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Abstract
Claudin-low breast cancer (CLBC) is a poor prognosis molecular subtype showing stemness and mesenchymal
features. We previously discovered that deletion of a Notch signaling modulator, Lunatic Fringe (Lfng), in the
mouse mammary gland induced a subset of tumors resembling CLBC. Here we report that deletion of one copy of
p53 on this background not only accelerated mammary tumor development but also led to a complete penetrance
of the mesenchymal stem-like phenotype. All mammary tumors examined in the Lfng/p53 compound mutant mice
displayed amesenchymal/spindloid pathology. These tumors showed high level expressions of epithelial-to-mesenchymal
transition (EMT)markers including Vimentin, Twist, and PDGFRα, a gene known to be enriched in CLBC. Prior to tumor
onset, Lfng/p53 mutant mammary glands exhibited increased levels of Vimentin and E-cadherin, but decreased
expressions of cytokeratin 14 and cytokeratin 8, accompanied by elevated basal cell proliferation and an expanded
mammary stem cell-enriched population. Lfng/p53 mutant glands displayed increased accumulation of Notch3
intracellular fragment, up-regulation of Hes5 and down-regulation of Hes1. Analysis in human breast cancer datasets
found the lowest HES1 and second lowest LFNG expressions in CLBC among molecular subtypes, and low level of
LFNG is associatedwith poor survival. Immunostaining of human breast cancer tissue array found correlation between
survival and LFNG immunoreactivity. Finally, patients carrying TP53mutations express lower LFNG than patients with
wild type TP53. Taken together, these data revealed genetic interaction between Lfng and p53 in mammary
tumorigenesis, established a new mouse model resembling CLBC, and may suggest targeting strategy for this
disease.
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Introduction
Breast cancer is a heterogeneous group of molecularly distinct diseases
of different cellular origins associated with diverse oncogenic
signaling. Based on gene expression profiling, breast cancer was
initially subclassified into five groups: luminal A, luminal B,
HER2-positive, basal-like, and normal-like breast cancer [1,2].
Subsequent study found that basal-like breast cancer (BLBC)
included another subtype, termed claudin-low breast cancer
(CLBC) [3]. In addition, the triple negative breast cancer (TNBC),
a collection of loosely defined diseases on the basis of being negative
for the expression of estrogen receptor α (ERα), progesterone
receptor (PR), and human epidermal growth factor receptor 2
(HER2), can be subdivided into six subgroups: basal-like 1, basal-like
2, immunomodulatory, mesenchymal, mesenchymal stem-like, and
luminal androgen receptor-expressing [4]. The mesenchymal
stem-like subgroup is similar to CLBC. BLBC expresses markers of
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myoepithelial/basal cells and are thought to have originated from
mammary bipotent and/or luminal progenitor cells [5,6]. CLBC
shares more features with mammary stem cells and cells that have
undergone epithelial-to-mesenchymal transition (EMT), thus may
have originated from mammary stem cells [3,7–9]. These two
subtypes have a high proliferation index and poor cellular
differentiation, often harboring recurrent copy number abnormalities
and mutations in the TP53 gene [1,10,11]. BLBC and CLBC
preferentially affect younger patients, are more common in women of
African ancestry than women of other ethnic origins [12,13].

Notch signaling controls mammary stem cell self-renewal and
differentiation, and regulates EMT in breast cancer cells [14–17].
Deregulated Notch activation has been implicated in breast cancer,
especially in subtypes with stem-like features and EMT [18]. The
Fringe family of β3 N–acetylglucosaminyl-transferases, including
Lunatic fringe (Lfng), Manic Fringe (Mfng), and Radical Fringe
(Rfng), are known to modify EGF repeats in the extracellular domains
of Notch receptors thereby modulating ligand-mediated Notch
activation [19–21]. Interestingly, Lfng expression is restricted to the
stem/progenitor cel ls in the mouse mammary gland.
Mammary-specific deletion of Lfng in mice using MMTV-Cre
induced mammary tumors with consistent selection of an amplicon
including the Met and Cav1, Cav2 genes. Histology, immunohisto-
chemistry, and molecular profiling indicated that two-thirds of these
tumors are similar to BLBC and one-third resembles CLBC [22].

