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ABSTRACT: The rapid emergence of novel psychoactive substances (NPS) poses new challenges and requirements for forensic
testing/analysis techniques. This paper aims to explore the application of unsupervised clustering of NPS compounds’ infrared
spectra. Two statistical measures, Pearson and Spearman, were used to quantify the spectral similarity and to generate similarity
matrices for hierarchical clustering. The correspondence of spectral similarity clustering trees to the commonly used structural/
pharmacological categorization was evaluated and compared to the clustering generated using 2D/3D molecular fingerprints. Hybrid
model feature selections were applied using different filter-based feature ranking algorithms developed for unsupervised clustering
tasks. Since Spearman tends to overestimate the spectral similarity based on the overall pattern of the full spectrum, the clustering
result shows the highest degree of improvement from having the nondiscriminative features removed. The loading plots of the first
two principal components of the optimal feature subsets confirmed that the most important vibrational bands contributing to the
clustering of NPS compounds were selected using non-negative discriminative feature selection (NDFS) algorithms.

■ INTRODUCTION

New psychoactive substances (NPS), also known as designer
drugs, are compounds that alter the molecular structure of
existing controlled substances to mimic their pharmacological
effects and circumvent legislation.1,2 According to the United
NationsOffice onDrugs and Crime (UNODC), as of December
2020, 126 countries had reported a total of more than 1,047
NPS.1 Forensic analysis of NPS faces challenges such as diverse
samples of unknown nature, an insufficient quantity of evidence,
the need for protecting the integrity of materials for criminal
investigations and legal disputes, and the demand for in-field
testing. Nondestructive, low-cost, and relatively easy-to-use
vibrational spectroscopy techniques such as infrared (IR) and
Raman are used to characterize the structure of organic
molecules.3−6 The most common method of spectral identi-
fication is library search, in which an unknown sample is
compared to each spectrum in the library, and a list of the best
hits is returned based on a similarity metric.7 The quality of
library reference spectra and the robustness of similarity metrics
limit the quality of library searches. The library must be large
enough to contain spectra of samples similar to the unknown

compound, and there must be a high degree of structural
similarity between the “unknown” and the library substances in
order to identify the “unknown” compound with confidence.
The rapidity of emergence and the often-transient nature of
some NPS compounds make it difficult to obtain a
comprehensive spectral library. An alternative approach to
identify never-before-seen NPS is to classify them based on
structural similarity, as structurally similar compounds are likely
to exhibit similar biological activities and spectroscopic
characteristics.8−10 However, the increasing complexity and
diversity of NPS compounds prevent systematic classification
with respect to their structural similarity by visual inspection
alone. The similarity of chemical structures could be quantified
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using their 2D/3D molecular fingerprint representation to
calculate the Tanimoto coefficient. Conversely, representing
spectra as a linear vector of intensities allows quantitative
comparison using statistical correlation coefficients.
Pattern recognition leverages information extracted from

training samples to assign an unknown sample to a given class or
category. Hierarchical clustering analysis is an unsupervised
technique that provides multilevel nested results that can be
used to help guide the identification of drug compounds that
share a common structural and spectral feature. The IR
spectrum is represented as a vector in a multidimensional
space, where each dimension (feature) corresponds to a certain
wavenumber and the corresponding absorbance (intensity).
However, with the existence of a large number of features,
learning models tend to overfit, and their learning performance
degenerates. It has been verified that for complex analytical
systems like vibrational spectroscopy data, it is very important
and essential to conduct feature selection to gain better
prediction performance.11 Dimension reduction approaches
use a low-dimensional space to substitute the original high-
dimensional variable space. For example, projection methods,
such as principal component analysis (PCA) and partial least
squares (PLS), are used to reduce the impact of collinearity,
band overlaps, and redundant noise irrelevant to the property of
interest by replacing the original variables with a few latent
variables or principal components (PCs) of larger variance.12,13

However, the latent variables are hardly interpretable compared
to original variables. In contrast, feature selection is based on the
assumptions of choosing a small number of variables that can
improve the prediction performance and provide easier
interpretation. Unsupervised feature selection methods do not
utilize label information and can be classified into the filter
model, wrapper model, and hybrid model according to different
selection strategies. Filter feature selection algorithms are
computationally efficient, as they evaluate the relevance of a
feature using certain statistical criteria and are independent of
any clustering algorithm. A wrapper model evaluates the
candidate feature subsets by the quality of clustering and is
more biased to the chosen clustering algorithm. To alleviate the
computational costs and benefit from the efficient filtering
criteria, the hybrid model bridges the gap between the filter and
wrapper models by utilizing filtering criteria to select the
candidate feature subsets and then evaluates the quality of
clustering of each candidate subset.14 The subset with the
highest clustering quality will be selected.
The underlying idea of ensemble feature selection is

