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Ankle Exoskeletons May Hinder Standing Balance in Simple Models of
Older and Younger Adults

Daphna Raz, Student Member, IEEE , Varun Joshi, Brian R. Umberger, and Necmiye Ozay Senior Member,
IEEE

Abstract— Humans rely on ankle torque to maintain standing
balance, particularly in the presence of small to moderate pertur-
bations. Reductions in maximum torque (MT) production and max-
imum rate of torque development (MRTD) occur at the ankle with
age, diminishing stability. Ankle exoskeletons are powered orthotic
devices that may assist older adults by compensating for reduced
muscle force and power production capabilities. They may also be
able to assist with ankle strategies used for balance. However, no
studies have investigated the effect of such devices on balance in
older adults. Here, we model the effect ankle exoskeletons have
on stability in physics-based models of healthy young and old
adults, focusing on the mitigation of age-related deficits such as
reduced MT and MRTD. We show that an ankle exoskeleton mod-
erately reduces feasible stability boundaries in users who have full
ankle strength. For individuals with age-related deficits, there is
a trade-off. While exoskeletons augment stability in low velocity
conditions, they reduce stability in some high velocity conditions.
Our results suggest that well-established control strategies must
still be experimentally validated in older adults.

Index Terms— Aging, biomechanics, exoskeletons, hu-
man stability, standing balance.

I. INTRODUCTION

Ankle exoskeletons are powered orthotic devices that can assist
people with mobility impairments, such as older adults, by compen-
sating for reduced muscle force and power capabilities. Typically,
they provide actuation about the ankle joint only in the sagittal
plane, generating a push-off torque during dynamic activities such
as walking and stair climbing. Exoskeletons have been shown to
reduce metabolic cost of transport during walking, in both younger
[1] and older adults [2]. The main source of their appeal to older
adults, however, is their perceived potential to reduce fall risk [3]. It
is therefore crucial to develop our understanding of the effect of ankle
exoskeleton assistance on stability, which is currently incomplete.

Torque production at the ankle is an important contributor to
balance, which suggests that ankle exoskeletons have the potential
to improve stability during standing. Unimpaired adults tend to
rely on ankle torques to maintain a stable standing position, only
switching to a hip strategy in response to large perturbations [4].
In older adults, maximum available plantar flexion and dorsiflexion
torques are lower, reducing the range of perturbations that can be
accommodated with an ankle strategy [5]. This reduction in peak
ankle torque has been shown in multiple studies to be correlated
with decreased performance in balancing tasks [5] and a higher risk
of falls [6], [7]. The rate at which this torque can be produced also
declines with age [8], although the effect of a lower maximum rate
of torque development (MRTD) on standing balance is inconclusive.
Reduced MRTD at the knee is associated with a history of falls [9],
[10], while plantar flexor MRTD is significantly correlated with lower
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performance on a single standing leg balance test for older men, but
not for older women [11]. Other studies have found that lower ankle
MRTD is not a strong predictor of fall likelihood [12], [13]. Still,
it is possible that lower MRTD contributes, independently of lower
MT, to increased fall risk in older adults.

Although ankle exoskeletons can, in theory, mitigate both MT and
MRTD deficits by producing large amounts of torque quickly, the
effect they have on stability is unclear. Depending on the population,
device, controller, and perturbation paradigm, ankle exoskeletons
have been reported to enhance stability [14]–[16], slightly reduce sta-
bility [15], [17], or have no effects on stability [18], [19]. Notably, the
majority of balance studies for powered exoskeletons have focused on
young and able bodied users, who do not have impaired stability. As
these devices are likely to be marketed to enhance mobility in older
populations [3], it is imperative to understand how these they may
affect the stability of users with age-related reduction in MT and
MRTD. We currently do not know how these age-related changes
may interact with additional exoskeleton assistance at the ankle.
Because perturbation experiments on older adults are expensive,
time-consuming, and risky, developing a generalizable model-based
characterization of standing balance with ankle exoskeletons is a
useful approach. Modeling can provide insights into the mechanisms
underlying exoskeleton-assisted standing balance, including how con-
straints on the human-exoskeleton system are affected both by the
device and by age-related joint-level torque deficits.

Bounds on human stability for feet-in-place activities such as
standing may be characterized by computing the set of all body center
of mass (CoM) positions and velocities from which it is possible to
stabilize to quiet standing, meaning that the CoM position is above
the foot and the CoM velocity is close to zero [20]. This set is
sometimes called the feasible stability region [21], [22]. In the case
of a simplified linear inverted pendulum these are the well-known
extrapolated center of mass boundaries [23]. In this text we will
use the term stabilizable region, abbreviated ‘SR,’ as in our previous
work.

Stabilizable regions have been computed for various legged dynam-
ical systems [24], [25], including one example where the boundary
was partially computed for a model of a human wearing an optimally
controlled hip-knee-ankle exoskeleton [26]. The full stabilizable
region under aging-related biological constraints and different ankle
exoskeleton controllers has not been explored. Furthermore, formal
stability properties of this region have not been defined. One particu-
larly important attribute is invariance. If the SR is controlled invariant,
this means that there always exists a controller that allows the human
to stay within the region. If it is not, then there may be states within
this region from which the human can pass through the SR, but not
stabilize. Invariance guarantees that the SR does not include states
which merely pass through the set. This property is particularly im-
portant to verify when there are constraints on the control input. Such
constraints may correspond to biologically meaningful quantities such
as maximum joint torque, or to environmental constraints such as the
frictional forces on the support surface.

In a previous paper, we introduced a general framework for
determining the complete SR boundary for human-exoskeleton dy-
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namical systems [27]. Our approach formulates the SR boundary
as the solution of a single partial differential equation rather than
an algorithmic search. In contrast to prior work, we include strong
formal invariance and stability guarantees over the entire SR in the
presence of both biological and environmental constraints.

Here we provide a generalizable, model-based understanding of
how an ankle exoskeleton may alter the domain of invariant stable
motions available to a user in the presence of joint level functional
changes associated with aging, including reduced MT production and
MRTD. To our knowledge, this is the first study that attempts to
systematically understand the combined effect of ankle exoskeleton
assistance and age-related ankle torque deficits on feasible stability.
Using common exoskeleton control strategies, we analyze the effect
that exoskeletons have of the invariant stabilizable region for models
of healthy young and healthy old adults. We show that while ex-
oskeletons can indeed enhance ankle torque production and improve
stability under certain conditions, they can also act as a disturbance,
resulting in a trade-off between increased torque bounds and stability.