TP53 is the most commonly mutated gene in breast cancer and its
mutation rate is significantly higher in basal-like compared to other
subtypes [11]. Interestingly, loss of p53 function has recently been
linked to the induction of EMT and acquisition of stemness
properties. Deletion of p53 in mammary epithelial cells resulted in
decreased expression of miR-200c and activated EMT program,
accompanied by an increase in mammary stem cell population [23].
Thus, p53 deficiency may contribute to the pathogenesis of
mesenchymal stem-like breast cancer. Indeed, deletion of p53 in
combination with other genetic alterations (e.g. inactivation of Rb or
Pten, overexpression of prolactin or Met) resulted in mammary
tumors resembling CLBC [24–27]. A recent study showed that wild
type p53 suppressed transcriptional activity of Notch1 through direct
interaction with the Notch transcriptional complex [28]. In this
study, we generated Lfng and p53 compound deletion mice to
determine whether these two genes cooperate in suppressing CLBC
development.

Materials and Methods

Mice
Mouse experiments were performed in accordance with a protocol

approved by UMMC Institutional Animal Care and Use Committee.
All mouse strains have been previously described [22,29]. Lfngflox/flox,
p53flox/flox, andMMTV-Cre strains were interbred and maintained on
a mixed FVB/C57BL/6 background.

Mammary Gland Histology and Immunohistochemistry
Human breast tissue array slides HBre-Duc090Sur-01 were

purchased from US Biomax. Formalin-fixed paraffin-embedded
mouse mammary tissues were processed for histology and immuno-
histochemistry by standard procedures. Representative images were
acquired with a Nikon Eclipse 80i microscope. Primary antibodies
used for immunostaining were: Notch1 (Cell Signaling, No. 3608,
1:100), Notch2 (DSHB, University of Iowa, C651.6DbHN, 1:200),
Notch3 (ProteinTech, 55,114–1-AP, 1:100), E-cadherin
(Cell Signaling, No. 3195, 1:100), Vimentin (Cell Signaling, No.
5741, 1:100), Twist (Santa Cruz, sc-6070, 1:100), PDGFRα (Santa
Cruz, sc-338, 1:100), Cytokeratin 8 (Santa Cruz, sc-101,459, 1:200),
Cytokeratin 14 (Santa Cruz, sc-53,253, 1:200), Ki67 (Abcam,
ab16667, 1:200), and Lfng (Abcam, ab192788, 1:100).

Western Blot Analysis
Mouse mammary tissues were lysed in RIPA buffer (Boston

BioProducts) supplemented with protease inhibitor (Roche), and
processed for Western blot analyses according to standard method-
ology. Antibodies for probing specified proteins are as follows:
Notch1 (Cell Signaling, No. 3608), Notch2 (DSHB, University of
Iowa, C651.6DbHN), Notch3 (ProteinTech, 55,114–1-AP),
Notch4 (Millipore, 07–189), Jagged1 (Santa Cruz, sc-6011), ERα
(Santa Cruz, sc-542), Vimentin (Cell Signaling, No. 5741),
E-cadherin (Cell Signaling, No. 3195), Cytokeratin 8 (Santa Cruz,
sc101459), Cytokeratin 14 (Santa Cruz, sc53253), and β-Actin
(Santa Cruz, sc-81,178), all with 1:1000 dilution. Western blots were
performed three times using tissues from different animals and
obtained similar results.

Flow Cytometry and Mammosphere Assay
Mouse mammary tissues were dissociated using Collagenase/

Hyaluronidase solution (StemCell Technologies) and single cell
suspensions were generated according to manufacturer's instructions.
Lineage-depleted mammary epithelial cells were prepared using an
EasySep mouse mammary stem cell enrichment kit (StemCell
Technologies). Flow cytometry was performed by standard proce-
dures using anti-mouse CD24-PE and anti-CD49f-FITC (StemCell
Technologies). Fluorescence was recorded using Gallios Flow
Cytometer (Beckman Coulter) and analyzed with Kaluza flow
cytometry analysis software. Mammary tissues from three animals
per genotype were analyzed with similar results. Percentages of stem
cell-enriched cell populations in each genotype were quantitated.
Lineage-depleted mammary epithelial cells were cultured for
mammosphere formation for 7 days as previously described [30].