combining the subsets of several individual feature selection
methods (feature selectors) to obtain better or comparable
results rather than using a single feature selection approach.
When the data dimensionality is very high but the number of
samples is relatively small, ensemble feature selection is used to
improve the stability. A more appropriate (stable) feature subset
is obtained by combining the multiple feature subsets of the
ensemble, as the aggregated result tends to obtain more accurate
and stable results, reducing the risk of choosing an unstable
subset. The other main motivation is to increase the diversity:
different feature selectors provide different enough outputs on
the same sample of data and decrease the chance of inaccurate
prediction of samples. The main issues involved in the process
are (1) the individual feature selection methods to be used; (2)
the number of different feature selection methods to use; and
(3) the aggregation method for feature subset generation.
Ensemble feature selection can typically be categorized into the

combination of labeled predictions, the combination of subsets
of features, and the combination of ranking of features, which
depends on whether the feature selector returns a subset of
relevant features or an ordered ranking of all the features
according to their relevance. When filter methods are used
which return an ordered list of all features, a threshold must be
chosen to reduce the dimensionality of the problem, which can
become computationally expensive. The combined feature
subsets, on the other hand, are generated by computing the
intersection or the union of the ranked features. The intersection
consists in selecting only those features which are selected by all
the feature selectors, whereas the union consists in combining all
the features which have been selected by at least one of the
feature selectors. The potential issue is that it can lead to very
restrictive sets of features (an empty set) or to select even the
whole set of features, respectively. To alleviate the problem, a
simple approach is to include a subset of ranked features into the
final ensemble only if it contributes to improving the learning
tasks. Lastly, the relevancy of the final selection of features needs
to be evaluated, which is possible using synthetic data where
label information is known.
In this study, we performed unsupervised clustering analysis

of a set of the most common NPS compounds whose IR spectra
were simulated using density functional theory (DFT). We
compared the correspondence of hierarchical clustering of NPS
compounds into structurally distinct groups using 2D and 3D
binary molecular fingerprints with cluster labels assigned
according to generally accepted chemical/pharmacological
classifications. Similarly, the spectral similarity can be quantified
by statistical measurements such as Pearson and Spearman
correlation coefficients. The clustering performance was
quantified using the silhouette score,15 adjusted rand index
(ARI),16 and normalized mutual information (NMI).17 Four
filter-based feature selection methods developed for clustering
tasks were explored in this study: spectral feature selection
(SPEC),18 laplacian score (LS),19 unsupervised discriminative
feature selection (UDFS),20 and non-negative discriminative
feature selection (NDFS).21 The class distributions in the NPS
dataset are highly imbalanced. The oversampling technique,
synthetic minority oversampling technique (SMOTE),22 was
implemented in the feature selection process, and its efficiency
in improving the clustering performance of imbalanced datasets
was examined. Finally, aggregated feature subsets were
generated using a fusion-based ensemble technique. The
optimal feature subset of IR spectroscopy for NPS compound
clustering was identified. When comparing the loading plots of
the first two PCs of the full range and dimension-reduced
datasets, it can be confirmed that the most discriminative
features are retained even after the feature reduction.

■ RESULTS AND DISCUSSION
Comparison with Experimental Gas IR Spectra Using

Quantitative Correlation Measurements. To assess the
quality of the DFT-simulated IR spectra and the dependence on
the basis sets, correlation coefficients are calculated from the
comparison of DFT and experimental spectra. Usually, the
scaling factors are derived by minimizing the rmsd of peak
wavenumbers; however, the exact combination of DFT/6-31+
+G(d, p) and DFT/6-311++G(d, p) is not available in the
CCCBDB30 database; hence, the same scaling factor 0.964 for
DFT/6-31+G(d, p) was used for the other two larger basis sets.
The optimal scaling factors were determined by maximization of
the correlation coefficient to assess the usefulness of using two
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correlation coefficients as a quantitative measure of spectral
similarity. Table 1 summarizes the average results for six
compounds, for which the experimental gas IR spectra are
available at the NIST.23 Figure 1 shows a visual spectral
comparison of the IR spectra of the lowest-energy conformer of
each compound. Spearman’s correlation coefficient consistently
gives a comparatively higher score with or without using the
scaling factors. In terms of reproduction of the experimental

spectra, the unscaled 6-311++G(d, p) spectra resulted in the
highest spectral correlation coefficients (r = 0.549 and ρ =
0.779). Applying scaling factors resulted in a somewhat larger
increase in Pearson, indicating that Pearson is more sensitive to
the exact wavenumbers of the peak position. The optimization of
both statistical measures gave rise to scaling factors that only
differ insignificantly from the literature and follow the general
trend that the larger the basis set, the higher the scaling factor

Table 1. Average Correlation Coefficient of DFT Spectra Compared to Experimental Data Shown in Figure 1

Pearson r Spearman ρ

basis set (unscaled) (scaled)a optimized (scaling factorb) (unscaled) (scaled)a optimized (scaling factorb)