II. PRELIMINARIES

Our methods for computing stabilizable regions (SRs) are based on
two notions, controlled invariance and backward reachability, which
we formally define in the following sections.

A. Controlled invariance and backward reachability

0.65 0.94 1.23 1.51 1.8
0

0.45

0.9

Safe region

XCoM

Fo
rw

ar
d 

an
gu

la
r v

el
oc

ity

Lean angle 
Quiet 

standing

Backward fall boundary

Forward fall boundary

!𝑥!

#𝑥!

𝑢!(#
)

𝑢"(#)

Fig. 1. Illustration of a target set (green) and its backward reachable
set (purple). The state x̂0 is in the BRS because there exists a controller
u1 that drives the system to the target set at time T . No such controller
exists for x̃0 so it is not in the BRS. Note that controller u2 does not drive
the system to the target. If the target set is controlled invariant then the
union of the target set and the BRS is also invariant. Here, the BRS was
computed with model parameters corresponding to a young male, using
our method described in Section IV. The gray region is computed using
the extrapolated center of mass (XCoM) method from [23], which we
have converted here to angular coordinates.

Consider the system
ẋ = f(x, u), (1)

where state x ∈ X ⊂ Rn, input u ∈ U ⊂ Rm. Control signals are
denoted u(·) ∈ U = {ϕ : [0,∞] → U}. Solutions to this system are
functions of time, and we denote them by φ(·;x0, u(·)), for initial
condition x0 and control signal u(·).

A set Ω ⊂ X is controlled invariant if for any initial condition in
the set, there exists a controller that maintains the system state within
Ω:

Definition 1. A set Ω ⊂ X is controlled invariant for system (1)
if, for all x0 ∈ Ω, there exists u(·) ∈ U such that for all t ∈ [0,∞],
φ(t;x0, u(·)) ∈ Ω.

If Ω is a safe region in the state space, then the ability to always
stay within the set is a desirable property.

We can also define the region of the state space from which it is
possible to reach a specified (not necessarily invariant) subset, S. The
set of all x ∈ X such that there exists a control signal that drives
the system to S within some finite time horizon is the backward
reachable set of S.

Definition 2. Let S ⊂ X and T ∈ R+
0 . Then GT (S), the backward

reachable set of S at time T , is

GT (S) := {x ∈ X | ∃u(·) ∈ U s.t. φ(T ;x, u) ∈ S}. (2)

An illustration of this set is depicted in Figure 1. Because this
definition does not constrain the form of the control law, it is the
maximal backward reachable set (BRS) with respect to U . Thus it
represents the ‘best case’ scenario of the states from which it is
possible to reach the target set.

The BRS only contains states from which the system can reach the
target set at precisely time T . The set of all states from which the
target set can be reached at t ≤ T is called the backward reachable
tube, and is a union of backward reachable sets:

Definition 3. The maximal backward reachable tube of a set S ⊂ X
over a time horizon [0, T ] is G[0,T ](S) = ∪t∈[0,T ]Gt(S).

Given these definitions, we note the following two facts:

Fact 1. If Ω is controlled invariant, then its backward reachable set
is controlled invariant.

Fact 2. Assume a system as defined in (1). Let S ⊂ X be controlled
invariant. Then Gt1(S) ⊂ Gt2(S) for all t1, t2 ∈ R+ with t1 < t2.

Fact 2 is proved in [27]. Taken together, these facts mean that for
an invariant target set S, G[0,T ](S) = GT (S). Thus it is sufficient
to compute the backward reachable set rather than computing the full
reachable tube.

B. Relating invariance and reachability to human stability
The relationship between human stability and our formal math-

ematical definitions is illustrated in Figure 1. Assume that the
dynamics (1) represent a parameterized model of a standing human.
In the figure, the green ellipse represents a controlled invariant
target set of states corresponding to quiet standing. Note that for
the purposes of the illustration the set is depicted to be larger than it
is. The purple region is the true-to-size backward reachable set that
we compute using a constrained dynamical model with parameters
corresponding to a young male, as described later in Section III. As
labeled in the figure, the boundaries of this set correspond to forward
and backward fall boundaries and to constraint failures. Outside of
these boundaries the ankle strategy fails and the model must take
some action to avoid a fall, such as taking a step. For visual clarity
we only depict the portion of the state space corresponding to forward
angular velocities. Because the target set is controlled invariant, the
resulting purple safe region is as well. For comparison, we show the
same bounds computed using the extrapolated center of mass method,
from [23], in light gray.

To determine the stability bounds of the human-exoskeleton sys-
tem, we also compute reachable sets with the dynamics of an ankle
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exoskeleton controller added to (1), the details of which are presented
in Section III and IV. We construct invariant target sets corresponding
to quiet standing with exoskeleton assistance, and then compute the
backward reachable sets. The resulting sets then delineate the feasible
stabilizable boundaries with ankle exoskeleton assistance.

III. HUMAN-EXOSKELETON MODEL

Wbody

Fnormal

Ffriction

θ

Center
of pressure

Body center
 of mass
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 of mass
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foot height

toeheel Wfoot

Fig. 2. Free body diagram representing the forces acting on the
combined human-exoskeleton system.

We use a planar, two link, single degree-of-freedom model to
represent a standing human (Fig 2). The first link represents the foot,
while the second link represents the rest of the body. These links
are connected using a pin-joint at the ankle, with the axis of rotation
lying normal to the sagittal plane. The mass of each link is assumed to
be lumped at the center-of-mass for the respective body. The human
interacts with the ground through forces applied on the foot segment.
Thus, these ground reaction forces applied at the foot, and the weight
of the foot and body segments applied at each respective mass center,
are the only external forces acting on the human system.

We model the ankle exoskeleton as massless device, worn bilat-
erally, that only generates torque in the sagittal plane. We assume
that the the human can resist the torque generated by the device if
necessary. Thus the exoskeleton is represented by an ideal torque
actuator at the ankle, and the net torque at the ankle is the sum of
the human and the exoskeleton torques.

