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Identification of potential lead molecules in herbal medicines is crucial not only for validation 

but also for drug discovery. This study was focused on identifying the therapeutic mechanisms 

of 10 common herbs used to treat type 2 diabetes mellitus (T2DM) using network 

pharmacology and docking studies. Details pertaining to medicinal plants and their 

phytoconstituents were obtained from Indian Medicinal Plants, Phytochemistry, and 

Therapeutics and Dr. Duke’s database, respectively. MolSoft was used to assess their drug 

likeness. Prediction of protein targets for the screened phytochemicals and the list of target 

genes involved in T2DM were obtained using Swiss TargetPrediction and GeneCards 

respectively. STRING; Cytoscape; Database for Annotation, Visualization, and Integrated 

Discovery; and PyRx were used for network construction, network analysis, gene ontology 

analysis, and molecular docking, respectively. The protein targets MAPK1, AKT1, PI3K, and 

EGFR were identified to play a crucial role in the progression of T2DM. Furthermore, 

molecular docking indicated that nimbaflavone exhibited high binding affinities for MAPK1 

(−8.7 kcal/mole) and PI3K (−9.6 kcal/mole), whereas rutin and 10-hydroxyaloin-B showed 

high binding affinities for AKT1 (−7.4 kcal/mole) and EGFR (−8.1 kcal/mole), respectively. 

The findings from this study suggest that flavonoids are the major phytoconstituents that 

display antidiabetic activity by interacting with key protein molecules related to the MAPK 

and PI3K-AKT signaling pathways, thereby aiding in the treatment of T2DM. The activation 

of these pathways alters Ras-GTPase activity and enhances the expression of GLUT4, a 

glucose transporter, resulting in the uptake of glucose from the bloodstream.  
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Introduction 

Diabetes mellitus is an endocrine disorder. Type 2 diabetes mellitus is defined as a defect in the 

metabolism of carbohydrates, lipids, and proteins owing to decreased insulin production or increased insulin 

resistance or a combination of both (1). In 2022, according to the International Diabetes Federation (IDF) 

(https://idf.org/), 537 million and 90 million people had diabetes globally and in Southeast Asia, 

respectively. Of the 90 million individuals, 77.4 million are Indians, which is expected to exceed 134 million 

by 2045. According to the IDF, the percentage of diabetes occurrence in the Indian population is 8.9. As per 

World Health Organization (WHO) data, 2% of all deaths in India are due to diabetes and its complex 

clinical implications, such as retinopathy, neuropathy, nephropathy, cardiovascular disease, and skin 

disorders (https://www.who.int/). T2DM has a complicated pathophysiological process that involves the 

concerted action of various factors, which results in disease development (2). Hence, it is important to target 

multiple proteins in the T2DM pathway. Highly interactive proteins in different pathways of the disease 

must be identified for a multitarget approach (3). 

Network pharmacology (NP) reveals the complex interactions of a pharmacological molecule in a 

living cell using computational power. The method is useful for identifying the underlying intricate 

interactions among proteins in the entire body and is an unbiased method of studying new potential target 

proteins (4). Target selection is based on the use of NP analysis to screen out highly interacting proteins. NP 

is a computational approach for identifying the hub of proteins that possibly interact with multiple ligands. 

Using this approach, the complex association between phytoconstituents and specific disease targets can be 

predicted (5). 

In Indian Medicine, most practitioners create and formulate their own medicines. The WHO has gathered a 

list of 21,000 medicinal plants that are in use across the world. Currently, 2500 species of medicinal plants 

are available in India, of which 150 are in commercial use. India, the world’s botanical paradise, is the 

largest producer of medicinal herbs. Of late, the use of traditional plant remedies for diabetes has gained 

significant attention. However, as many as 400 such remedies lack scientific and medical testing to ascertain 

their efficacy and safety, which limits the integration of herbal medicine into modern medical practices. 

Therefore, clinical investigations using in vitro assays and toxicity and safety testing are essential to 

determine the viability of herbal medications (6). The conventional drug discovery method of “one target–

one drug” may not be efficient in treating diseases. Hence, multiple targets involved in the pathways 

associated with a disease must be targeted while developing a potential drug. NP is a computational approach 

for identifying the hub of proteins that possibly interact with multiple ligands. Using the NP approach, the 

complex association between phytoconstituents and specific disease targets can be predicted (5). 