Quantitative RT-PCR
Total RNA was extracted from mouse mammary tissue using

RNeasy Mini kit (Qiagen), and reverse transcription was performed
with iScript cDNA synthesis kit (Bio-rad). PCR was performed using
QuantiTect SYBR Green PCR Kits (Qiagen) and quantitated with
BioRad CFX96 qPCR System. Primer sequences for mouse Hes1,
Hes5, Hey1, Hey2 genes were previously described [31]. Relative
abundance of mRNA for each gene to GAPDH was determined using
the equation 2-△CT, where ΔCT=CTgene tested – CTGAPDH. Three
animals per genotype were used for quantitative RT-PCRs.

Gene Expression Analysis of Human Data Sets
Human breast cancer gene expression data set GSE18229 (n =

372) was downloaded from GEO (http://www.ncbi.nlm.nih.gov/
geo/query/acc.cgi?acc = GSE18229). Data were z-transformed and
applied quantile normalization by preprocessCore package from
Bioconductor in R software. Gene expressions were summarized by
average value ifmultiple probesmapping to the same gene. Preprocessed
METABRIC breast cancer expression data (n = 2509) was downloaded
from cBioportal web portal (http://www.cbioportal.org/). Differential
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expressions of LFNG, NOTCH3, JAG1, HES1 and HEY1 among
different breast cancer subtypes were analyzed by one way ANOVA test.
p values were calculated by comparing expression means across all
subtypes. For the survival analysis related to LFNG expression (probeset
228762_at), we used online tool (http://www.kmplot.com/) to perform
univariate Cox regression analysis and Kaplan–Meier survival curves
with lower quartile as cutoff. The hazard ratio with 95% confidence and
p values were calculated from 1402 patients with overall survival, 3955
patients with recurrence free survival, and 1747 patients with post
progression survival information for breast cancer.

Statistics
For mouse experiments, statistical analyses were performed using

SigmaPlot (Systat Software) by applying the Log-rank test to compare
survival data and the unpaired two-tailed t-test for all other
comparisons.

Results

Accelerated Mammary Tumor Development in the Lfngflox/flox;
p53flox/+;MMTV-Cre Mice
To test the impact of deletion of p53 on BLBC and CLBC

development, a conditional knockout allele of p53 was introduced into
the Lfngflox/flox;MMTV-Cre mice. All 22 mice of Lfngflox/flox;P53flox/flox;
MMTV-Cre (18 females and 4 males) under tumor watch died of thymic
lymphomas and metastasis between 3 and 6 months of age (data not
shown). Thus, homozygous deletion of both Lfng and p53 using
MMTV-Cre was untolerated in the hematopoietic lineage, precluding
examination of mammary tumorigenesis in these mice. Of note, a
previous study found thymic lymphomas in conditional deletion ofDNA
polymerase ζ catalytic subunit REV3LusingMMTV-Cre, with decreased
latency and higher incidence on the p53-null background [32]. Three out
of 20 females of Lfngflox/flox;P53flox/+;MMTV-Cre also succumbed to
lymphoma prior to mammary tumor formation. The remaining animals
Figure 1. Drastically accelerated mammary tumor development in
the Lfngflox/flox;p53flox/+;MMTV-Cremice as compared to the Lfngflox/flox;
MMTV-Cre mice. Kaplan–Meier analysis was performed for mammary
tumor-free survival in female mice of these two genotypes. Wild type,
Lfngflox/flox, and Lfngflox/flox;p53flox/+ animals were included in the “No
Cre” control.
developedmammary tumors without lymphoma, and they had drastically
shortened median tumor-free survival as compared to the Lfngflox/flox;
MMTV-Cremice (192 and 571 days, respectively, Figure 1). In addition,
these animals often developed multiple mammary tumors (1.8 tumors/
mouse in average), which was extremely rare in Lfngflox/flox;MMTV-Cre
mice. Despite rapid mammary tumor development, no metastasis was
found in Lfngflox/flox;P53flox/+;MMTV-Cre mice when animals had to be
euthanized due to large-size mammary tumors.