6-31G(d) 0.455 0.723 0.784 (0.967) 0.739 0.859 0.863 (0.964)
6-31+G(d, p) 0.497 0.676 0.798 (0.965) 0.676 0.860 0.865 (0.967)
6-31++G(d, p) 0.497 0.676 0.798 (0.965) 0.763 0.860 0.865 (0.967)
6-311++G(d, p) 0.549 0.643 0.798 (0.977) 0.779 0.857 0.866 (0.971)

aScaling factors 0.960 and 0.964 are used for 6-31G(d) and 6-31+G(d, p), respectively, as reported in the CCCBDB database.24 For larger basis
sets, the scaling factor 0.964 was applied. bThe optimized scaling factors were obtained from maximization of the statistical correlation coefficients.
The scaling factor 0.971 was used for generation of the IR spectral dataset using the 6-311++G(d, p) basis set.

Figure 1. IR spectra of the lowest-energy conformers calculated by DFT using different basis sets in comparison with the experimental spectra. (a)
Amphetamine, (b) cocaine, (c) methamphetamine, (d) methylphenidate, (e) ephedrine, and (f) diazepam.
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using Spearman. At the same time, application of the optimized
scaling factor improves the Pearson more significantly, in
contrast to the marginal improvement of Spearman. Finally, the
scaling factor 0.971 was used for generation of the IR spectral
dataset using the DFT/6-311++G(d, p) level of theory.
The corresponding compound-wise correlation coefficients

are listed in Table 2. Diazepam stands out as an interesting case
that it resulted in the largest Pearson correlation coefficient and
the lowest Spearman correlation coefficient among all
compounds. From Figure 1f, it can be seen that the experimental
spectrum of diazepam is dominated by the carboxyl bond
stretching band at around 1760 cm−1 followed by the benzene
ring modes at around 1500 and 1350 cm−1. The scaled DFT
spectrum placed these bands at lower wavenumbers, and the
optimization significantly increased the Pearson correlation by
matching themost intense bands. It seems that reproduction of a
dominant feature in the reference spectrum has a decisive impact
on the Pearson correlation coefficient. Similarly, in the case of
cocaine in Figure 1b, the Spearman correlation is way above the

average value of all compounds for the scaled spectrum, but the
Pearson correlation is lowered compared to that of the unscaled
spectrum. The DFT spectrum overestimated the intensity for
the C−H bending bands below 1300 cm−1 and underestimated
the intensity for the C−H stretching bands above 2800 cm−1.
Overall, it suggested that the Spearman correlation coefficient
could provide a better estimate of the overall similarity of the
spectra, whereas the Pearson correlation coefficient is more
sensitive to the peak position and intensity of the dominant
features.
These two correlation coefficients also differ in terms of their

sensitivity to conformational changes, as seen in Figure 2 and
Table 3. Two conformers for which Pearson correlation
coefficients are distinctively different are shown for four
compounds, along with the optimized structures. Conforma-
tional changes usually result in changes in band intensity, as seen
in Figure 2a,b. For methamphetamine, the Pearson correlation
increased from 0.767 to 0.860, but the Spearman correlation
stayed the same. In the case of ephedrine in Figure 2c, the

Table 2. Correlation Coefficients of Spectra Shown in Figure 1 Using the 6-311++G(d, p) Basis Set

Pearson r Spearman ρ

compounds (unscaled) (scaled)a optimized (scaling factorb) (unscaled) (scaled)a optimized (scaling factorb)

amphetamine 0.570 0.794 0.795 (0.965) 0.772 0.836 0.845 (0.975)
methamphetamine 0.657 0.835 0.843 (0.962) 0.803 0.858 0.866 (0.972)
ephedrine 0.473 0.575 0.612 (0.981) 0.673 0.866 0.873 (0.957)
cocaine 0.796 0.638 0.885 (0.990) 0.859 0.901 0.909 (0.973)
methylphenidate 0.541 0.678 0.704 (0.983) 0.821 0.869 0.882 (0.974)
diazepam 0.255 0.337 0.951 (0.981) 0.745 0.813 0.822 (0.973)

aThe scaling factor 0.964 was used for DFT/6-311++G(d, p)-calculated IR spectra. bThe optimized scaling factors were obtained from
maximization of the statistical correlation coefficients for quantitative quantification of spectral similarity. The highest and lowest correlation
coefficients are marked in bold and underlined, respectively.

Figure 2. DFT/6-311++G(d, p) IR spectra of two conformers in comparison with the experimental spectra. (a) Amphetamine, (b)
methamphetamine, (c) ephedrine, and (d) methylphenidate.
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rotation of the hydroxyl group toward the benzene ring in
conformer 2 decreased the O−H stretching band intensity and
right-shifted to a higher wavenumber, whereas the rotation of
the amine side chain right-shifted the benzene ring modes and
left-shifted the N−H bending band. As for methylphenidate in
Figure 2d, the lower Pearson correlation of conformer 1 is
caused by the poor match of stretching bands of the ester
functional group. However, these spectral differences are not
reflected when comparing the Spearman correlation coefficients
of the two conformers.
Correspondence of Structural and Spectral Similarity.