Antidiabetic medications, increase insulin production by beta cells and glucose reabsorption in the kidney 

and lower bad cholesterol, and oral medications, such as thiazolidinediones, biguanides, and meglitinides, 

work by decreasing the blood glucose level. All these drugs, besides interacting with their target, also interact 

with and disrupt other metabolic interactions, thereby causing several side effects (7). The abnormality in a 

gene not only contributes to one disease but also leads to several associated diseases. To overcome this 

issue, NP is expected to aid in further drug development by providing a platform for systematic exploration, 

allowing diseases, genes, and pathways to be identified (5).  

https://en.wikipedia.org/wiki/International_Diabetes_Federation
https://idf.org/
https://en.wikipedia.org/wiki/Southeast_Asia
https://www.who.int/
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Materials and methods 

Selection of Herbal Plants  

Indian Medicinal Plants, Phytochemistry, and Therapeutics (IMPPAT) (https://cb. imsc.res. 

in/imppat/home) is an extensive online database on Indian medicinal plants that assists in computer-aided 

natural product-based drug discovery (8). The web server provides a graphical output that depicts how 

closely the plant species alleviates the disease. In this study, the plants were screened by searching “diabetes 

mellitus” in therapeutic use. Based on the results obtained from IMPPAT and literature survey, 10 plants 

were selected for the docking studies, and the list of phytochemicals present in them was downloaded from 

Dr. Duke’s website (https://phytochem.nal.usda.gov/phytochem/search). 

Ligand Screening 

The drug likeness characteristics of the selected compounds were assessed using MolSoft 

(https://molsoft.com/mprop/), with their canonical SMILES as the input (9). When the drug likeness score 

(DLS) of a ligand is >0.8, it exhibits good activity. Hence, phytochemicals with a DLS of 0.8–1.12 were 

selected for further studies (10). 

Swiss TargetPrediction 

Understanding the molecular mechanisms behind bioactivity and anticipating potential side effects or 

cross-reactivity require mapping the targets of phytochemicals. In Swiss TargetPrediction 

(http://www.swisstargetprediction.ch/), based on the idea that two similar bioactive molecules probably 

share their protein targets, the structure of the query ligand was compared with existing drugs to predict 

protein targets (11). From the screened phytochemicals, the target corresponding to a specific drug was 

identified using Swiss TargetPrediction. The canonical SMILES for the phytochemicals were obtained from 

PubChem, and target prediction was performed for the 13 screened phytochemicals. The result included a 

list of potential target genes along with their probability score.  

Selection of Target Genes 

To precisely identify relevant disease targets, information on T2DM-associated target genes was 

retrieved from GeneCards (https://www.genecards.org/) (12). From the obtained result, the top 500 disease-

associated genes were screened based on their relevance score. 

Protein–Protein Interaction (PPI) 

The list of genes obtained from GeneCards and Swiss TargetPrediction was given as input for Venny2.1 

(https://bioinfogp.cnb.csic.es/tools/venny/), which provides overlapping target genes between them, 

indicating higher disease associated with the genes. Ninety-eight genes were identified to be overlapping 

targets. These genes were fed as multiple protein input to the STRING database (https://string-db.org/), 

which provides functional associations among proteins using sources, including co-occurrence, 

neighborhood, text mining, experiments, coexpression, and database search (13). The obtained PPI network 

was given as input to Cytoscape version 3.8.2. 

Network Construction 

Cytoscape was used to integrate, visualize, and analyze biological networks. Cytoscape may be 

expanded via plugins, allowing a large community of scientists to add helpful features. This growth has 

occurred naturally as a result of the separate work of various writers, producing a potent and diversified set 

https://phytochem.nal.usda.gov/phytochem/search
https://molsoft.com/mprop/
http://www.swisstargetprediction.ch/
https://www.genecards.org/
https://bioinfogp.cnb.csic.es/tools/venny/
https://string-db.org/
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of tools. Cytoscape 3.8.2 was used to analyze the network and nodes representing active chemicals, target 

genes, and pathways. The edges show how phytochemicals interact with the targets. The degree, which 

represents the relevance of a component/target/pathway in the network, was calculated using the analyze 

tool available in Cytoscape (14). The different types of networks, namely, Target–Pathway, Target–

Phytochemicals, and Target–Phytochemical–Pathway, were constructed (15). 

