device for the non-invasive and
continuous measurement of blood glucose (Joshi et al., 2020).
The wearable sensor was based on near-infrared (NIR)
spectroscopy and incorporated with an Internet of Medical
Things (IoMT) to sense, transmit, and restore the data from
patients on the cloud. In this way, the data could be available for
patients and medical personnel, and continuous monitoring of
glucose could be achieved [Figure 1(ii)]. The following
experiments demonstrated that the point-of-care device was
cost-efficient and precise and could detect blood glucose in a
wide range from 80 to 420 mg/dl. The device was called iGLU 2.0
and indicated a broad prospect in smart health care in the future.

Apart from blood, sweat (Bariya et al., 2018), saliva (Mani
et al., 2021), tears (Guo et al., 2021), interstitial fluid (Kim et al.,
2018),and urine (Zhang et al., 2021a) can also be indicators for
diabetes as their chemistry is closely related to blood and thus all
being the target for the point-of-care testing. Moreover,
compared with blood, the collection of these body fluids does
not need to destroy the stratum corneum so that is easier to
achieve non-invasive and continuous detection of glucose. As a
result, more researchers tend to fabricate non-invasive point-of-
care wearable glucose sensors toward the detection in these body
fluids, especially sweat.

Sweat
The research studies toward the point-of-care wearable sweat
glucose sensor are the most common among the other body fluids
(Morse et al., 2016; Lee et al., 2017; Thulasi et al., 2017; Bhide
et al., 2018a; Bhide et al., 2018b; Xuan et al., 2018; Zhang et al.,
2018a; He et al., 2019; Xiao et al., 2019b; Veeralingam et al., 2020;
Bauer et al., 2021; Zheng et al., 2021) because compared with
saliva, tears, and interstitial fluid, sweat is easier to access and will
not cause discomfort for patients and the detection of sweat
exhibits less risk for infection (Arakawa et al., 2016; Yu et al.,
2019; Zheng et al., 2021). Despite all these advantages, there exist
some disadvantages/challenges to the application of point-of-care
wearable sweat glucose sensors. Without iontophoretic
stimulation, sampling will be irregular for individuals during
the day (Heikenfeld, 2016) and the sample production rate will be
extremely low (Sonner et al., 2015). The method to dissolve these
problems is to increase the sensitivity of the sweat glucose sensor
so that the volume of sweat samples needed for glucose detection
can be decreased. In order to increase the sensitivity, researchers
try to use filter papers and distinct classification of films, patches,
and nanosheets as substrates of the sweat glucose sensors.
Furthermore, the thickness of these basic materials is
extremely low, especially for the nanosheets, a kind of two-
dimensional material, so that the size of the sweat glucose
sensors decreases, and thus easier to achieve wearability.

Paper-based substrates are one of the optimal basis materials
for the wearable glucose sensor, and there exist a large number of
wearable point-of-care glucose sensors based on the filter paper
fabricated by researchers (Cho et al., 2017; Zhang et al., 2018a;
Zhang et al., 2019; Zheng et al., 2021). For instance, a

self-powered, low-cost, and facile wearable sensor for the
point-of-care detection of glucose levels in sweat was reported
to be developed by Zhang et al. (2018a). Au/multiwalled carbon
nanotube (MWCNT) glucose dehydrogenase was applied to
monitor the glucose in sweat [Figure 2(i)]. The use of Au/
Prussian blue indicating electrodes enabled the users to regard
the color change as the indicator of glucose level. As a result, there
was no need for other instruments, thereby reducing the weight
and cost of the sensor. The electrodes were deposited on the filter
paper to improve the sensing performance of the sensor. The
sensing component was assembled with an energy component by
a transparent adhesive tape so that the sensor could be self-
powered and display remarkable sensing performance, holding
promise in the application of point-of-care testing. Similarly,
Zheng et al. fabricated a point-of-care device based on filter paper
and carbon nanotubes (CNTs) for the detection of the glucose
level in sweat (Zheng et al., 2021). A new wearable cloth-based
electrochemical sensor (WCECS) containing superior sweat
collection and transport channel was applied to analyze the
glucose level in sweat. Sweat was transported into a cloth-
based chip which was constructed by the facile and low-cost
screen printing technology [Figure 2(ii)]. Therefore, the sensor
not only exhibited prominent stability, reproducibility, and
selectivity but also was low cost and can monitor for 9 h
continuously. The paper-based point-of-care device (PAD)
with the cotton thread as the microchannel for sweat harvest
is a satisfactory choice to sense the glucose level in sweat. In Xiao
et al., a microfluidic thread/paper-based analytical device
(μTPAD) made of filter paper and a cotton thread was
fabricated (Xiao et al., 2019b). By optimizing the amounts of
reagents and enzymes on the functionalized filter paper, the
highest colorimetric sensing performance toward sweat glucose
was found, while the wicking properties of the cotton thread were
also optimized with the assistance of the oxygen plasma.
Additionally, by integrating with an arm guard and the
application of a smartphone, a low-cost, non-invasive, and
easy-to-use point-of-care glucose sensing system with excellent
compatibility and wearability was established.