Clustering is used to find groups of objects that are more similar
to each other than to other clusters. There are many clustering
algorithms available; choosing a clustering technique is often a
trial-and-error process that is very dependent on the data-
set.25−30 However, determining the best clustering algorithm for
NPS IR data is outside the scope of this study, and hierarchical
clustering is used for its ease of visualization of cluster
relationships on a dendrogram and heatmap. The ward linkage

method forms clusters by combining two clusters that result in
the least increase in variance from an iterative ANOVA test.
The correspondence of the structural and spectral similarities

of NPS compounds with respect to the manually assigned class
label is investigated. Because conformational changes have no
effect on the compound’s 2D SMILES, only the lowest-energy
conformer’s SDF file is used to generate the 3D description in
this analysis. For the spectral similarity analysis in this section,
the Boltzmann distribution-weighted total IR dataset is
generated using all optimized conformers of each NPS
compound (see the Supporting Information for more details).
The chemical structural diversity of the 127 unique NPS
compounds can be characterized by the calculation of the
Tanimoto similarity score for the 8001 pairs (n(n − 1)/2).
Figure 3 shows the right-skewed distributions of all structural
similarities, and in contrary, the spectra similarities exhibit left-
skewed distributions, with 50% of the compound pairs having a
Spearman score equal to or greater than 0.759. There are also
significant discrepancies among structural fingerprint ap-
proaches, with Morgan and E3FP being even more right-
skewed, with mean similarity scores of 0.170 and 0.132,
respectively. Figure 4 compares the use of structural and spectral
similarity methods in retrieving a query compound’s nearest
neighbors (hits 1−5). The accuracy ratio is calculated by
dividing the total number of retrieved compound pairs with the
same assigned class label by the total number of compound pairs.
Overall, 2D molecular fingerprints provide consistent better
performance even when more top hits are chosen, whereas
spectral similarity search delivers inferior and rapidly declining
performance in its ability to retrieve compounds from the same
class. The 3D description E3FP does not enhance the

Table 3. Correlation Coefficientsa of the Spectra Shown in
Figure 2 Using the 6-311++G(d, p) Basis Set

conformer 1 conformer 2

compounds r ρ r ρ

amphetamine 0.674 0.829 0.820 0.848
methamphetamine 0.767 0.853 0.860 0.853
ephedrine 0.612 0.873 0.802 0.849
methylphenidate 0.638 0.888 0.808 0.882

aoptimized scaling factor of each calculated IR spectrum was used.

Figure 3. Frequency distribution of the Tanimoto coefficient and spectral correlation coefficients of pair-wise comparison of drug compounds.
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identification of structurally similar substances specified by
commonly accepted NPS categorization.
As two examples, Figures 5 and 6 display the top hits from the

spectral similarity and structural similarity searches for the query
molecule THC (delta-9 tetrahydrocannabinol) and MDA (3,4-
methylenedioxyamphetamine). THC is the primary component
of the marijuana plant that produces psychoactive effects and a
schedule II substance. The structural and spectral similarity
searches return the same top-three hits: DMHP and synhexyl,
synthetic analogues of THC, and CBN (cannabinol), a
derivative of THC. Despite a relatively high MACCS similarity
score (0.690), CBD (cannabidiol), a major nonpsychotropic
constituent of cannabis, was assigned low similarity scores based
on MCS (0.353) and both spectral correlation coefficients (r =
0.505 and ρ = 0.531). It is evident that when a structural change
causes a significant departure of the most intense bands, the
spectral correlation coefficients can distinguish the spectral
differences properly. On the other hand, Spearman severely
overestimates the spectral similarity and subsequently retrieves
incorrect hits, as shown in Figure 6. In Figure 6a, MBDB (N-
methyl-1,3-benzodioxolylbutanamine) and MDMA (3,4-meth-
ylenedioxymethamphetamine), two stimulants of the amphet-
amine family, were returned as the top-two hits using Pearson
when MDA is used as the query molecule; however, these two
compounds were returned as the 24th and 32nd hits using