Gene Ontology (GO) Analysis  

GO enrichment analyses are commonly used to perform biological interpretation of the gene (16). This 

analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis were 

performed using DAVID 6.8 (https://david.ncifcrf.gov/). The overlapped gene targets were given as input 

for DAVID GO analysis. The obtained result included three different analysis reports, namely, biological 

process, molecular function, and cellular component. The top 10 pathways were chosen based on their 

significance using the p-value. Analyzing the results indicated that genes obtained from the network analysis 

contributed to most of the pathways in T2DM. GO visualization was performed using R 4.1.2 (17). 

Molecular Docking 

The 3D structures of the selected ligands were downloaded from PubChem (https://pubchem. 

ncbi.nlm.nih.gov/) in the SDF format (18). The crystal structures of the hub target proteins were downloaded  

 

  

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 1. Framework based on the Network Pharmacology Strategy  

https://david.ncifcrf.gov/
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from RCSB PDB (https://www.rcsb.org/) in the PDB format. The protein was prepared using PyMol 2.5.2 

by removing water molecules, adding polar hydrogens, and removing additional molecules. Protein and 

ligand were imported into PyRx 0.8 and converted into PDBQT format. Molecular docking was used for 

the prediction and design of new probable drugs via possible docking modes, and the binding affinity 

between the PDB structure of the target protein and the ligand molecule was analyzed (19). The interactions 

of the docked complex were visualized using BIOVIA Discovery Studio 2021. The overall framework of 

the present study is depicted in Figure 1. 

Results 

Mining of Target Proteins 

The overlapping targets of phytochemicals and disease database is shown in Figure 2. The PPI network 

of 98 overlapped targets obtained from the STRING database (Figure 3) was given as input to Cytoscape 

3.8.2. Degree, one of the significant topological characters, was used to retrieve the hub targets. The 

combined analysis of the PPI network and GO provided the lead to identify the effective drug to control 

T2DM.  

 

 

 

 

 

 

 

 

 

 

 
Fig. 2. Venn diagram of targets obtained from Swiss target prediction and GeneCards. 

DLS and Phytochemicals  

The canonical SMILES for the 724 phytochemicals and their structures were obtained from PubChem. 

The canonical SMILES for each of the compounds were fed as input to MolSoft. The DLS for all the 724 

phytochemicals ranged from −1.98 to −1.5. Phytochemicals exhibiting the properties of drugs should have 

DLS ≥ 0.8. In this study, the selected phytochemicals had DLS > 0.8. Table 1 lists the phytochemicals that 

were screened, and Table 2 lists their DLS. 

Pathway Enrichment and Network Analysis 

In the constructed network of phytochemicals, targets, and pathways that contained 127 nodes and 1096 

edges, MAPK1, PI3K, AKT1, EGFR HRAS, MMP9, TP53, RAF1, MTOR, and MMP2 were the top 10 

proteins targeted by the phytochemicals. Figure 4 shows the network of targets and phytochemicals. 

Similarly, pathways in cancer, lipid and atherosclerosis, proteoglycans in cancer, AGE-RAGE signaling 

pathway in diabetic complications, hepatitis B, endocrine resistance, prostate cancer, HIF-1 signaling  

https://www.rcsb.org/
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Fig. 3. Protein-Protein interaction network. 

 

Table 1. List of screened phytochemicals. 

1. Aloe vera 10-Hydroxyaloin-A 14889736 C21H22O10 434.4 

2. Aloe vera 10-Hydroxyaloin-B 14889737 C21H22O10 434.4 

3. Aloe vera Isorabaichromone 10370832 C29H32O12 572.6 

4. Aloe vera Folacin 135398658 C19H19N7O6 441.4 

5. Aloe vera 

Cannabis sativa 

Pteroylglutamic-acid 137217037 C20H22N8O6 470.4 

6. Aloe vera 

Cannabis sativa 

Carica papaya 

Gymnema-sylvestre 

Momordica charantia 

Murraya koenigii 

Thiamin 1130 C12H17N4OS+ 265.36 

7. Azadirachta indica Rutin 5280805 C27H30O16 610.5 

8. Azadirachta indica Quercitrin 5280459 C21H20O11 448.4 

9. Azadirachta indica Nimbaflavone 14492795 C26H30O5 422.5 

10. Carica papaya 

Momordica charantia 

Gamma-carotene 5280791 C40H56 536.9 

11. Coccinia grandis Betulin 72326 C30H50O2 442.7 

12. Momordica charantia Map30 451600 C22H29FO5 392.5 

13. Momordica charantia Vicine 135413566 C10H16N4O7 304.26 

 