Rather than including the human torque τhuman as an ideal (instan-
taneous) torque actuator, we use a more realistic simplified actuation
model where the direct human input to the system is the desired
rate of torque development, τ̇des

human. The stabilizable configurations
are thus represented in joint angle-velocity-torque space, where the
torque state represents the human torque only. Denoting the state
space as X ⊂ R3, with x1 = θ, x2 = θ̇ and x3 = τhuman, and the
input space as U ⊂ R with input u = τ̇des

human, in state space form,
our dynamics areẋ1ẋ2

ẋ3

 =

 x2
− g

l cosx1 − b
ml2

x2 + 1
ml2

(x3 + τexo)

u

 . (3)

The constants g, m, and l represent the gravitational acceleration,
mass of the body link, and leg length. The parameter b represents
minimal damping that is included make the dynamics less stiff.

We can thus limit the torque that the human can produce (MT)
and the maximum rate of torque change (MRTD) of the model by
constraining state x3 and input u:

τ
max pf
human ≤ x3 ≤ τmax df

human (C1)

MRTDmax pf ≤ u ≤ MRTDmax df (C2)

Maximum plantar flexion torque τ
max pf
human is negative in our angle

convention, while τmax df
human denotes positive dorsiflexion torque. Lower

magnitude of torque bounds correspond to weaker ankle strength,
while lower bounds on u correspond to reduced rate of torque
development, as seen in older adults [8].

As, shown in Figure 2, the foot contact with the ground is
determined by the normal force Fnormal, the force due to friction
Ffriction with coefficient of static friction µ, and the location of the
center of pressure (CoP). The CoP should remain within the base
of support (BoS), which corresponds to the length of the foot. Full
ground contact is enforced by three zero-moment point (ZMP) safety
constraints which prevent the foot from tipping or slipping [28]:

Fnormal ≥ 0 (C3)

CoP ∈ BoS, (C4)

|Ffriction| < µFnormal. (C5)

A human user may respond to the assistive torque of the ex-
oskeleton in a range of ways. They may actively resist the torque
generated by the device, or they may adapt their torque production
to allow the exoskeleton to assist as much as possible. Studies with
able-bodied participants, such as [19] have shown that young adults
adapt quickly to an exoskeleton using a state-feedback controller, with
minimal alteration to CoM kinematics. Thus we make the following
assumptions related to the human-exoskeleton interaction:

1) The exoskeleton employs a state feedback control strategy
and is unaware of the foot-ground interaction constraints-
cannot reduce or increase torque production if a foot-ground
interaction constraint is in danger of being violated

2) The human increases or decreases their torque production to
account for the torque produced by the exoskeleton, in an effort
to be optimally safe

3) The human cannot instantaneously change the value of the
torque produced at the ankle

Assumption 3 is addressed via constraint (C2). Because of As-
sumption 2, (C3)-(C5) can be expressed as constraints on the total
torque of the system such that the exoskeleton torque is accounted
for. Let h : X → R. Then we can write constraints on the torque as:

hklb(x) < x3 + τexo(x) < hkub(x) (4)

for k ∈ {1, 2, 3}. As we assume the exoskeleton torque is a function
of state, these are actually state constraints on the human torque state
x3. Appendix I includes a full derivation of the equations of motion
and foot-ground contact constraints.

IV. METHODS

We assess the effect of ankle exoskeletons on feasible stability by
computing the BRS of the human-exo system for two exoskeleton
controllers, over a range of sex- and age-adjusted model parameters.
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A. HJB Reachability

The BRS can be computed using Hamilton Jacobi reachability
tools. Hamilton Jacobi Bellman reachability uses HJB partial dif-
ferential equations to compute implicit set representations of the
backward reachable set [29]. We provide a brief overview of the
method here, but we note that our analysis can be done with
any nonlinear continuous time backward reachability tool. A more
rigorous development of HJB and its use for solving reachability
problems can be found in [30].

Given a dynamical system of the form (1) and a target set S ⊂ X ,
let g(x) be a function whose zero sublevel set represents S, i.e.,
S = {x | g(x) ≤ 0}. Typically g(x) is a signed distance function.
HJB reachability tools compute the backward reachable set by solving
the PDE

DtV (t, x) +H(t, x,∇V ) = 0, V (0, x) = g(x). (5)

over reversed time interval [−T, 0], where T is the desired duration
and t ∈ [−T, 0]. The solution V (t, x) is called the value function.
The function H(t, x,∇V ) is called the Hamiltonian, and in this case
is given by

H(t, x,∇V ) = min
u∈U

∇V · f(x, u) (6)

The argument of the Hamiltonian,

a∗(x) ∈ arg min
u∈U

∇V · f(x, u) (7)

is an optimal control input at a given state x that minimizes V (x, t)
along the system trajectory. The value function itself is an implicit
surface function representation of the backward reachable set at time
t, Gt, as defined in Definition 2. Thus,

Gt = {x | V (t, x) ≤ 0}. (8)

Note that we abuse notation slightly by letting t also denote t ∈ [0, T ]
in the nonreversed time interval.

Suppose now that system (1) is control affine, such that it can be
written

ẋ = f(x, u) = fx(x) + fu(x)u. (9)

We assume that u ∈ U ⊂ Rm and that U is a hyperrectangle
such that u is bounded elementwise, i.e. ui ∈ [ui, ui]. In this case,
an analytical solution to Problem (7) is quite easy to find. As the
optimization is over u, portions of the resulting expression that do
not contain the control input can be ignored, and the problem reduces
to

a∗ ∈ arg min
u∈U

n∑
i=1

∂V (t, x)

∂xi
fui (x) · ui (10)

The optimization problem is evaluated at a fixed time t and state x,
which means that each coefficient ∂V (t,x)

∂xi
·fui (x) is a constant. The

solution can thus be found easily by letting ui = ui if the coefficient
is positive and ui = ui otherwise. For system (3), equation (10)
reduces to

min
u∈U

H(t, x,∇V ) =
∂V (x, t)

∂x3
u. (11)

Assuming U = [u, u], the optimal controller is therefore u if
coefficient ∂V (x,t)

∂x3
< 0 and u otherwise.

B. Constructing invariant target sets

Recall that controlled invariance is a desirable safety property.
To ensure that the BRS is controlled invariant, it suffices to show
that the target set is controlled invariant, as explained in Section II.
However, in our case, the target set must be a subset of the safe region

defined by constraints (C1) and (C3)-(C5), and obey constraints on
the controller (C2). Thus the target sets must be constructed with
care.

Appropriate candidates for the target set can be found in the
biomechanics literature, where feasible stability is commonly defined
as the ability to reach static standing configurations [20]. These are
equilibrium configurations where (i) the angular velocity of the body
is zero and (ii) the x-coordinate of the center of mass (CoMx) is
within the base of support (i.e. above the foot). These configurations
form a continuum that can be used to construct target sets.