Spearman, respectively. In contrary, as seen in Figure 6b, 2C-T-2
and 2C-Bwere assigned the highest Spearman similarity value (ρ
= 0.964 and 0.961, respectively).
Finally, all clustering trees were compared using three

measures: silhouette scores based on internal proximity of
information intrinsic to the data and ARI and NMI assessed by
comparing clustering partitions with an external class label.
Figure 7 shows the silhouette scores of Pearson and Spearman
clustering trees calculated for K = 2−K = 50 clusters. The
silhouette score increases as the intracluster distance decreases
and the intercluster distance increases, so that the optimal
number of clusters K will correspond to the highest silhouette
value. The drawback of the Spearman correlation coefficient is
also manifested in the highest silhouette score when dividing all
samples into two clusters, as the Spearman similarity score is
frequently exaggerated for many compound pairs. According to
all three clustering measures shown in Figure 8, the MCS
similarity clustering tree based on shared core chemical
fragments outperformed all other clustering trees, followed
closely by the substructural key fingerprint MACCS clustering
tree. Consistent with the preceding analysis, the 3D description
E3FP could not be used to sufficiently classify NPS substances
based on their pharmacological/structural classification, in-
dicated by the lowest silhouette score of 0.21. With little higher
silhouette scores than those of E3FP but a lower ARI, 0.39 and
0.41, respectively, there is no significant difference between the
two spectral similarity clusterings. Because Spearman correla-
tion scores appear to be more influenced by the general pattern
of the IR spectra instead of the most intense bands, this
clustering should benefit more from feature selection by
removing nondiscriminative features.

Feature Selection Evaluated Using Hierarchical
Clustering. Figure 9 shows the scaled feature important score
plots as a function of the vibrational wavenumber to assist in
understanding the differences in feature subsets generated by the
four feature selectors and the effect of applying the SMOTE.

Figure 4. Accuracy ratio of retrieving compound(s) of the same class.

Figure 5. Search results for the query compound THC. (a) Query molecule THC and top-three hits from the spectral similarity search. (b) Spectrum
of CBD and similarity scores. CBD returned as the 74th and 122nd hits from spectral similarity searches using Pearson and Spearman correlation
coefficients, respectively.
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Table 4 also lists the top-10 features chosen by all four selectors.
As shown in Figure 9a,b, applying the SMOTE produces the
largest differences in the feature subsets identified using SPEC
and LS. For example, a feature around 3646−3654 cm−1 was
given higher importance scores compared to when the SMOTE
was not used. Another distinction is that different feature
selectors analyze and sample features in varying manners. When
the feature importance threshold is gradually lowered to
subsequently include more top-ranking features, the first three
feature selectors (SPEC, LS, and UDFS) sample a group of
features in a localized fashion from one region to another. In
contrary, the NDFS algorithm produces the most “sparse”
selection by assigning fewer features with very high importance,
resulting in a more scattered feature selection across the whole
spectrum.
The clustering results of different feature selectors with

similarity matrices calculated using Pearson and Spearman
correlation coefficients are summarized in Figure 10. From this
analysis, the following observations can be made. First, the
SMOTE appears to provide no significant improvement of the
clustering tasks, as the ARI changes as the number of features
selected follows the same pattern for all four selectors with or
without applying the SMOTE. Second, feature selection using
LS and NDFS effectively reduces the feature number and
improves the clustering performance in comparison to the
baseline that uses the full-range features. The NDFS algorithm
exploits discriminative information by evaluating features jointly
resulting in a higher ARI and NMI while using the smallest
feature subset. Lastly, confirming the previous analysis, Spear-
man clustering benefited more from using feature selectors.
The feature subsets that resulted in the highest ARI score of

Spearman clustering trees using LS and NDFS algorithms are
combined together by computing the union or intersection of
both sets. Ensemble 2 includes the intersection of the optimal
feature subsets from LS and NDFS with the SMOTE
incorporated. The number of features selected in each feature
subset and clustering results evaluated using the ARI and NMI
are summarized in Table 5. Clustering using the ensemble 2

feature subset gives the highest ARI and NMI among all four
ensembles. However, from the number of features in ensembles,
it is clear that most features selected by NDFS are also selected
by LS, and the ensemble feature subset clustering performance is
comparable to that of the individual selectors. Given the
abovementioned observation, the NDFS algorithm is able to
select more informative features compared to all other filter-
based feature selection models.
PCA was carried out to reduce the dimensionality of the full

range (baseline, m = 1181) and the ensemble 2 subset datasets,
and the loading plots of the first two PCs are shown in Figure 11.
When the ensemble 2 feature subset was used, the total
explained variance increased from 16.95 to 13.50% and 24.88 to
13.76% for PC1 and PC2, respectively. The same set of most
important vibrational bands contributing to the clustering of
NPS compounds was selected according to the PC1 and PC2
loading plots of the baseline and ensemble 2 datasets.

■ CONCLUSIONS

The IR spectra of NPS compounds were calculated using DFT
in this study. The spectral similarity was quantified using two
statistical measures: Pearson’s product moment correlation and
Spearman’s rank correlation coefficients. When using the gas-
phase experimental spectra as a reference, it is shown that
Pearson is more sensitive to the intensity and peak position of
the most intense bands and to the spectral changes caused by
conformational changes. On the other hand, Spearman is better
suited to describe the overall pattern of the full spectrum but
tends to overestimate the similarity of the spectra. The ability to
retrieve compounds of the same structure/pharmacological class
using spectral similarity searches was evaluated and compared to
structural similarity searches using 2D/3D molecular finger-
printing. Hierarchical clustering using MCS similarity proved to
be a suitable method to group NPS compounds into clusters
with different maximum common substructures and gave the
best partition based on the ARI and NMI calculated by
comparing to externally assigned class labels. The clustering

Figure 6. Search results for the query compound MDA. (a) Top-two hits using Pearson spectral similarity. (b) Top-two hits using Spearman spectral
similarity.
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trees generated using the two spectral similarities showed the
lowest agreement with the external class labels.