https://pubchem.ncbi.nlm.nih.gov/compound/14889736
https://pubchem.ncbi.nlm.nih.gov/#query=C21H22O10
https://pubchem.ncbi.nlm.nih.gov/compound/14889737
https://pubchem.ncbi.nlm.nih.gov/#query=C21H22O10
https://pubchem.ncbi.nlm.nih.gov/compound/10370832
https://pubchem.ncbi.nlm.nih.gov/#query=C29H32O12
https://pubchem.ncbi.nlm.nih.gov/compound/135398658
https://pubchem.ncbi.nlm.nih.gov/#query=C19H19N7O6
https://pubchem.ncbi.nlm.nih.gov/compound/137217037
https://pubchem.ncbi.nlm.nih.gov/#query=C20H22N8O6
https://pubchem.ncbi.nlm.nih.gov/compound/1130
https://pubchem.ncbi.nlm.nih.gov/#query=C12H17N4OS+
https://pubchem.ncbi.nlm.nih.gov/compound/5280805
https://pubchem.ncbi.nlm.nih.gov/#query=C27H30O16
https://pubchem.ncbi.nlm.nih.gov/compound/5280459
https://pubchem.ncbi.nlm.nih.gov/#query=C21H20O11
https://pubchem.ncbi.nlm.nih.gov/compound/14492795
https://pubchem.ncbi.nlm.nih.gov/#query=C26H30O5
https://pubchem.ncbi.nlm.nih.gov/compound/5280791
https://pubchem.ncbi.nlm.nih.gov/#query=C40H56
https://pubchem.ncbi.nlm.nih.gov/compound/72326
https://pubchem.ncbi.nlm.nih.gov/#query=C30H50O2
https://pubchem.ncbi.nlm.nih.gov/compound/451600
https://pubchem.ncbi.nlm.nih.gov/#query=C22H29FO5
https://pubchem.ncbi.nlm.nih.gov/compound/135413566
https://pubchem.ncbi.nlm.nih.gov/#query=C10H16N4O7
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Table 2. Drug Likeness Score of the Screened Phytochemicals. 

S.No. Phytochemicals NHBA NHBD MolLogP DLS Oral Bioavailability 

1. Quercitrin 11 7 0.32 0.82 0.17 

2. Nimbaflavone 5 2 6.61 0.84 0.55 

3. Vicine 8 9 -3.83 0.84 0.17 

4. Gamma-carotene 0 0 14.77 0.86 0.17 

5. 10-Hydroxyaloin-A 10 8 -0.75 0.86 0.55 

6. 10-Hydroxyaloin-B 10 8 -0.75 0.86 0.55 

7. Thiamin 4 3 0.29 0.87 0.55 

8. Isorabaichromone 12 6 1.71 0.881 0.17 

9. Rutin 16 10 -1.55 0.914 0.17 

10. Map30 4 1 4 0.91 0.85 

11. Betulin 5 3 9.06 1.08 0.17 

12. Folacin 9 7 -1.85 1.09 0.11 

13. Pteroylglutamic-acid 10 8 -1.55 1.5 0.11 

 

 

 

 

 

 

 

 

 

 

 

 
Fig.4. Network interaction of phytochemicals with their plausible target genes. The yellow colored hexagon represents the bioactives 

and the pink rectangle shows the target genes. 

pathway, EGFR tyrosine kinase inhibitor resistance, and insulin resistance pathways had a significant 

number of genes. The targets-pathways network is depicted in Figure 5. In addition, Figure 6 depicts the 

interactions of various phytochemicals with their respective proteins and pathways. Of the 527 biological 

processes identified via GO analysis, positive regulation of MAPK cascade (GO: 0043410) had the lowest 

false discovery rate (FDR). Furthermore, of the 104 molecular functions, insulin receptor (IR) substrate 

binding (GO: 0043560) displayed the lowest FDR. In addition, 47 cellular components were identified in 

GO analysis, of which the receptor complex (GO: 0043235) exhibited the lowest FDR. Bubble plot on top 

10 significant biological process, cellular component and molecular function with respect to gene ratio is 

shown in Figure 7. 