Lfng flox/flox;p53 flox/+;MMTV-Cre Mammary Tumors Exhibit
Characteristics of Mesenchymal Stem-Like/Claudin-Low Breast
Cancer

Histological analysis revealed presence of ductal hyperplasia and
atypia (Figure 2, B and C) among relatively normal ducts (Figure 2A)
in the Lfngflox/flox;p53flox/+;MMTV-Cre mammary gland prior to
tumor onset. Interestingly, all the Lfngflox/flox;P53flox/+;MMTV-Cre
mammary tumors were poorly differentiated, mainly consisted of
mesenchymal/spindle-shaped cells, similar to the claudin-low tumors
found in the Lfngflox/flox;MMTV-Cre mice (Figure 2, D–F) [22].
Immunohistochemistry showed robust expressions of Vimentin in
approximately 90% of tumor cells, suggesting that these cells have
undergone EMT. In addition, these tumors expressed high levels of
Twist and PDGFR-α, which are known to be associated with EMT
and highly enriched in CLBC (Figure 2, G–I) [4]. Immunoreactiv-
ities of Notch receptors, including nuclear staining, were detected in
a subset of cells in most tumors, indicating activation of the Notch
signaling pathway (Figure 2, J–L). These results suggest that
deletion of one copy of p53 on the Lfng flox/flox ;MMTV-Cre
background caused skewing of mammary tumor subtype from
BLBC to CLBC.

Increased Basal Cell Proliferation, Decreased Differentiation,
and Expanded Stem Cell-Enriched Population in the Lfngflox/flox;
p53flox/+;MMTV-Cre Mammary Gland

We examined mammary tissues for epithelial cell proliferation and
differentiation prior to the tumor onset. Western blot analysis for
mammary tissues from littermate mice at 3 months of age showed
increased levels of both Vimentin and E-cadherin in the Lfngflox/flox;
P53flox/+;MMTV-Cre and Lfngflox/flox;P53flox/flox;MMTV-Cre mice, as
compared to the Lfngflox/flox;P53flox/+ control mice (Figure 3A). In
another litter including 4 females, both of Lfngflox/flox;P53flox/+;
MMTV-Cre mice exhibited significantly increased levels of
E-cadherin and slightly increased Vimentin, as compared to the
Lfngflox/flox;MMTV-Cre and Lfngflox/flox;P53flox/+ control mice. Inter-
estingly, expressions of Cytokeratin 8 and Cytokeratin 14 were
down-regulated in these 2 mice, while their ERα level was similar to
the control mice. It is noteworthy that expressions of these proteins in
the Lfngflox/flox;MMTV-Cre gland were comparable to those in the
Lfngflox/flox;P53flox/+ control at this stage (Figure 3B). Immunohisto-
chemistry showed that E-Cadherin is localized to the ductal epithelial
cells, with comparable intensity in Lfng flox/flox;MMTV-Cre and
Lfng flox/flox;P53flox/+;MMTV-Cre glands, suggesting that elevated
E-Cadherin level shown in Western blot may reflect increased
number of epithelial cells. Indeed, Ki67/Cytokeratin 14 double
immunofluorescence staining revealed significantly more proliferating
basal epithelial cells in the Lfngflox/flox;P53flox/+;MMTV-Cre gland,
whereas numbers of proliferating luminal epithelial cells were similar
in Lfng flox/flox;P53 flox/+;MMTV-Cre and Lfng flox/flox;MMTV-Cre
glands (Figure 3C). In agreement with the decreased overall level of
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Figure 2. Histological and immunohistochemical analyses of preneoplastic lesions and mammary tumors in the Lfngflox/flox;p53flox/+;
MMTV-Cre mice. (A-C) Representative photomicrographs of H&E stained mammary gland sections at 2 months of age. (D-F)
Representative photomicrographs of H&E stained mammary tumor sections. (G-L) Representative photomicrographs of immunostaining
in mammary tumors. Insets: high-magnification images of Notch nuclear staining. Percentage of positively stained cells are quantitated
and presented as mean ± standard deviation. Scale bars: 50 μm.
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Cytokeratin 8 by Western blot, we noted absence of Cytokeratin 8
staining in a small number of luminal cells in the Lfngflox/flox;P53flox/+;
MMTV-Cre gland (arrow in Figure 3C), suggesting impaired luminal
cell differentiation [33]. Thus, there were increased proliferation and
decreased differentiation in the mammary epithelium of Lfngflox/flox;
P53flox/+;MMTV-Cre mice. Flow cytometry analysis detected expansion
of the stem/progenitor cell-enriched populations (CD24MedCD49fHi and
CD24HiCD49fLow) in the mutant mammary gland. Interestingly, the
CD24HiCD49fLow population was found expanded in the Lfngflox/flox;
P53flox/+;MMTV-Cre gland, not the Lfngflox/flox;MMTV-Cre gland
(Figure 4, A and B). It has been reported that while CD24HiCD49fLow