Besides the filter paper, distinct kinds of films can also be the
basic materials of the wearable point-of-care device toward the
sensing of sweat glucose (Bhide et al., 2018a; Veeralingam et al.,
2020; Müsse et al., 2021). For instance, Veeralingam et al. first
reported a wearable multifunctional sensor platform enabled with
artificial intelligence/machine learning (AI/ML) (Veeralingam
et al., 2020). This sensor could continuously monitor pH and
glucose levels in sweat and the hydration level of the skin with
high speed and accuracy. A facile hydrothermal method was
applied to synthesize RuS2 nanoparticles (NPs), and the RuS2 NPs
were deposited on the PDMS film substrates by layer-by-layer
spin coating technology. The application of K-nearest neighbors
(KNN) which is based on artificial intelligence in the open-source
microcontroller board (QueSSence) greatly ensured the precision
and fast data acquisition of glucose, and it was demonstrated that
the wearable sensor platform possessed prominent reusability
and stability at room temperature [Figure 3(i)]. Moreover, Bhide
et al. integrated zinc oxide films into a flexible nanoporous
electrode to form an electrode system (Bhide et al., 2018a).
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FIGURE 2 | (i) Schematic illustration demonstrating the fabrication of the self-powered sensor for point-of-care sweat monitoring (A), a photograph of the
fabricated sensor (B), and photographs of the point-of-care sensor on the forehead of the volunteer when exercising 0 min (C), after 29-min exercise (D), and after 32-
min exercise (E) (Zhang et al., 2018a). (ii)Working of the WCECS in real time on the body. (A) Photograph of the WCECS attached on the back of a human subject. (B)
EC response of sweat glucose in the post-meal and fasting state. (C)Contrast of the sweat glucose concentrations sensed by theWCECS glucometer and glucose
test kit. (D) Comparison of the glucose concentrations detected in 1 day by the glucometer, glucose test kit, and WCECS. (E) Evaluation of durability of the WCECS
(Zheng et al., 2021).
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The sensing mechanism of the sensor was to measure the
impedance change resulting from the glucose bonding on the
surface of the electrode, which was detected by electrochemical
impedance spectroscopy [Figure 3(ii)]. Glucose oxidase enzyme
and alcohol oxidase enzyme were applied to functionalize the
surface of the zinc oxide film electrodes to improve the sensing
range of the wearable sweat glucose sensor from hypo- to
hyperglycemia (50–100 mg/dl), and when compared with the
data of a commercial breathalyzer, the calibration of the
sensor was excellent. As a result, this lancet-free glucose

sensor could monitor glucose levels with a low volume of
sweat and show great accuracy, wide sensing range, and low
detection limit in point-of-care testing.

A patch-based point-of-care device for the monitoring of
glucose levels in sweat was reported to be proposed by Lee
et al. (2017). The unique multilayer patche structure
minimized the sensor and remarkably increased the sensing
efficiency. Besides, the porous structure provided a large
number of electrochemical sites and thus higher enzyme
immobilization (Figure 4). According to the glucose level