We show this by first analyzing static equilibrium (zero net-torque)
states that fulfill condition (i). Let τact denote the total actuation
torque about the ankle, as in Figure 2, and let τg = mgl cos θ be
the gravitational torque. Summing the torques, we see that τact =
τg meaning that the net actuation torque must remain constant and
compensate for gravity. With human torque τhuman state feedback
exoskeleton torque τexo, we have that τact = τhuman+τexo. Also recall
that in our ‘lifted’ system (3), input u = τ̇human, is the rate of the
human torque development. Therefore we have that at equilibrium,
τhuman = τg − τexo and u = 0.

There are multiple static equilibria corresponding to various resting
states where the net actuation torque counters gravity, which can be
defined as the following set

Ωeq = {x ∈ X|x2 = 0, x3 = τg − τexo}. (12)

Curves representing these equilibria for system (3) with and without
an exoskeleton are shown in Figure 3. The depicted exoskeleton
controller, which is described in more detail in the following sections,
compensates for gravity and saturates at 50N ·m.

Our desired static equilibria must also satisfy condition (ii), with
the CoMx above the foot. In angular coordinates, the bounds of
the foot can be represented as the maximum forward and backward
lean angle, such that the CoMx is within the foot. We refer to the
maximum forward lean as θtoe and the backward lean angle as θheel.
Using the geometric parameters of the foot as shown in Figure 2, we
have that θheel = cos−1 (al ) and θtoe = cos−1 (

lf−a

l ). This gives a
feasible range of lean angles, θ ∈ [θheel, θtoe].

To model humans realistically, we also account for limits on τh
shown in constraint (C1). The feasible target states consist of the
intersection of the set of states where the constraints on joint angle
are satisfied and the set where the constraints on torque production
are satisfied. These are shown inside the green square in Figure
3. Note that all static equilibria within this square also satisfy
constraints (C3)-(C5). This is because at these states, the system is
not accelerating and is at zero velocity - therefore the ground reaction
force is equal to the weight of the foot and body, there is no friction
force, and the CoP is within the bounds of the foot. Thus we have
a continuum of goal positions within the safe region, where the foot
maintains contact with the ground without tipping or slipping.

This representation of the target set raises two key concerns. First,
because the set consists only of static equilibria, it does not allow
for natural postural sway, which is a fundamental characteristic quiet
standing in humans. Secondly, one-dimensional target sets consisting
of curves or line segments can lead to computational issues when
computing the BRS. To generate target sets that are more biologically
realistic, we instead use a Control Lyapunov Function (CLF) to
construct controlled invariant ellipsoids. CLFs are an extension of
Lyapunov functions to systems with control, and are defined as
follows [31]:

Definition 4. Let x∗ = 0 be an equilibrium point of (1) and let
E : Rn → R be a positive-definite, continuously differentiable
and radially unbounded function. Then E(·) is a control Lyapunov
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function if for all x ̸= 0 there exists u such that Ė(x, u) < 0.

In other words, a control input exists that stabilizes the system
at x∗. Note that just as the level sets of Lyapunov functions are
invariant, the level sets of a CLF are also controlled invariant. The
level sets of an appropriately formulated CLF can therefore be used
as target sets.

We start by first selecting the relevant equilibrium points. Due to
computational scaling issues we compute the backward reachable sets
in the space of positive (posterior to anterior) and negative (anterior
to posterior) velocities separately. Segmenting the state space in this
manner means that the backward reachable sets may not include
initial conditions whose resulting trajectories oscillate between (large)
positive and negative velocities while satisfying the constraints. To
mitigate this issue within reasonable bounds for human balance, we
include a buffer within our velocity range such that we compute
over [v−buffer, v

+
lb ]. We select the size of this buffer to be 0.5 rad s−1,

which is the largest computationally feasible bound. Our backwards
reachable sets therefore exclude true failure states — from which it is
impossible to reach the target set, and high oscillation states — from
which it is only possible to reach the target set with oscillations of
a magnitude higher than vbuffer. We note that in practice the size of
the velocity buffer does not affect the resulting BRS and it is likely
that highly oscillatory solutions do not satisfy constraints.

Because we compute the BRS in two separate forward and back-
ward velocity segments, the target set formulation must encompass
all the portions of the foot that we wish to reach with mostly positive
and mostly negative velocity only. We therefore make the following
observation: If an equilibrium point near the toe can be reached with
a positive velocity, then any point posterior to that can be eventually
reached with a low enough negative velocity, i.e. by leaning back
slowly. This implies that it is sufficient to select one equilibrium point
at the toe, rather than having to represent the entire range of static
equilibria. A symmetric argument can be made for an equilibrium
point at the heel or ankle for points that can be reached with a
negative velocity. However, when the system includes a saturating
exoskeleton torque due to the device’s motor limits, the dynamics
become hybrid. There are three modes corresponding to 1) negative
saturation, 2) no saturation, and 3) positive saturation. These modes
can be seen in Figure 3. Only two modes appear within the green
region. Thus we will select one equilibrium point per mode: a ‘toe’
equilibrium point in mode 1, and an ‘ankle’ equilibrium point in
mode 2.

To select the equilibrium point at the toe, we must take into account
the functional base of support (FBOS). An individual’s FBOS is
defined as the maximum range that they can voluntarily translate their
CoP in the anterior (toward the toe) and posterior (toward the heel)
directions. In our model, we assume that the angle corresponding
to the maximum anterior CoP position is approximately the most
anterior point contained within the foot and maximum plantar flexion
torque bounds introduced in constraint C1:

θtoeEq = max (θtoe, cos
−1(

τ
max pf
human − τ sat

exo

mgl
))− 0.03. (13)

The angle θtoeEq is largest angle such that the model’s human
and exoskeleton maximum torques,τmax pf

human and τ sat
exo, are sufficient to

compensate for gravity and maintain a static position. We subtract
0.03 rad to allow for displacement due to postural sway. When the
model torque bounds correspond to a young individual this point
occurs at θtoe, but in models of older adults, the region of static
support may be smaller. Indeed, in an older adult there may be
further limiting factors shrinking the FBOS, such as reduced toe
flexor strength [32].