cells produced complex mammary outgrowths when implanted into
cleared fat pads of nulliparous hosts, CD24MedCD49fHi cells failed to
develop ductal structures containing side branches or lobules [34].
Thus, Lfngflox/flox;P53flox/+;MMTV-Cre mammary glands may have
accumulated more stem-like cells as compared to Lfngflox/flox;P53flox/+

and Lfng flox/flox;MMTV-Cre glands. We performed mammosphere
assay for the assessment of stem cell activity and self-renewal in freshly
prepared mammary epithelial cells from 2-month-old Lfngflox/flox;
P53flox/+ and Lfngflox/flox;P53flox/+;MMTV-Cre mice. Indeed, the latter
exhibited significantly increased mammosphere-forming capability
(Figure 4C).
Altered Notch Activation in the Lfng flox/flox;p53flox/+;MMTV-Cre
Mammary Gland

To understand the mechanism by which p53 haplodeficiency
accelerated mammary tumor development in the Lfng flox/flox;
MMTV-Cre mice, we examined Notch activation in these animals.
Mammary glands of the Lfngflox/flox;P53flox/+;MMTV-Cre mice at 3
months of age showed increased accumulation of Notch3 intracellular
domain (but not of other Notch receptors), compared to the Lfngflox/flox;
MMTV-Cremice. Protein levels of Jagged1 were similar among mice of
different genotypes (Figure 5A). Quantitative RT-PCR found
significantly decreased Hes1 but increased Hes5 mRNA levels in the
Lfngflox/flox;P53flox/+;MMTV-Cremammary gland, whereas theLfngflox/flox;
MMTV-Cre mammary gland showed increased Hes1 compared to the
Lfngflox/flox;P53flox/+ control gland. Hey1 mRNA level was higher in
Lfngflox/flox;P53flox/+;MMTV-Cre than that in Lfngflox/flox;MMTV-Cre
gland. Both Lfngflox/flox;P53flox/+;MMTV-Cre and Lfngflox/flox;MMTV-
Cre glands had down-regulated Hey1 and Hey2 as compared to the
control gland (Figure 5B). Taken together, deletion of Lfng in the
mammary gland up-regulated Hes1 and Hes5 and down-regulated
Hey1 and Hey2, heterozygous deletion of p53 on this background
caused a decrease in Hes1 expression but an increase in Hey1
expression.



Figure 3. Altered expressions of differentiation markers and increased basal cell proliferation in the Lfngflox/flox;p53flox/+;MMTV-Cre
mammary epithelium. (A and B) Representative Western blots for epithelial and mesenchymal markers in the mammary glands of
littermate mice at 3 months of age. (C) Representative photomicrographs of E-Cadherin immunostaining, Ki67/cytokeratin 8 (K8) and Ki67/
cytokeratin 14 (K14) immunofluorescence staining in themammary glands of 2-month-old Lfngflox/flox;MMTV-Cre and Lfngflox/flox;p53flox/+;
MMTV-Cre mice. Scale bars: 50 μm. The percentage of Ki67+ cells among K8+ luminal cells and K14+ basal cells was quantitated and
presented as mean ± standard deviation. *P b .05.
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Human CLBC Exhibits Lowest Expression of HES1 and
Second Lowest Expression of LFNG Among Six Molecular
Subtypes
We examined expression levels of the Notch pathway genes in 6

molecular subtypes of human breast cancer using dataset GSE18229
[3]. Notably, the claudin-low subtype exhibits higher expressions of
NOTCH3 and JAG1, lower expression of HES1 compared to other
subtypes (Figure 6A). Up-regulation of NOTCH3 in the claudin-low
subtype is consistent with our result showing accumulation of
Notch3 intracellular fragments in the Lfng flox/flox ;P53 flox/+ ;
MMTV-Cre mice, and may suggest a specific role for Notch3 in
the pathogenesis of this subtype. Next, we analyzed expressions of
selected Notch pathway genes in human breast cancer using the
METABRIC dataset [35,36]. In agreement with the analysis results
in dataset GSE18229, both the heat map and boxplots showed the
lowest HES1 expression in claudin-low breast cancer among all
subtypes in the METABRIC dataset (Figure 6, B and C). However,
elevated NOTCH3 and JAG1 expressions in the claudin-low subtype
were not evident in this dataset. Interestingly, expression of LFNG is
lower in claudin-low subtype compared to other subtypes except the