FIGURE 3 | (i) (A) Different skin conditions for artificial skin and the sensor tied on the human skin. (B) Equivalent circuit representation of the designed RuS2/
PDMS-based hydration sensor. (C) Impedance value detected at the increase in humidity conditions on artificial skin at an alternating current frequency of 10 kHz. (D)
Capacitance and resistance as the function of the increase in relative humidity conditions when the sensor was tied on the human skin. (E) Capacitance and resistance
values of the human skin and artificial skin at distinct hydration environments (Veeralingam et al., 2020). (ii) (A) Immunoassay with the ability of the combined
monitoring of glucose and alcohol. (B) Sweat sensor array displaying fluid confinement in the active detection region, size comparison with one cent, and the flexibility of
sensor (Bhide et al., 2018a).
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detected by the glucose sensors, the device could also release the
precise, controlled, and multistage drug for the patients.
Hyaluronic acid hydrogel microneedles were coated with
phase change materials and two distinct temperature-
responsive phase change nanoparticles to achieve feedback
transdermal therapy. This wearable point-of-care device not
only provides a novel structure for the monitoring of sweat
glucose with high efficiency but also paves a way for the
closed-loop solution of diabetes management.

Nanosheets, two-dimensional (2D) materials, display
prominent catalyst properties due to their high

surface-to-volume ratio and thus numerous electrocatalyst sites
(Zhang et al., 2017; Liu et al., 2021a; Zhang et al., 2021b).
Consequently, innovative research studies toward the
application of 2D nanomaterials are increasing, especially in
the field of sensing application, including the wearable point-
of-care glucose sensor for the detection of sweat (Zhang et al.,
2018b; Xuan et al., 2018; Guo et al., 2019; Yang et al., 2019). In
Xuan et al., reduced graphene oxide (rGO) nanosheets were
coated with platinum and gold nanoparticles to form rGO
nanocomposites as the working electrode (Xuan et al., 2018).
After being microfabricated, the nanostructures were

FIGURE 4 | (A) Photograph of the wearable patch-based glucose sensor with a waterproof band and a sweat collection layer. (B) Photograph of wearable patch-
based glucose sensor under deformation. (C) Optical image of disposable patch-based glucose sensor on the human skin with sweat (Lee et al., 2017).

FIGURE 5 |Optical images and schematic diagrams displaying the wearable point-of-care biosensor toward the detection of glucose in perspiration. Photographs
(A,B) of the constructed wearable sensor. Schematic illustration of the whole wearable point-of-care sensor (C) and exploded view (D) (Xuan et al., 2018).
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micropatterned on a flexible polyimide substrate by a low-cost
and facile procedure. The working electrode was also integrated
with chitosan glucose oxidase composites to achieve sensing of
glucose. The unique structure and processing method endowed
the point-of-care device with a large detection range, remarkable
amperometric response to glucose, fast response, high linearity,
and high sensitivity (Figure 5).

Although plenty of research studies have been made for sweat
glucose sensing, several challenges prevent wearable point-of-care
sweat glucose sensors from being applied in daily life besides
the sampling problems. The skin can act as a contamination
source, leading to the contamination of sweat samples, and
new sweat can be mixed and contaminated by the old sweat
(Liu et al., 2020). Moreover, a huge change in sweat pH
(between 4.5 and 7.0) and the active analyte channels that
exist in eccrine glands will make a skew of glucose
concentration in sweat (Heikenfeld, 2016).

Saliva
Saliva is a very attractive biofluid toward point-of-care non-
invasive monitoring applications as researchers found that
saliva collected from diabetics has higher glucose
concentration values (Liu et al., 2015; Zhang et al., 2015).
Additionally, the simple non-invasive process of saliva
collection and the needlessness of sample pretreatment make it
possible for saliva’s extensive application in wearable point-of-
care sensors (Arakawa et al., 2016). However, in several cases,
saliva needs to be treated by either filtration or dilution (Ji and
Choi, 2015). Besides convenience, saliva is a challenging biofluid
for electrochemical measurements. Saliva is a kind of ultrafiltrate
of blood and contains mostly water (Czumbel et al., 2020). As a
result, the concentration of biomarkers is always much low in
saliva, which is the most significant shortcoming of saliva as a
detection biofluid (Chiappin et al., 2007; Miočević et al., 2017).
Moreover, the specific confounds by the oral cavity also

FIGURE 6 | (i)Schematic illustration indicating the μPAD assembled into amouth guard by a 3D-printed holder to form the wearable paper-based devices for point-
of-care testing of glucose concentration in saliva. (A), (B), and (C) illustrate the arrangement of the μPAD in the 3D-printed holder, the final device before and after
integration into the mouth guard, respectively (de Castro et al., 2019). (ii) Photographs (A) of the button-sensor, and schematic illustration showing (B) the assay
procedure (Wei et al., 2021).
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influences saliva as the point-of-care monitoring biofluid
(Miočević et al., 2017). Researchers are trying their best to
dissolve these problems.