The equilibrium point corresponding to the toe is therefore
xtoeEq = [θtoeEq, 0,mgl cos (θtoeEq)− τ sat

exo]. The ankle equilibrium
point is more straightforward. We simply let θankEq = π

2 . This
corresponds to upright standing with no forward lean. The ankle
equilibrium is xankEq = [θank, 0, τg−τexo], where τexo is determined
by a state feedback law Kexo(x1, x2). The ankle and toe equilibria
for the system with and without exoskeleton assistance are shown in
Figure 3, along with the FBOS. Note that in the no exoskeleton case,
we simply set τexo = τ sat

exo = 0.
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Fig. 3. Continua of equilibrium points in the zero-velocity plane for
the system with and without an exoskeleton. The shaded green region
indicates the bounds of the foot along the x-axis, and the human torque
bounds on the y-axis. The equilibrium point corresponding to the ankle
and the points corresponding to the maximum point of static feasible
support are marked with blue dots. The bounds in this figure correspond
to the older female model.

For a system with a given exoskeleton controller, we linearize the
system at each equilibrium point xeq ∈ {xankleEq, xtoeEq} such that
we have

˙̃x = Ax̃+Bũ (14)

Where x̃ = x− xeq is the new state variable representing deviation
from xeq. We wish to find some ũ = K(x̃) that is a closed loop
controller guaranteed to stabilize the system about xeq. We can find
a CLF of the form E(x̃) = x̃TP x̃ with a corresponding stabilizing
controller by solving a semidefinite program, described in Appendix
II.

The target set centered at xeq can then be formulated as {x |
(x− xeq)

TP (x− xeq) ≤ c}, for some c ∈ R. However, this CLF is
valid for the unconstrained linearized system (14). This means that c
should be chosen small enough such that for any x in this ellipsoid,
the state and input constraints on the original nonlinear system are
satisfied.

To simplify this problem, we first consider only linear constraints.
The controller u = Kx should not violate constraint (C2) and
the constraint on the human torque production (C1) should also
be enforced. Furthermore, the target set should not contain CoM
positions anterior or posterior to the foot. As the target set should
represent quiet standing, we also add an additional constraint limiting
the velocity within the target by an amount close to experimentally
observed postural sway [33]. These last two conditions become two
additional linear constraints:

θheel < x1 < θtoe (C6)

− vsway < x2 < vsway (C7)
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Young male Weak older female

Reduced MT Reduced MRTD

No exo

Exo

-30%

-50%

-30%

-50%

-30%
-50%

-30%

-50%

Fig. 4. The top row shows the stabilizable region computed for the young male model (left) and weak older female (right). The baseline regions
without the exoskeleton are shown in orange, while the region with exoskeleton assistance is shown in purple. Stabilizable regions when MT and
MRTD are reduced independently are shown in the bottom four panels. In the second, the regions are computed with no exoskeleton. The largest
sets are baseline, followed by 30% reduction and 50% reduction in each respective quantity. In the bottom row, the exoskeleton is added, and the
baseline is outlined in gray.
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where vsway represents the maximum allowable postural sway within
the target set.

The problem of finding the largest c such that the ellipsoid P is
maximally contained within the linear constraints is easy to solve. It
is a simplified version of the convex problem of finding a maximum
volume inscribed ellipsoid within a polyhedron (see for example [34,
Chapter 8]) and has a closed form solution:

c = min
i

(bi − aTi xeq)
2

aTi P
−1ai

(15)

Here each of the linear constraints is represented as two inequalities
of the form aix ≤ bi, where ai ∈ R1×3, bi ∈ R, and i ∈ {1, . . . , 8}.
A complete derivation is in Appendix II.

For compatibility with the BRS computation tool, we enclose the
ellipsoid in a tight axis-aligned bounding box. We check that the
vertices are also contained within the constraint polytope. If they
are not, we perform a linear search to further scale c such that the
constraints are satisfied for the minimum circumscribed axis-aligned
bounding box. To account for the nonlinear foot-ground interaction
constraints, we check that the box corners do not violate (C3)-(C5).
Although this does not provide a provable guarantee of constraint
satisfaction, in practice it is a sufficient check due to the relatively
small size of the boxes. The target set is then the union of the axis-
aligned boxes centered around the ankle and toe equilibria.

C. Evaluating the effect of ankle exoskeleton assistance
To determine how exoskeleton assistance may affect the stability

of older adults with differing ankle torque production capabilities,
we model five representative individuals. The individuals correspond
to the young female (YF), young male (YM), older female (OF),
and older male (OM) categories described in [8]. We add the fifth
category, weak older female (wOF), by reducing the maximum
isometric torque and normalized rate of torque development by half
a standard deviation. The respective MT and MRTD bounds of each
model are shown in Table I.

For each model, we construct appropriate target sets as described
in the previous section, and then use a state of the art HJB toolbox to
compute the backward reachable set in position-velocity-torque space
[29]. To form the stabilizable region, we project the resulting BRS
into position-velocity space. We first compute a baseline stabilizable
region for a young male model without exoskeleton assistance, shown
in purple for forward velocities in Figure 1. We validate that for a full
strength YM model, the bounds approximately coincide with those
computed via the XCoM method shown in the same figure in gray.
These bounds overlap wherever the model is close to linear.

We then compute the BRS with ankle exoskeleton assistance added.
We assume that the motor on each exoskeleton saturates at 25N ·m
and that each device uses a gravity compensation (GC) control
strategy, as described in [19]:

K(x) =

{
mgl cos θ if |τexo| < motor limit
±motor limit otherwise,

(16)

To understand the effect of damping, we also compute the SR with
a proportional derivative controller whose desired setpoint is static,
upright standing:

K(x) =

{
Kp(θ − π

2 ) +Kd(θ̇) if |τexo| < motor limit
±motor limit otherwise

(17)

where Kp,Kd > 0 represent the PD controller gains. The gains
are also taken from [19], where proportional gain Kp = mgl is
a linearized gravity compensation term, while the derivative gain
Kd = 0.3

√
ml2Kp compensates for gravitational stiffness. Both

the GC and PD controller are easily substituted into the dynamics
such that τexo = K(x). While we only analyze these two strategies,
we emphasize that the methods presented here can be applied to any
state-feedback controller.

To get a clearer picture of the independent contributions of reduced
MT and MRTD, we also analyze how reduced MRTD and reduced
MT affect the SR separately. We compute the SR for the YF
model with the MT held constant at the YF’s nominal peak value,
while reducing the MRTD in ten percent increments. We repeat this
procedure but we reduce the MT while holding the MRTD fixed.
We evaluate how deficits in MT and MRTD interact with ankle
exoskeleton assistance by computing similarly reduced strength sets
with GC exoskeleton assistance added. We compare the area of the
reduced strength stabilizable regions with the full strength baseline
region, and compute the percent reduction or increase in area.