Figure 4. Expansion of stem/progenitor cell-enriched population in the Lfngflox/flox;p53flox/+;MMTV-Cre mammary gland. (A)
Representative flow cytometry analysis of lineage-depleted mammary cells from littermate mice of indicated genotypes at 2 months
of age. (B) Quantitation of CD24MedCD49fHi and CD24HiCD49fLow cell populations from three experiments. Percentages of the
populations were presented as mean ± standard deviation. (C) Representative photomicrographs and quantification of mammospheres
formed in 3D cultures of the mammary epithelial cells isolated from the Lfngflox/flox;p53flox/+ and Lfngflox/flox;p53flox/+;MMTV-Cremice at 2
months of age. Scale bars: 60 μm. *P b .05.

890 Lunatic Fringe and p53 in Breast Cancer Chung et al. Neoplasia Vol. 19, No. 11, 2017
basal subtype (Figure 6, A and C), suggesting a role for LFNG
deficiency in the pathogenesis of basal-like breast cancer and at least a
subset of claudin-low breast cancer.

LFNG Low Expression is Associated with Poor Survival in
Human Breast Cancer

Given that LFNG expression was down-regulated in human
BLBC and CLBC (two poor-prognosis breast cancer subtypes)
and deletion of Lfng in mice induced mammary tumors
resembling BLBC and CLBC [22], low expression of LFNG
may predict poor outcome. Indeed, analysis using the online tool
(http://www.kmplot.com/) found significantly lower survival rate
in patients with low expression of LFNG compared to those
showing high LFNG expression in all three categories (overall
survival, relapse-free survival, and post-progression survival,
Figure 7, A–C). We also performed LFNG immunohistochem-
istry on human breast cancer tissue array and compared survival of
patients showing high or low LFNG immunoreactivity. The low
LFNG group had significantly shorter survival compared to the high
LFNG group (Figure 7, D and E). Finally, low expression of LFNG
was found more prevalent among patients carrying TP53 mutation
(Figure 7F), corroborating our study in mice showing genetic
interaction between Lfng and p53 in preventing mesenchymal
stem-like breast cancer.

http://www.kmplot.com/


Figure 5. Altered Notch signaling in the Lfngflox/flox;p53flox/+;MMTV-Cre mammary gland. (A) Western blot analysis for Notch receptors
and Jagged1 ligand in themammary glands of littermate mice at 3 months of age. (B) Quantitative RT-PCR for Hes1, Hes5, Hey1 and Hey2
in the mammary glands at 3 months of age. *P b .05.
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Discussion
Down-regulation of LFNG and mutations in TP53 are common in
human CLBC. In this study we found that deletion of one copy of
p53 on the Lfngflox/flox;MMTV-Cre background caused increased
basal cell proliferation, impaired luminal cell differentiation,
expanded stem-like cell population, as well as EMT in the mammary
epithelium, ultimately leading to mesenchymal stem-like mammary
tumor formation. Haplodeficiency of p53 drastically shortened tumor
latency in these animals, suggesting that Lfng and p53 cooperate to
suppress mesenchymal stem-like/claudin-low breast cancer. A recent
study showed that p53 negatively regulated activity of the Notch1
transcriptional complex in MCF-7 breast cancer cells [28]. Our
previous study suggests that Lfng may exert tumor-suppressive
function through inhibition of Jagged1-mediated Notch activation
[22]. Both Lfng and p53 negatively regulate Notch signaling in this
context. Interestingly, Lfng flox/flox;P53flox/+;MMTV-Cre mammary
gland showed increased accumulation of Notch3 intracellular domain
compared to the Lfng flox/flox;MMTV-Cre gland. In addition,
NOTCH3 was found up-regulated specifically in CLBC subtype in
one of the human breast cancer datasets analyzed. Previous studies
showed that Notch3 controls self-renewal and hypoxia survival in
human mammary stem/progenitor cells [37,38]. Down-regulation of
Notch3, but not Notch1, significantly suppressed proliferation and
promoted apoptosis of HER2-negative human breast cancer cells
[39]. Recently Notch3 was found to regulate endocrine resistance in
metastatic breast cancer [40]. Our present study suggests that
signaling through Notch3 may be important in CLBC pathogenesis.
CLBC are thought to originate from mammary stem cells. However,
Morel et al. have proposed that CLBC could arise from cells
committed to luminal differentiation, through a process driven by
EMT inducers and combining malignant transformation and
transdifferentiation [41]. Given that Notch3 is expressed in a highly
clonogenic and transiently quiescent luminal progenitor population
[42], it is plausible that dysregulation of Notch3 in these luminal
progenitor cells contributes to the initiation and/or progression of
CLBC.
Lfngflox/flox;P53flox/+;MMTV-Cre mammary gland showed up-regulation