For example, Castro et al. developed a microfluidic paper-
based wearable sensor for glucose monitoring (de Castro et al.,
2019). The reported device integrated microfluidic paper-
based devices (μPADs), the 3D printed holder, and the
silicone mouthguard for the realization of salivary
diagnostics. A mixture of 4-aminoantipyrine (AAP) and
3,5-dichloro-2-hydroxybenzenesulfonic acid (DHBS) as a
chromogenic solution was used in μPADs, and μPADs were
fabricated through simple and low-cost technologies. The 3D-
printed holder made insulation between the mouth and the
reagents, which eliminated the risk of the water-soluble
chemical assay reagents in these wearable sensors to the
health of patients. Without any pretreatment process, this
low-cost and partially recyclable wearable sensor represented
a major step forward in the field of point-of-care testing
devices [Figure 6(i)].

Apart from colorimetric measurements (Tian et al., 2016;
de Castro et al., 2019), the non-enzymatic electrocatalytic
reaction based on the metal–organic framework (MOF) is
another stable way for glucose sensing, which displays higher
sensitivity (Ling et al., 2020; Wang et al., 2020). In particular,
Wei group has made significant progress toward non-
enzymatic quantitative detection of glucose (Wei et al.,
2021). The team developed a cobalt metal–organic
framework–modified carbon cloth/paper (Co-MOF/CC/
paper) hybrid button-sensor as the simple and portable
electrochemical analytical chip. Co-MOF was an artificial
nanozyme featuring low cost, easy production, and high
environment tolerance and was an ideal succedaneum of
the commonly used enzyme in glucose detection. In
addition, the flexible Co-MOF/CC sensing interface of this
reported sensor, which was effectively integrated with the
patterned paper, provided adequate catalytic sites and a high
specific area [Figure 6(ii)]. Compared to the glucose detected
in serum, this portable button-sensor shows a comparable
accuracy to that of a commercial glucometer and presents a
promising platform for wearable POCTs.

FIGURE 7 | (i) Wireless representation circuit on the substrate. (A)
Schematic diagram illustrating the wireless display circuit. The stretchable,
transparent AgNF-based antenna and interconnects are in an elastic area,
while the LED and rectifier are located in the reinforced area. (B) Relative
change in transmitted voltage by antenna versus the applied strain. (C)
Characterizations of Si diode on the hybrid substrate by using 0 and 30% in
tensile strain. (D) Rectified properties of the constructed rectifier. (E) Optical
image of wireless display circuit on the hybrid substrate. Scale bar, 1 cm. (F)
Photos (left, off-state; right, on-state) of operating wireless display with
lens shape located on the artificial eye. Scale bars, 1 cm (Ruan et al., 2017). (ii)
Design of the structure of a smart contact lens with ultrathin MoS2

transistor–based serpentine mesh sensor system. (A) Schematic diagram
(Continued )

FIGURE 7 | showing the distinct layers of smart contact lens structure placed
onto an eyeball. The dashed region highlights the method of gold-mediated
mechanical exfoliation for the fabrication of monolayer MoS2. (B) Images of the
sensor structure and serpentine electrode. (C) Photograph of a dome-shaped
PDMS substrate with the sensor layer on it. (D) Photograph of an artificial eye
with the sensing system attached to it. (E) Schematic diagram illustrating the
smart contact lens and the sensors placed on the eyeball (Guo et al., 2021).
(iii) On-demand drug delivery applying an f-DDS. (A) Schematic diagram
displaying the construction process of f-DDS. (B) Photographic image of
f-DDS. (C) SEM images of f-DDS before and after the gold electrochemistry
experiment. Scale bar, 250 μm. (D) Confocal fluorescence microscopic im-
ages of rhodamine B dye released from drug reservoirs. Scale bars, 300 μm
(left) and 500 μm (right). (E) Change of current for the f-DDS. (F) Released
levels of genistein in a pulsatile manner. (G) Normalized content of genistein
released from the reservoirs (n � 6) in comparison with the initial loading
content (Keum et al., 2020).
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Tears
Recently, the glucose level in tears has attracted great
attention in wearable point-of-care glucose sensors. It is
confirmed that tears participate in the metabolism of
glucose in the human body, and the glucose concentration
in tears is a positive correlation with the glucose level in blood
(Chen et al., 1996; Chatterjee et al., 2003). Besides, myopia
nowadays has become a global health issue and the prevalence
is remarkably high, especially in east Asia (Morgan et al.,
2012). Wearing contact lenses is one of the most favorite ways
to correct vision. As a result, the smart contact lens with the
ability to collect tears and then monitor the glucose in tears
has become a welcome wearable point-of-care device for
glucose detection (Yao et al., 2011; Elsherif et al., 2018; Lin
et al., 2018; Park et al., 2018).