TABLE I
MODEL PARAMETERS FOR YOUNG FEMALE (YF), OLD FEMALE (OF),

YOUNG MALE (YM). OLD MALE (OM), AND WEAK OLDER FEMALE

(WOF), INCLUDING MT AND MRTD IN DORSIFLEXION (DF) AND

PLANTAR FLEXION (PF) DIRECTIONS

Dir. YF OF YM OM wOF

Mass (kg) n/a 59.4 60.0 72.9 74.5 60.0
Height (m) n/a 1.65 1.59 1.77 1.74 1.59
MT (Nm) DF 28 22 43 37 21

PF 130 88 181 137 78
MRTD (Nm/sec) DF 219 148 309 232 130

PF 608 389 957 681 303

V. RESULTS

A. Stabilizable regions for age and sex adjusted models

Table II summarizes the results for the YF, YM, OM, OF, and
wOF models with the gravity compensation (GC) and PD controller
strategies. The changes in area for the forward and backward velocity
regions are listed separately. In the forward velocity region the
GC and PD controller slightly reduce the area of the SR in the
young adult models but increase the total area in the OF and wOF
model. The backward velocity region shows a different trend — the
exoskeleton assistance reduces the area of the stabilizable region for
all models. The additional damping provided by the PD controller
does not significantly mitigate reductions in stabilizable region area.
The stabilizable regions for the young male model and the weak older
female model are shown in the top two panels of Figure 4, with and
without the exoskeleton added.

v+ Gravity compensation Proportional-derivative

YM −0.43 −0.37
YF −3.14 −2.73
OM +3.71 +4.64
OF +8.43 +9.56

wOF +15.9 +17.5

v− Gravity compensation Proportional-derivative

YM −16.9 −16.5
YF −32.7 −32.4
OM −15.39 −14.94
OF −19.56 −18.92

wOF −10.5 −10.16

TABLE II
EFFECT OF EXOSKELETON ASSISTANCE ON TOTAL AREA OF

STABILIZABLE REGION FOR SEX AND AGE ADJUSTED MODELS.
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B. Effect of reduced MT and MRTD

The effect of reducing MT and MRTD in 10% increments can been
seen in Figure 5 as percent reduction in area relative to the baseline.
Figure 4 shows the YF stabilizable region when MT or MRTD are
reduced by 30% and 50% with and without exoskeleton assistance. At
positive velocities, reducing maximum torque causes large reductions
in SR area but the addition of exoskeleton assistance mitigates the
overall effect. For example, a 30% MT reduction results in an SR area
that is 20% smaller than the baseline region while there is only a 10%
reduction when ankle exoskeleton assistance is included. At negative
velocities, the shift in the constraints on human torque arising from
(4) overpowers any mitigating effect that the exoskeleton assistance
my have on reduced MT.

When MRTD is reduced the effect on the overall SR only becomes
noticeable after large reductions of 40% or more at positive velocities.
When an exoskeleton is added, however, the effect is amplified.
Without the exoskeleton a 30% reduction in MRTD causes a 2.6%
reduction in SR area. With an exoskeleton the SR area is reduced
by 10.4%. At negative velocities, the change in total area is over-
whelmingly determined by the change in constraint bounds, as with
reduced MT.

Fig. 5. Trends in stabilizable region area when MT (circular markers)
and MRTD (diamond markers) are independently reduced, with (purple)
and without the exoskeleton (orange).

VI. DISCUSSION

The stabilizable regions computed without ankle exoskeleton as-
sistance align with what is known from prior experiments in the lit-
erature. Reduced MT has a far stronger effect than MRTD, with even
a severe reduction in MRTD contributing to only a 10% reduction in
total area. Interestingly, the stabilizable regions computed with ankle
exoskeleton assistance suggest that the device may exacerbate MRTD
deficits. Reductions in MRTD lead to larger reductions in the total
stabilizable region area computed with exoskeleton than without. The
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Fig. 6. Boundaries of the SR computed for a simple pendulum using
work-energy (W-E) analysis. The regions computed with our method are
overlaid in light purple and orange.

same effect is not seen for reduced MT, where the ankle exoskeleton
seems to mitigate the reduction in area.

However, as can seen clearly in the Figures 4 and 5, the addition
of exoskeleton torque does not uniformly increase or decrease the
area of the stabilizable region (SR). We see the following effects in
the positive (posterior-anterior) velocity region:

• The exo increases the SR along the entire backward fall bound-
ary.

• The exo increases the SR along the forward fall boundary at
low velocities.

• The exo decreases the SR along the forward fall boundary at
nondimensional velocities higher than approximately 0.2.

At negative (anterior-posterior) velocities we see similar effects:
• The exo increases the SR along the forward fall boundary up

to nondimensional velocities of approximately −0.7.
• The exo increases the SR boundary along the backward fall

boundary at low velocities.
• the exo decreases the SR along the backward fall boundary at

velocities lower than approximately −0.15.
• the exo decreases the range of the contact constraint edge (the

short edge in the lower right hand corner)
To understand why this may be happening, we will analyze the

dynamics of an unconstrained and undamped 2d pendulum, with and
without the exoskeleton, e.g. the system with dynamics τh + τexo =
ml2θ̈ +mgl cos(θ).

We first note that gravity exerts a negative torque when the CoM
is behind the ankle and a positive torque when the CoM is ahead of
the ankle. We can draw a vertical line at y = θankle that separates
the 2d state space into positive and negative gravity torque regions.
This is the solid black line shown in Figure 6.

We also need to define a zero human-torque line.

Definition 5. The zero human-torque line (ZTL) is a line in the phase
plane along which the human does not need to produce torque to
reach a final static standing condition.

Consider first, the no exoskeleton case — The only static standing
position where the human does not need to produce a gravity resisting
torque is directly above the ankle. Thus, there is a unique ZTL along
which total mechanical energy is a constant, and is equal to the
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potential energy when the center of mass is directly above the ankle.
If the initial energy is Ei = mgl sin θ+ 1

2ml2θ̇2 and the final energy
is Ef = mgl sin θankle we can compute the zero torque line by letting
Ei = Ef , and thus derive an equation for the system velocity as a
function of position:

θ̇ = ±
√

2
g

l
(sin θankle − sin θ) (18)

This is shown as a dashed black line in figure 6.
The ZTL is useful, as it delineates the direction of the optimal

human torque. For a trajectory starting below the ZTL, a positive
(dorsiflexion) torque must eventually be applied to avoid a backward
fall past the heel. For trajectories starting above the zero-torque
line, a negative (plantar flexion) torque is eventually necessary to
brake quickly enough to prevent the CoM from overshooting past
the toe. The boundary of the stabilizable region that is below the
ZTL corresponds to the lower bound before a backward fall occurs,
whereas the stabilizable region boundary above the ZTL corresponds
to forward falls [20].