Since Spearman tends to overestimate the spectral similarity
based on the overall pattern of the full spectrum, it is expected to

Figure 7. Silhouette scores as a function of cluster 2 < K < 50 of spectral similarity clustering trees. (a) The optimal K is determined to be 17 using the
Pearson similarity coefficient. (b) The maximal silhouette score using the Spearman similarity coefficient corresponds to K = 2, gradually decreasing
when K ≥ 7.

Figure 8. ARI, silhouette score, and NMI of all clustering trees evaluated using an externally assigned class label. The Boltzmann distribution-weighted
total IR spectra (∑ IR) were used; see the Supporting Information for more details.
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benefit more from feature selection to remove nondiscrimina-
tory features. Four filter-based feature ranking algorithms were
evaluated, and the SMOTE was applied to balance the class

distribution of the dataset in the feature importance calculation.
When the Spearman correlation coefficient was used in
generating the similarity matrices for hierarchical clustering,

Figure 9. Scaled feature importance score from different feature selectors, with or without applying the SMOTE. Four different filter-based feature
selection methods were used in calculating the feature importance score: (a) SPEC, (b) LS, (c) UDFS, and (d) NDFS.

Table 4. Top-10 Features (in cm−1) Selected by Four Filter Methods

SPEC LS UDFS NDFS

w/o SMOTE SMOTE w/o SMOTE SMOTE w/o SMOTE SMOTE w/o SMOTE SMOTE

3398 3400 3502 1526 410 404 1526 1526
3400 3402 3504 1524 404 422 1528 1746
3396 3648 3500 1528 412 418 1746 1658
3394 3398 3506 1522 414 416 2904 1528
3402 3650 3508 1560 402 424 1702 1660
3392 3646 3498 1530 424 408 1658 2904
3404 3404 3510 1558 418 420 3568 1770
3390 3436 3512 1562 406 414 1282 3570
888 3438 1526 3502 420 402 1660 3568
3388 3440 3612 1556 408 406 1674 2902
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the LS and NDFS algorithms were determined to provide the
greatest improvement in clustering results. The NDFS feature
selector is able to sample the entire spectrum by assigning a high
feature importance score to a few features.
The detection method based on IR spectroscopy is based on

matching the observed spectrum of an unknown compound to
reference spectra of known compounds. Specifically, frequency

patterns found in existing spectral databases corresponding to
known chemical structures can be matched to measured spectra
to identify unknown compounds. The present work showsDFT-
calculated IR spectra of a set of known NPS compounds, which
complements the knowledge gained from laboratory measure-
ments. Spectra calculated by DFTwere shown to retain themost
discriminative spectral features when clustering NPS com-

Figure 10. Clustering ARI when increasing the number of top features using different feature selectors. (a) Spectral similarity quantified using the
Pearson correlation coefficient. (b) Spectral similarity quantified using the Spearman correlation coefficient.

Table 5. Clustering Results of Different Feature Subsets Using the Spearman Correlation Coefficient for the Affinity Matrix

ARI (95% CI) NMI (95% CI)

no. features mean lower upper mean lower upper

LS 850 0.470 0.362 0.600 0.623 0.546 0.710
LS_SMOTE 840 0.474 0.365 0.598 0.628 0.550 0.703
NDFS 180 0.460 0.348 0.584 0.623 0.551 0.691
NDFS_SMOTE 180 0.463 0.346 0.582 0.630 0.549 0.708
ensemble1a 166 0.465 0.362 0.588 0.626 0.553 0.696
ensemble2a 175 0.472 0.354 0.601 0.637 0.562 0.717
ensemble3b 120 0.467 0.361 0.600 0.631 0.555 0.708
ensemble4c 228 0.462 0.355 0.584 0.626 0.550 0.701
baselined 1181 0.415 0.309 0.542 0.586 0.504 0.677

aEnsembles 1 and 2 include the intersection of the optimal feature subsets from LS and NDFS without or with the SMOTE applied, respectively.
bEnsemble 3 is the intersection of ensembles 1 and 2. cEnsemble 4 is the intersection of the union feature subsets of LS and NDFS. dThe baseline
clustering trees use the full-range features (m = 1181).
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pounds based on their pharmacological categorization. This
proof-of-concept methodology can be used in filter algorithms
to detect spectral features associated with novel designer drugs.