Ruan et al. reported the fabrication of an attached lens based
on a gelated colloidal crystal for point-of-care tear glucose
detection (Ruan et al., 2017). The novel glucose sensor was
made by embedding a crystalline colloidal array in a matrix of
hydrogel and amounted on the rigid gas permeable lens
[Figure 7(i)]. With the change in the glucose level in tears
from 0 to 50 mM, the sensing contact lens could diffract
visible light with distinct wavelengths from 567 to 468 nm
accordingly and thus showed different colors from reddish
yellow to blue. This novel point-of-care sensor exhibited a low
detection limit of 0.05 mM, and with the assistance of the contact
lens, the device also showed superior portability and
biocompatibility.

In Guo et al., a multifunctional smart contact lens based on
MoS2 transistors were developed (Guo et al., 2021). On the PDMS
lens substrate, there was a glucose sensor based on MoS2
nanosheets for the direct detection of the glucose
concentration in tear, a photodetector to receive optical
information, and a temperature sensor based on Au to
monitor the potential corneal disease. This serpentine mesh
structure enabled the sensor to contact with tears and was
mounted on the contact lens directly so that the sensing
sensitivity would be increased and blinking or vision would
not be interfered [Figure 7(ii)]. Moreover, the following tests
demonstrated the remarkable biocompatibility of the lens, and
thus, this smart contact lens showed great potential as the next-
generation point-of-care wearable soft device for personal
health care.

The recent research direction toward the point-of-care tear
glucose sensors is not only to diagnose diabetes and related
complications but also to assist with therapy. In Keum et al., a
smart lens device was attached to a polymer with excellent
biocompatibility (Keum et al., 2020) [Figure 7(iii)]. This
point-of-care device consisted of ultrathin soft circuits and a
microcontroller for the detection of glucose concentration in
tears, drug delivery, data transmission, and wireless power
supply. It was demonstrated that the concentration of tear
glucose detected by the contact lens was validated by blood
glucose, and drugs could be triggered to deliver for the
diabetic retinopathy therapy. This work first constructed a
contact lens with the capability of biometric analysis in
combination with drug delivery and paved the way for

personal health-care and medical devices with a combination
of diagnosis and therapy at the same time in perspective view.

The most significant challenge for the tear glucose sensors is
the power supply. As the human eye is delicate, the power supply
device must be soft, and the external power supply applied in
most research studies nowadays will bring great discomfort for
users (Bandodkar and Wang, 2014). Although ascorbate (Falk
et al., 2013) and lacrimal glucose (Falk et al., 2012) have been
demonstrated as usable energy supplies in biofuel cells, further
studies need to be performed for future applications.

Interstitial Fluid
Interstitial fluid is found between the cells of the body that
provides much of the liquid environment of the body. Since
the interstitial fluid (ISF) contains a higher glucose concentration
value, through related technologies, a non-invasive blood glucose
sensor based on the interstitial fluid (ISF) can obtain higher
sensitivity and accuracy (Potts et al., 2002; Bandodkar et al., 2015;
Lee et al., 2018; Lipani et al., 2018). Therefore, it is also a very
attractive biofluid toward point-of-care non-invasive monitoring
applications.

Nightingale et al. proposed a fully integrated wearable
microfluidic sensor (Nightingale et al., 2019). This sensor
could provide accurate, high-resolution real-time continuous
measurement in a small wearable software package, and
researchers could monitor the glucose and lactate levels in
healthy volunteers in real time by the sensor. The sensor could
not only use droplets as in situ chemical analysis of the
microreactor but also provide accurate, precise, and robust
flow sampling and control. In the future, when it is used in
combination with physical sensors, physical characteristics and
biochemical data can be obtained at the same time. This rich,
high-quality, andmultimodal data will help in the development of
accurate and personalized medical care (Figure 8).