Table 3 represents the top 10 pathways enriched in KEGG analysis. Moreover, in the network analysis, 

the phytochemicals rutin, thiamin, vicine, quercitrin, nimbaflavone, betulin, 10-hydroxyaloin A, and 10-  
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Fig. 5. Targets-pathways network. The lavender triangle nodes represent the targets of T2DM and the brick red hexagon represent 

the related pathways. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 6. Network diagram of phytochemicals/target genes/pathways. The purple arrow nodes represent the bioactives, the green 

ellipse nodes and yellow rectangle nodes represent the target genes and pathways respectively. 
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                  C. Molecular Functions 

 
Fig. 7. GO analysis for the targets in treating T2DM. The X-axis depicts the Gene ratio. The Y-axis shows enriched pathways in 

Biological processes (A), Cellular components (B) and Molecular functions (C). The higher the gene ratio, the higher level of 

enrichment. The size of the dot indicates the number of target genes in the pathway and the colour of dot shows the different –log10 

(P value) range. 
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hydroxyaloin B were identified to interact with the highest number of proteins; MAPK1, PI3K, AKT1, and 

EGFR were the primarily targeted proteins, with the MAPK1 signaling pathway being the targeted signaling 

pathway. The details of hub genes and topology characteristics obtained from network analysis are shown 

in Table 4.  

Table 3. Number of genes involved in respective KEGG pathways. 

Pathway description Gene 

Count 

-log10 

(FDR) 

Targets 

Pathways in cancer 36 591 RET, CXCL8, SLC2A1, PIK3R1, PTGS2, EGFR, 

IGF1R, MAPK8, CASP8, EDNRB, TERT, AKT2, 

ERBB2, AKT1, MAPK1, JAK2, HRAS, NOS2, MMP1, 

MMP2, BRAF, F2, MMP9, ESR1, TGFBR1, IL2, 

MTOR, AR, IL6, PIK3CA, BCL2, AGTR1, PPARG, 

RAF1, TP53, FGFR1 

Proteoglycans 

 in cancer 

20 8.51 MMP2, BRAF, PTPN11, PIK3R1, ESR1, TNF, MMP9, 

EGFR, MTOR, IGF1R, PIK3CA, AKT2, ERBB2, KDR, 

AKT1, MAPK1, RAF1, HRAS, TP53, FGFR1 

Lipid and 

 atherosclerosis 

20 8.11 CXCL8, MMP1, MMP3, PIK3R1, SELE, TNF, MMP9, 

SELP, IL6, MAPK8, CASP8, PIK3CA, AKT2, BCL2, 

AKT1, MAPK1, PPARG, JAK2, HRAS, TP53 

PI3K-Akt signalling  

pathway 

20 4.93 FLT1, INSR, PIK3R1, EGFR, IL2, MTOR, IGF1R, IL6, 

PIK3CA, AKT2, ERBB2, KDR, BCL2, AKT1, MAPK1, 

JAK2, RAF1, HRAS, TP53, FGFR1 

AGE-RAGE signalling 

pathways in diabetics 

complications 

18 16.57 

 

CXCL8, MMP2, PRKCD, SERPINE1, PIK3R1, SELE, 

F3, TNF, TGFBR1, IL6, MAPK8, PIK3CA, AKT2, 

BCL2, AGTR1, AKT1, MAPK1, JAK2, HRAS 

Prostate cancer 

 

18 16.19 MMP3, BRAF, PIK3R1, MMP9, EGFR, MTOR, IGF1R, 

AR, PIK3CA, AKT2, ERBB2, BCL2, AKT1, MAPK1, 

RAF1, HRAS, TP53, FGFR1 

Endocrine resistance 

 

18 16.02 MMP2, BRAF, PIK3R1, ESR1, MMP9, EGFR, 

MTOR, IGF1R, MAPK8, PIK3CA, AKT2, ERBB2, 

BCL2, AKT1, MAPK1, RAF1, HRAS, TP53 

Hepatitis B 

 

18 9.69 CXCL8, BRAF, PIK3R1, TNF, MMP9, TGFBR1, IL6, 

MAPK8, CASP8, PIK3CA, AKT2, BCL2, AKT1, 

MAPK1, JAK2, RAF1, HRAS, TP53 

Diabetic 

cardiomyopathy 

 

18 7.73 ACE, PARP1, MMP2, INSR, PRKCD, SLC2A1, 

PIK3R1, MMP9, TGFBR1, MTOR, MAPK8, CPT2, 

PIK3CA, AKT2, AGTR1, AKT1, REN, PPARA 

Chemical 

carcinogenesis- 

receptor activation 

18 7.41 VDR, PIK3R1, ADRB2, CYP3A4, ESR1, EGFR, 

MTOR, AR, PIK3CA, ADRB3, AKT2, BCL2, AKT1, 

MAPK1, JAK2, RAF1, PPARA, HRAS 
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Table 4. Hub genes with PDB ID and Degree obtained from network analysis. 