It is important to note the overlap between the region where
dorsiflexion and plantar flexion are required according to the zero
torque trajectory, and the direction of the gravitational torque. In
large portions of the state space, gravity provides an assistive torque
in the optimal direction.

Now let us consider how the addition of an exoskeleton changes the
ZTL. For the analysis in this section, we will consider only the case
of the gravity compensation exoskeleton. Equation (18) is no longer
valid once a gravity compensation torque is added, as the exoskeleton
will always apply a torque. To stay on the original ZTL, i.e. the ZTL
without an exoskeleton, the human would have to produce a torque
resisting the exoskeleton.

Recall that the exoskeleton torque saturates at a negative and
positive value. In the case of the gravity compensation controller
we can easily calculate the angles at which the postive and negative
saturations occur. We can therefore divide the state space into three
regions: with positive saturation, where τexo = τsat; no saturation,
where τexo = mgl cos θ; and negative saturation,where τexo = −τsat.
The ZTL must be computed for each of these regions in a piecewise
manner.

In the region where the controller is not saturated, the exoskeleton
torque fully compensates for the gravitational torque, meaning that
the human must generate no additional torque along this range
of angles. The endpoints of this range are where the exoskeleton
saturation torque can fully compensate for gravity without additional
torque from the human. Denoting these angles as θub

sat and θlb
sat, the

ZTL can be derived using the work-energy principle, similar to (18)
but with the addition of the work due to the saturated exoskeleton.
For example,

θ̇ =

√
2(τ sat

exo(θ
ub
sat − θ) +

g

l
(sin θub

sat − sin θ)) (19)

is the ZTL in the region of positive exoskeleton saturation. The full
ZTL with exoskeleton assistance is shown in Figure 6 as a dashed
red line.

Examining the ZTL with the exoskeleton actuation we can see that
in the forward velocity half of the phase plane the line is shifted
to the left, such that a plantar flexion braking torque is always
required to prevent forward falls. Interestingly, the addition of the
exoskeleton effectively eliminates the possibility of a backward fall
occurring, as long as there is an initial positive velocity and the
contact constraints are satisfied. In the negative velocity half of the
plane the ZTL is shifted to the right, increasing the area where a
dorsiflexion braking torque is needed to prevent a backward fall.

Recalling that the maximum dorsiflexion torque magnitude can be as
low as 25% of maximum plantar flexion torque it is not surprising
that the increased reliance on dorsiflexion also causes the constraint
failure edge to shift inward. These shifts in the ZTL mean that
the exoskeleton qualitatively changes the optimal human response
required to stabilize to quiet standing in large regions of the state
space.

As noted earlier, gravity sometimes provides an assistive torque
in the no exoskeleton case. Therefore, if the exoskeleton controller
is designed to cancel the gravitational torque, we might expect that
exoskeleton “assistance” does not uniformly improve stability. On
the other hand, the exoskeleton increases the torque bounds of the
human user. This is particularly notable in weaker models as foot-
ground interaction constraints are the main limiting factor for stronger
models. In particular, static stability is increased in weaker models,
resulting in a larger functional base of support.

There is therefore a trade-off which we can think of in terms of
work. A weak adult wearing the exoskeleton has the ability to do
more work, but they must compensate at times for the gravitational
torque being canceled out. We can use the work-energy principle to
delineate how this tradeoff affects stabilizability.

The net work of the system is the sum of the work done by the
human, exoskeleton, and gravity. Note that the net work done by
gravity and the exoskeleton will always have opposite signs due to
the controller formulation. For most initial conditions reaching the
target set requires a reduction in kinetic energy, i.e. negative work,

−ml2θ̇2i =

∫ θf

θi

(τexo + τgravity + τhuman)dθ. (20)

By selecting an appropriate final position θf , and by assuming
that the human produces a constant optimal torque, upper and lower
boundaries on the stabilizable region can be computed in a piecewise
manner on the position-velocity plane. For example, for θi < θlb

sat the
upper boundary is expressed by the relation

−ml2θ̇2i =τ sat
exo(θ

lb
sat − θ) + (−mgl)(sin

(
θlb

sat

)
− sin(θ))+

τ
max pf
human · (θlb

sat − θ) + (−mgl)(sin
(
θub

sat

)
− sin

(
θtoeEq

)
)+

mgl cos
(
θtoeEq

)
(θub

sat − θtoeEq).
(21)

The bounds derived from the work-energy analysis are shown for
the system with (purple) and without (orange) the gravity compen-
sating exoskeleton in Figure 6. As can be seen in the figure, the com-
puted BRS for the exo and non-exo systems are well-approximated
by these bounds, demonstrating that the changes in the stabilizable
region boundaries can be understood from a work-energy perspective.
This analysis, however, assumes conservation of energy and ignores
contact and input constraints, leading to an overestimation of the
true boundaries. Additionally, it cannot generalize to systems with
dissipation — such as exoskeleton controllers with damping.

The stabilizable regions computed with our reachability analysis
can therefore increase within these work-energy bounds, subject
to foot-ground contact and MRTD constraints. The lack of any
significant reduction in area in the full-strength YM model is the
result of having a large enough range of positive and negative max-
imum torque and a large enough MRTD such that the exoskeleton’s
undesirable behavior can be compensated for quickly. An exoskeleton
that can completely compensate for missing MT and MRTD and uses
proportional myo-electric control could lead to similar outcomes.

To enable analysis of myo-electric controllers, we will include
more detailed muscle actuation models in our future work. We will
also model delay and relax our assumption that the human adapts
optimally to the exoskeleton assistance. The results presented here
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can also serve as a guide in the design of perturbation experiments
of older adults wearing exoskeletons.

APPENDIX I
DERIVATION OF EQUATIONS OF MOTION AND

CONSTRAINTS

Here we derive the equations of motion and state constraints
presented in Section III.