However, as the interstitial fluid is hard to access as compared
with other biofluids and the collection must be invasive, it needs
further research to be applied practically. The application of
microneedles is a promising method to minimize the needle
wound. The poor adhesion and hydrophilicity of traditional
porous polymer microneedle hinder it from further
application. In Liu et al., a mild and simple poly(ethylene
glycol) (PEG) and polydopamine (PDA) coating method was
developed to fabricate polymer microneedles for dermal ISF
extraction (Liu et al., 2021b). Owing to the anti-adhesion and
hydrophilicity of PEG, the microneedle exhibited little target
molecular adhesion, high fluid extraction speed, and excellent
hydrophilicity. This research paved the way for microneedle-
based off-line analysis in POCT and has demonstrated that the
glucose concentration in the interstitial fluid extracted by the
porous PDA@PEG-coated microneedles and the value
determined with a glucometer in venous blood had no
discernible difference.

Urine
Glucose concentration in urine is also a significant indicator of
diabetes. Because urine glucose monitoring is non-invasive and
for elder patients with diabetes, glycosuria may occur with the
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complications of kidney disease, monitoring glucose levels in
urine also attracts reasonable attention (Chen et al., 2019; Ghosh
et al., 2020).

In Zhang et al., a wearable biosensor with the ability to detect
glucose in urine was integrated with the diaper (Zhang et al.,
2021a). An enzymatic biofuel cell (EBFC) with the ability to

generate electricity was also integrated with the sensor to power
the whole system. Additionally, a power management system
(PMS) was connected with an EBFC with a power density of
220 μWcm−2 to store the power generated and a light-emitting
diode to indicate the concentration of glucose in urine. As a result,
this biosensor system displayed satisfactory anti-interference

FIGURE 8 | Schematic illustration of the operation of the point-of-care device (Nightingale et al., 2019).

FIGURE 9 | Schematic diagram illustrating the circuit illustration of the alarm glucose monitoring system and components of the wearable urine glucose biosensor
system (Zhang et al., 2021a).
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capability and provided a novel way for the urine glucose sensor
to be applied for wearable point-of-care health-care devices
(Figure 9).

However, urine cannot be obtained continuously, so it is
hard to achieve the continuous characteristic for a wearable
point-of-care urine glucose sensor. As a result, there are fewer
research studies addressing this, and further studies are needed.

CONCLUSION

Wearable sensors toward point-of-care monitoring of glucose in
biofluids attract great attention of researchers as point-of-care
testing is generally easy to use, portable, inexpensive, and non-
invasive and thus causes less discomfort for users and patients. In
this review, they are discussed according to six detection targets,

TABLE 1 | Summary of wearable glucose sensors in point-of-care testing.

Biofluid Wearable glucose sensor Sensing method Advantages Refs

Blood Wearable non-enzymatic glucose sensor Non-enzymatic electrocatalytic
reaction

• High selectivity Hekmat et al. (2021)
• Acceptable repeatability
• Long-term stability

Non-invasive continuous serum glucose device Short near-infrared (NIR)
spectroscopy

• Non-invasive Joshi et al. (2020)
• Precise
• Cost-effective

Sweat Flexible spliced self-powered sensor Colorimetric measurements • Self-powered Zhang et al. (2018a)
• Facile
• No need for other instruments

Cloth-based electrochemical sensor Enzymatic electrocatalytic
reaction

• Prominent stability Zheng et al. (2021)
• Reproducibility
• Selectivity
• Continuous monitoring

Cotton thread/paper-based microfluidic sensor Colorimetric measurements • Single use Xiao et al. (2019b)
• Excellent compatibility

AI/ML-enabled 2-D-RuS2 nanomaterial–based
multifunctional sensor

Impedance change
measurements

• High speed and accuracy Veeralingam et al.
(2020)• Prominent reusability and stability