Gene Symbol MAPK1 PI3K AKT1 EGFR 

PDB ID 4ZZN 1E7U 1UNQ EGFR 

Degree 22 17 16 15 

Average Shortest Path Length 1.841463415 1.963414634 1.963414634 2.109756098 

Betweenness Centrality 0.06624349 0.03676533 0.02805188 0.02486974 

Closeness Centrality 0.543046 0.515723 0.509317 0.473988 

Degree 221 17 16 15 

Eccentricity 4 3 3 4 

Neighborhood Connectivity 15.31818182 17.47058824 17.75 15.46666667 

Number Of Undirected Edges 22 17 16 15 

Radiality 0.97663 0.97392 0.97324 0.96917 

Stress 15224 11098 8908 6338 

Topological Coefficient 0.27534965 0.31076582 0.31603774 0.30138889 

KEGG Pathway Enrichment 

GO analysis identified 98 genes involved in 158 pathways. Furthermore, the pathways associated with 

T2DM were studied using KEGG pathway enrichment analysis. The top 10 pathways selected based on the 

FDR were mainly modulated by the following targets: EGFR, IGF1R, MAPK8, CASP8, EDNRB, TERT, 

AKT2, ERBB2, AKT1, MAPK1, JAK2, HRAS, NOS2, MMP1, MMP2, BRAF, F2, MMP9, ESR1, 

TGFBR1, IL2, MTOR, AR, IL6, PIK3CA, BCL2, AGTR1, PPARG, RAF1, TP53, and FGFR1. KEGG 

pathway enrichment on top 10 key pathways is shown in Figure 8. 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 
Figure 8. KEGG pathway enrichment. 
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Molecular Docking Studies 

The result obtained from GO and network analysis showed that PI3K/AKT signaling pathway, AGE-

RAGE signaling pathway, and endocrine resistance pathway may be highly related to T2DM. The PPI 

network analysis suggested that MAPK1, PI3K, AKT1, and EGFR were the key targets of the 

abovementioned pathways. Hence, these targets were selected as hub genes. The crystal structures of the 

target proteins obtained from RCSB PDB were MAPK1 (4ZZN), PI3K (1E7U), AKT1 (1UNQ), and EGFR 

(1IVO). Molecular docking analysis of the 13 selected phytochemicals and the target proteins was performed 

using PyRx 0.8. Table 5 shows the docking scores and binding residues of compounds with the highest 

binding affinity. The binding energies of nimbaflavone with MAPK1 and PI3K were −8.7 kcal/mol and −9.6 

kcal/mol, respectively. Similarly, the binding energy of EGFR with 10-hydroxyaloin B was −8.1 kcal/mol 

and that of rutin with AKT1 was −7.4 kcal/mol. These compounds demonstrated effective binding with the 

target proteins and may interfere with their molecular mechanism. In this study, nimbaflavone, rutin, and 

10-hydroxyaloin B were found to act as lead molecules in the treatment of T2DM. The docking sites and 

type of interactions of phytochemicals with proteins were visualized using BIOVIA Discovery Studio 

21.1.0, as shown in Figure 9. The interactions of these compounds with their respective protein targets based 

on molecular docking studies have not been reported so far. 

 
A 
 

 
 
 
 
 
 
 

  B   
 

 

Table 5. Docking analysis 

S.No. Target 

Protein 

Phytochemical Docking Score 

(kcal/mole) 

Binding Residues 

1. MAPK1 Nimbaflavone -8.7 Ile29, Ala33, Val37, Lys52, Asp109, 

Lys112, Leu154, Asp165 

2. PI3K Nimbaflavone -9.6 Leu657, His 658, Asp788, Arg849, Leu865 

3. AKT1 Rutin -7.4 Arg15, Gly16, Glu17, Tyr18, Lys20, Ile74, 

Val83, Ile84, Glu85, Arg86, Thr87 

4. EGFR 10-Hydroxyaloin B -8.1 Gln8, Gly9, Phe380, Lys407 
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Fig. 9. 2-D interaction of the target protein and ligand: MAPK1-Nimbaflavone Interaction (A-B), PI3K-Nimbaflavone interaction 
(C-D), AKT1-Rutin interaction (E-F) and EGFR- 10-Hydroxyaloin B interaction (G-H). 