■ METHODS

Calculation of IR Spectra. According to the UNODC
report up to December 2020, the majority of synthetic NPS
compounds are stimulants, followed by synthetic cannabinoid
receptor agonists and psychedelics with a notable increase in
synthetic opioids.1 This classification is broadly defined
according to their pharmacological targets: (1) stimulants
mediate the actions of dopamine, norepinephrine, and/or
serotonin as reuptake transporter inhibitors;31−35 (2) cannabi-
noids primarily interact with G protein-coupled receptors;36 (3)
serotonergic psychedelics are mainly mediated by 5-HT2A
receptor agonism;37,38 and (4) synthetic opioids and fentanyl
analogues interact with G protein-coupled opioid receptors as
partial to full agonists.39 A total of 127 unique NPS compounds
were selected from 16 major core chemical structure categories.
These include 17 natural or synthetic opioids, 62 stimulants

(piperidines, tropane alkaloids, amphetamines, cathinones,
aminoindanes, and benzofurans), 35 hallucinogens (2C, 2C-B,
and 2C-T series and tryptamine), 6 sedatives (benzodiaze-
pines), and 7 cannabinoids. A total of 10 conformers SDF files
were downloaded from PubChem for each compound.40

PubChem3D provides low-energy conformers from a conformer
model that samples the energetically accessible and (potentially)
biologically relevant conformations of chemical structures using
the average atomic pair-wise rmsd.41 The geometry optimiza-
tions were performed using the Gaussian 16 program42 using the
B3LYP level of DFT in combination with the 6-311++G(d, p)
basis set. Redundant conformers converged to the same
structure were eliminated from the dataset. The harmonic
vibrational wavenumbers of all conformers were determined at
the corresponding optimized structures, which were confirmed
to be local minima by checking that there were no imaginary
frequencies. To offset the systematic errors due to basis set
incompleteness, neglect of anharmonicity, and incomplete
treatment of electron correlation, single scaling factors were
applied.43 To validate the quality of the DFT-simulated IR

Figure 11. First and second PC loading plot using the full range and feature-reduced datasets. (a) PC1 and PC2 loading plots use the baseline dataset
(m = 1181). (b) PC1 and PC2 loading plots use the ensemble 2 subset dataset (m = 175).
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spectra and the dependence on the basis set, four basis sets [6-
31G(d), 6-31+G(d, p), 6-31++G(d, p), and 6-311++G(d, p)]
were used, and scaling factors were chosen from the NIST
database.24 The theoretical vibrational frequencies and
intensities were convoluted with a Lorentzian distribution,
centered at the frequency and multiplied by the intensity. The
full width at half-maximum of each distribution was set to 24
cm−1 on the basis of the estimated bandwidth observed in the
NIST database.44,45 Finally, the resulting spectra were
normalized with respect to the area under the curve and scaled
from 0 to 1 and truncated from 400 to 4000 cm−1 with a 2 cm−1

interval. Quasi-constant features were further removed using
VarianceThreshold in the sklearn package with a threshold value
of 9.88 × 10−6, excluding wavenumbers in 1854−2686 and
3188−3386 cm−1 ranges and wavenumbers above 3786 cm−1.
The final dataset is with size n = 930 and m = 1181.
The total IR spectrum is dependent on the temperature

results from the contributions of all low-energy conformers, and
their contribution was weighted according to their relative
population. The total IR spectrum (∑ IR) is constructed for
each NPS compound using its scaled conformer IR spectrum
and Gibbs free energy. The relative populations of the low-
energy conformers are computed through the probabilities
defined as

=
∑
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where β = 1/kBT, and kB is the Boltzmann constant, T is the
temperature in Kelvin, and ΔG is the Gibbs free energy of the
kth conformer.
Spectrum and Chemical Structure Similarity Measure.

The similarity between two spectra, represented by vectors xA
and xB, is characterized by two statistical measures. Pearson’s
product moment correlation coefficient based on mean-
centered intensities
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where xA,i and xB,i are the elements of the intensity vectors
representing the spectra under comparison and x̅A and x̅B are the
mean intensity values of spectra A and B, respectively.
Spearman’s rank correlation coefficient is based on the mean
of the intensity differences. A vector d is the difference between
the ranks of xA,i and xB,i in their respective dataset
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where n is the number of elements in each vector. Both
correlation coefficients range from −1 to +1. A positive Pearson
score indicates that all data points are linearly associated,
whereas two variables are monotonically related in Spearman
correlation even if their relationship is not linear.
The degree to which two molecules are considered “similar”

depends on both their structural encoding and the similarity
metric used. NPS compounds are often classified based on their
pharmacological action and then further classified based on their
common chemical scaffold, such as phenethylamines, piper-
azines, cathinones, tryptamines, and so forth.46 It is impractical
to manually assign labels to NPS compounds as the number of
them grows, as does their structural complexity. Molecular

fingerprints that encode the molecular structure as binary bit
strings allow rapid scan for structural similarity/diversity using a
bit-wise comparison on pairs of molecules. The Tanimoto
coefficient is a widely used metric for molecular structural
similarity quantification.47 Two types of 2D molecular finger-
prints were used in this study. The molecular access system
(MACCS) is a structural key fingerprint that encodes for the
absence (0) and the presence (1) of a particular structural
fragment, with the most commonly used being 166-bit long.48