• Continuous monitoring
• Excellent calibration
• Wide sensing range and low

detection limit
Patch-based strip-type disposable sensor Enzymatic electrocatalytic

reaction
• Effective Lee et al. (2017)
• Closed-loop
• Streamlined structure

Nanostructured rGO-based sensor Enzymatic electrocatalytic
reaction

• Large detection range Xuan et al. (2018)
• Fast response
• High sensitivity and linearity

Saliva Microfluidic paper-based sensor Colorimetric measurements • No pretreatment steps Tian et al. (2016)
• Easy to produce
• Partially recyclable

Co-MOF/CC/paper hybrid button-sensor Non-enzymatic electrocatalytic
reaction

• Easy to produce Wei et al. (2021)
• High environment tolerance
• Good sensitivity

Tears Glucose sensor based on gelated colloidal crystal Colorimetric measurements • Superior portability and
biocompatibility

Ruan et al. (2017)

Glucose sensor based on MoS2 nanosheet Enzymatic electrocatalytic
reaction

• Facile fabrication process Guo et al. (2021)
• Mechanical stability
• Remarkable biocompatibility

Smart contact lenses for both continuous glucose
monitoring

Enzymatic electrocatalytic
reaction

• Remarkable biocompatibility Keum et al. (2020)

ISF Fully integrated wearable microfluidic sensor Colorimetric measurements • High resolution Nightingale et al.
(2019)• High accuracy

• Real-time monitoring

Urine Integrated with EBFC, PMS, and an LED Enzymatic electrocatalytic
reaction

Self-powered Zhang et al. (2021a)

Note: AI/ML: artificial intelligence/machine learning; Rgo: reduced graphene oxide; co-MOF/CC/paper: cobalt metal–organic framework modified carbon cloth; ISF: interstitial fluid; EBFC:
enzymatic biofuel cell; PMS: power management system; LED: light-emitting diode.
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such as blood, sweat, saliva, tears, interstitial fluid, and urine, and
are tabulated in Table 1. The detection of glucose in blood is the
most promising method to diagnose and monitor diabetes. Blood
is the only recognized biofluid that is applied to detect glucose in
daily life and is regarded as the “gold standard” for glucose
measurement. Therefore, the technique is well developed, and
there exist a large number of studies on wearable blood glucose
sensors. Most of them are still invasive, thus leading to discomfort
for users as well as adding the risk of being infected. There exists a
work reported by Joshi et al. onthe non-invasive wearable point-
of-care sensor for the detection of glucose in blood. However, as
the sensor is based on near-infrared (NIR) spectroscopy, accuracy
will be not as good as invasive glucose detection in blood and
glucose detection in other biofluids, for example, sweat, saliva,
tears, and interstitial fluid. Research studies toward sweat are the
most among all six biofluids as sweat is easy to access and will
cause no discomfort. Besides, research studies toward glucose
detection in tears are increasing because some important
advancements have been made to develop the wearable and
point-of-care tear glucose sensor based on soft contact lens
which causes less discomfort and is welcoming for people with
myopia. The wearable point-of-care sensors toward the
measurement of glucose in saliva need further studies and
cannot be applied widely as the collection of saliva is in the
mouth and will cause discomfort. Furthermore, in some cases,
saliva needs pretreatment of filtration or dilution. Besides comfort
and convenience, saliva is a challenging biofluid for
electrochemical measurements as the concentration of
biomarkers is always much low in saliva and the composition
of saliva is variable in distinct cases. The research of the wearable
point-of-care sensor toward the measurement of the glucose in
interstitial fluid and urine is in the initial stage and needs more
studies because interstitial fluid is hard to obtain and urine cannot
be obtained continuously.

In the future, with the development in the material, power
supply, and data transmission area, the wearable point-of-care
glucose sensors will be more miniaturized, accurate, and self-
powered. With the help of these wearable point-of-care glucose
sensors, the traditional blood glucose test used most widely
nowadays will be replaced, and because of the non-invasive
characteristic of the novel test, patients will have less
reluctance toward the glucose test. Besides the comfort,
long-term monitoring of glucose can be achieved, and the
obtained data will be transmitted to clinical institutions as
soon as possible so that patients with diabetes can get alert
and obtain professional advice from clinical personals on
time. Moreover, users can have the right of choice toward the
kinds of detection biofluid in the future. For example, users
with myopia can choose a sensor based on contact lenses,
while users with tooth disease can use a saliva-based glucose
sensor.
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