Discussion 

The potential of phytochemicals in treating T2DM was investigated using NP. This study identified 

that nimbaflavone, rutin, and 10-hydroxyaloin B were 3 of the 13 phytochemicals that exhibited potential 

efficacy in the treatment of T2DM. PPI networks were constructed for the associated pathways in the 

enrichment analysis. The PI3K/AKT pathway plays a key role in cellular physiology owing to its 

involvement in growth factor signal mediation during cell growth and cellular process. Furthermore, 
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this pathway aids in maintaining blood glucose homeostasis, protein synthesis, and cell survival and 

proliferation (20). 

Insulin is responsible for glucose transport in mammalian skeletal muscles via a mechanism that 

involves several intracellular proteins (21). The phosphorylation of Insulin Receptor Substrates (IRS1 and 

IRS2) is caused by the binding of insulin with insulin receptor, which results in the activation of 

phosphatidylinositol 3-kinase (PI3K). P13K activation is also mediated by the activation of the Ras protein. 

Consequently, PI3K phosphorylates phosphatidylinositol 4, 5-biphosphate (PIP2) to phosphatidylinositol 

3,4,5-triphosphate (PIP3). PIP3, upon activation, phosphorylates AKT1. AKT1 phosphorylation is catalyzed 

by 3-phosphoinositide-dependent kinase 1 (PDK1) and mTORC2 at Thr-308 and Ser-473, respectively (22). 

Both PDK1 and mTORC2 are activated via the PI3K pathway. AKT1 in the skeletal muscle is responsible 

for glycogen synthesis. AKT1 phosphorylates AS160, which increases Ras-GTPase activity that regulates 

GLUT4 translocation (23). 

The expression of MAPK1 is required for the complete activation of GLUT4. Oxidant stress directly 

induces insulin resistance in the skeletal muscle via the p38-MAPK pathway (24). This stress-associated 

activation of the MAPK pathway decreases insulin function. Two mechanisms that play major roles in the 

development of insulin resistance are mitochondrial hydrogen peroxide production and NADPH oxidase 

activation (25). Hyperglycemia stimulates the overproduction of superoxide in the mitochondria and 

increases the levels of inflammatory cytokines. Tumor necrosis factor-alpha (TNF-α) causes insulin 

resistance via the MAPK pathway by increasing IRS-1 serine phosphorylation and decreasing insulin-

stimulated IRS-1 tyrosine phosphorylation, Akt phosphorylation, and endothelial nitric oxide synthase 

activity (26).  

EGFR activates the RAS-RAF-MEK-MAPK pathway, which directs gene transcription, cell cycle 

progression, cell proliferation, and PI3K-AKT pathway. Activation of the epidermal growth factor receptor 

(EGFR) occurs via the binding of ligands, such as epidermal growth factor and TNF-α, to the extracellular 

domain of EGFR. This binding event triggers dimerization via the phosphorylation of specific tyrosine 

residues in the intracellular domain of EGFR. The phosphorylated tyrosine residues serve as binding sites 

for signaling molecules, such as Ras, which in turn phosphorylate downstream molecules. The binding of 

growth-factor-receptor bound protein 2 and Src-homology-2-containing domain to the phosphorylated 

EGFR is required for the activation of MAPK cascades upon binding with Ras. However, the PI3K/AKT 

pathway cannot be directly activated by EGFR and is associated with the RAS-MAPK and RAS-PI3K-AKT 

pathways (27)  

In this study, the molecular mechanism of phytoconstituents present in medicinal plants for T2DM 

treatment was predicted using the NP approach. GO and KEGG analyses of the target genes helped in the 

identification of key targets related to T2DM. The screened phytochemicals were observed to interact with 

MAPK1, PI3K, AKT1, and EGFR associated with the MAPK and PI3K-AKT signaling pathways and aid 

in the treatment of T2DM. The activation of these pathways enabled the positive regulation of the MAPK 

cascade, thereby increasing Ras-GTPase activity, and facilitated the expression of GLUT4, which is 

responsible for the transport of glucose from the bloodstream. Overall, this study has provided valuable 
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insights into the therapeutic action of the screened phytochemicals based on computational tools, which 

should be confirmed via in vitro and in vivo studies. 
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