A. Equations of Motion

Wbody

Fjoint
x

Fjoint
y

Fnormal

Ffriction Wfoot

Fjoint
x

Fjoint
y

n

t

x

y
θ

lf

c

a

hf

lb

 τhuman

 τexoskeleton

 τhuman  τexoskeleton

Fig. 7. Free body diagram of system

A free body diagram of the system is shown in Figure 7. To derive
the constraints that prevent the foot from slipping or tipping, we must
first understand what torques and forces are acting on the foot.

In the following, we will denote cos (θ) as cθ and sin (θ) as sθ
for particularly unwieldy equations. Let τ = τhuman + τexoskeleton be
the total internal torque at the ankle. Summing the torques for the
body segment at the ankle, we have

τ = ml2b θ̈ +mglb cos θ, (22)

where ml2b is the moment of inertia of the body segment. The
rotational motion of the body segment can be decomposed into a
normal acceleration along the leg

an = −lbθ̇
2 (23)

and a tangential acceleration

at = lbθ̈. (24)

Rotating these accelerations to the x-y coordinate system, we have -

ax = ancθ − atsθ = −lb(θ̇
2cθ + θ̈sθ) (25)

ay = ansθ + atcθ = lb(−θ̇2sθ + θ̈cθ) (26)

These accelerations are caused by a combination of the weight of
the body and the contact forces at the ankle joint. Thus we can write
the force balance at the ankle as:

max = Fx
joint = −mlb(θ̇

2cθ + θ̈sθ) (27)

may = F y
joint −Wbody = F y

joint −mg = mlb(−θ̇2sθ + θ̈cθ) (28)

Similarly, for the foot segment we can write the force balance as:

mfa
x
f = Ffriction − Fx

joint (29)

mfa
y
f = Fnormal − F y

joint −Wfoot = Fnormal − F y
joint −mfg (30)

where mf is the mass of the foot. When the foot is not accelerating
we get:

Fnormal = F y
joint +mfg (31)

This gives us an equation for Fnormal:

Fnormal = mlb(−θ̇2sθ + θ̈cθ) +mg +mfg (32)

Similarly, we can derive an expression for the ground reaction/friction
force in the x direction via force balancing:

Ffriction = Fx
joint = −mlb(θ̇

2cθ + θ̈sθ) (33)

Finally, the location of the center of pressure (CoP) as a function
of these known quantities can be found by balancing torques about
the ankle:

((lf − a)− CoP) · Fnormal − cmfg + τ − hfFfriction = 0 (34)

which in turn gives us

CoP = (lf − a)−
cmfg − τ + hfFfriction

Fnormal
(35)

B. State Constraints
Constraints C3 and C5 can be converted into state constraints on

τ by first solving 22 for the acceleration:

θ̈ =
1

ml2b
τ − g

lb
cθ (36)

For Constraint C3, substituting for θ̈ into (32) gives us

ml(−θ̇2sθ + (
1

ml2
τ − g

l
cθ)cθ) +mg +mfg ≥ 0. (37)

Solving for τ , after some algebra we see that

τ ≥
−l(m+mf )g +ml2θ̇2sθ

cθ
+mglcθ (38)

if cθ > 0, with the direction of the inequality flipped if cθ < 0.
Similarly, plugging (36) into Constraint C5 results in four inequal-

ities constraining τ . Letting ρ1 = µcθ+sθ and ρ2 = µcθ+sθ , when
ρ1 < 0

τ < mglcθ +
(µsθ − cθ)ml2θ̇2 − µlg(mf +m)

ρ1
(39)

with the direction of the inequality flipped when ρ1 > 0. When
ρ2 < 0,

τ < mglcθ +
(µsθ + cθ)ml2θ̇2 − µlg(mf +m)

ρ2
(40)

Lastly, constraints on τ are derived from C4 by first incorporating
the parameters of the foot:

0 ≤ CoP ≤ lf (41)

Plugging in our expression for the CoP, equation (35), gives us two
corresponding inequalities:

τ < aFnormal + hfFfriction + cmfg (42)

and
τ > −(lf − a)Fnormal + cmfg + hfFfriction (43)
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APPENDIX II
TARGET SET COMPUTATION

A. Computing the CLF
we can write the following optimization problem, where both

constraints come from Definition 4:

min
P,K

Tr(P )

s.t. P > 0

(A+BK)TP + P (A+BK) < 0

(44)

This problem is nonlinear in K and P , but it can be converted to
a convex SDP. First, we multiply the second constraint by P−1 on
both sides, so that it becomes

P−1((A+BK)T + (A+BK))P−1 < 0. (45)

Letting Q = P−1 and Y = KQ, we can now write an SDP with
linear constraints

min
Q,Y

Tr(Q)

s.t. Y TBT +QAT +BY < 0.
(46)

We now have a CLF E(x) = xTPx, where P = Q−1, and a
controller u = Kx, where K = Y P .

B. Computing maximally scaled ellipsoids
Let (x − xeq)

TP (x − xeq) be the CLF corresponding to a given
equilibrium point. Let Aconx = bcon represent a set of n linear
constraints. We wish to find the largest c such that the ellipsoid
E = {x|(x − xeq)

TP (x − xeq) ≤ c} is fully contained within the
constraints. Denote ai, bi the ith row of Acon and entry of bcon,
respectively. In the case of a single constraint hyperplane aTi x ≤ bi,
it is clear that the largest possible c should produce an ellipsoid that
just touches the constraint at one point. This can be cast as a simple
convex optimization problem:

min
x

(x− xeq)
TP (x− xeq) (47)

s.t. aTi x = bi

By the method of Lagrange multipliers, we have that the La-
grangian L(x) = (x − xeq)

TP (x − xeq) + λ(aTi x − bi). Taking
the partial derivatives, we solve

2P (x− xeq) + λaTi = 0,

aTi x− bi = 0
(48)

for λ, x. After some algebra this gives an expression for c, which in
turn should be minimized over all n constraints:

c = min
i

(bi − aTi xeq)
2

aTi P
−1ai

(49)

APPENDIX III
COMPUTATIONAL CONSIDERATIONS

To improve computational performance, the states of system (3)
were nondimensionalized. Angular velocities θ̇ were scaled by ω =√

l/g, the natural frequency of the pendulum. The human torque
state τh was nondimensionalized by multiplying by ω2

ml2
.

The backward reachable set was computed in the nondimensional-
ized state space over a 225× 225× 225 grid. This was the coarsest
grid which produced sufficiently clean results. We found that results
computed over coarser grids were too noisy.
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