of Hes5 but down-regulation of Hes1 as compared to the
Lfng flox/flox;MMTV-Cre gland, suggesting differential regulation
of Notch downstream target genes by p53. HES1 expression was also
found significantly lower in claudin-low subtype as compared to other
subtypes of human breast cancer in both GSE18229 and METABRIC
datasets. Notch signaling promotes breast cancer stem cell self-renewal
through up-regulation of Hes5 [43]. Interestingly, overexpression of
Hes1 was recently shown to reduce CD44+CD24−/low tumor-initiating
subpopulation in basal-like breast cancer [44]. In the pancreas, Hes1
controls exocrine cell plasticity and restricts development of pancreatic
ductal adenocarcinoma [45]. In this regard, Notch signaling through
Hes1 could be tumor-suppressive. Indeed, Notch signaling was
reported to cooperate with p53 in restricting cell proliferation and
tumor growth in mouse models of human brain tumors, where
simultaneous inactivation of the Notch transcriptional effector RBPJκ
and p53 induced primitive neuroectodermal-like tumors [46]. Thus,
interactions between Notch signaling and p53 may play complex roles
in the tumorigenesis of various tissues.

Martin et al. recently reported a novel mouse model of spindle cell
metaplastic carcinomas resembling human claudin-low tumors [47].
Our analysis in human breast cancer datasets found association of



Figure 6. Human claudin-low breast cancer exhibits low levels of LFNG and HES1 gene expression. (A) Boxplots for expression values of
LFNG, NOTCH3, JAG1, HES1 and HEY1 in 6 subtypes of human breast cancer (dataset GSE18229). (B) Heat map for expressions of
selected Notch pathways genes in 6 subtypes of human breast cancer (METABRIC dataset). (C) Boxplots for expression values of LFNG,
NOTCH3, JAG1, HES1 and HEY1 in 6 subtypes of human breast cancer (METABRIC dataset). Basal: Basal-like. Claudin: Claudin-low.
Her2: HER2-positive. LumA: Luminal A. LumB: Luminal B. Normal: Normal breast-like. p values were calculated by comparing expression
means across all subtypes.
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Figure 7. Low level of LFNG expression is associated with poor survival among breast cancer patients and is enriched in patients carrying
TP53 mutation. (A-C) Survival analyses in breast cancer patients using univariate Cox regression and Kaplan–Meier methods. Overall
survival rate (A), relapse-free survival rate (B), and post-progression survival rate (C) in patients with high LFNG expression (red line) were
all significantly higher than that in patients with low LFNG expression (black line). (D) Representative photomicrographs of LFNG
immunostaining on a human breast cancer tissue array. Staining intensity scores are: 0 (negative), 1 (weak), 2 (moderate), and 3 (strong).
Scale bars: 100 μm. (E) Kaplan–Meier survival analysis for patients with low LFNG expression (staining score 0 or 1) and high LFNG
expression (staining score 2 or 3). (F) Boxplot for LFNG expression levels in patients with wild type or mutant TP53 gene.
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LFNG low expression with poor survival, as well as the
enrichment of LFNG low expression among patients carrying
TP53 mutation. Future experiment including gene expression profiling
will be needed to confirm the CLBC subtype for mammary
tumors developed in the Lfng flox/flox;P53flox/+;MMTV-Cre mice.
Nonetheless, these mice may represent a clinically-relevant
CLBC model with early tumor onset and complete penetrance,
which can be used for the identification of new tumor or tumor
microenvironment molecular targets as well as testing of therapeu-
tic strategies.
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