The Morgan fingerprint is a circular fingerprint belonging to the
extended connectivity fingerprint (ECFP) family that encodes
heavy atoms into multiple circular layers up to a given
diameter.49 The RDKit implementation of Morgan with radius
= 2 is roughly equivalent to ECFP4. An extended three-
dimensional fingerprint (E3FP) is motivated by the ECFP that
draws concentrically larger shells and encodes the 3D atom
neighborhood patterns from small to larger shells iteratively.50

Lastly, the MCS similarity is calculated by identifying the
structural overlap by matching atomic elements and bond
types.51 Tanimoto values calculated using binary fingerprints
will always have a value between 0 and 1, with 1 indicating
identical and 0 indicating entirely different. Pertinent details can
be found in the Supporting Information. All fingerprints were
calculated using RDKit.52

Clustering Performance Measurement. The full dataset
in the (n = 930, m = 1181) dimension was transformed into
(n,n) similarity matrices using Pearson’s or Spearman’s
correlation coefficient, where the value in the ith row and the
j-th column indicates the spectral similarity between samples i
and j, and each sample is described by its similarity compared to
all other samples. The similarity matrices were used as input and
submitted to a ward linkage clustering with Euclidean distance as
the similarity metric for hierarchical clustering.
The silhouette score is an internal index in measuring the

quality of a partition without external information. The optimal
number of clusters K was determined by silhouette index
analysis,15 which is a measure of how well cluster members
belong to their respective clusters, averaged over all samples
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where n is the total number of points, ai is the average distance
between point i and all other points in its own cluster, and bi is
the minimum of the average dissimilarities between i and points
in other clusters.
External indices measure the similarity between the output of

the clustering algorithm and the correct partitioning of the
dataset. Different clustering trees were compared with each
other using the ARI.16 Let U = {u1,u2,...,uR} and V = {v1,v2,...,vC}
represent the external cluster label and that determined by the
cluster algorithm, respectively, and nij is the number of objects
belonging to both subsets, uR and vj; the ARI is calculated as
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When two sets of cluster labels have a perfect one-to-one
correspondence, the ARI equals unity. The NMI quantifies the
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mutual dependence between two random variables based on
concepts of information theory17

=
[ ]
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where Ci and Cj are cluster assignments of the points generated
from feature subsets of feature selectors i and j, respectively.
Mutual information I(Ci,Cj) is given asH(Ci) −H(Ci|Cj).H(C)
is the Shannon entropy of C, and H(Ci|Cj) is the conditional
entropy of Ci, given Cj. NMI = 0 means that two partitions
contain no information about one another, whereas NMI = 1
indicates that two partitions contain perfect information about
one another.
All hierarchical clusterings are generated using the fcluster and

dendrogram in the scipy. cluster. hierarchy package. Heatmaps are
generated using the seaborn package, The SI, ARI, and NMI are
computed using the sklean. metric package.
Filter Feature Selection Models and Ensemble

Method. Four filter feature selection models were used to
rank the features according to certain criteria. The SPEC
algorithm studies how to select features according to the
structure of the adjacency matrix W and graph G induced from
the samples’ similarity matrix S.18 The similarity matrix S is
calculated using the radial-base function as a similarity function
between two samples, xi and xj

= σ− −S eij
x x /2i j

2 2

(7)

The main idea behind SPEC is that the features consistent
with the graph structure are assigned similar values to instances
that are near to each other in the graph. Therefore, these features
should be relevant since they behave similarly in each similar
group of samples.14 The LS is a special case of SPEC that selects
the features most consistent with the Gaussian Laplacian matrix
using a different ranking function and very efficient with respect
to the data size.19 The UDFS algorithm simultaneously exploits
the discriminative information and feature correlation to select
discriminative features in the batch mode.20 Lastly, the NDFS
algorithm utilizes spectral clustering to obtain cluster label
indicators and a non-negative constraint into the objective
function.21 The sparse feature selection matrix is formulated as
an l2,1-norm minimization term and solved iteratively. All four
feature filter models were implemented in the scikit-feature
package.53

The ensemble method used in this study can be summarized
as follows:

1. Rank all the features using each feature selector.
2. Evaluate the clustering performance by increasing the size

of top-ranking feature subsets.
3. Identify the feature subsets corresponding to the optimal

clustering performance using each feature selector.
4. Identify the common overlap (intersect or union) feature

ensembles using different feature selectors.

Model Training, Validation, and Performance Evalua-
tion. In this work, we used a class-imbalanced dataset to reflect
the distribution of NPS in the real-world market. Changes in
supply, manufacturing, and regulatory regulations all have an
impact on the market’s continuously moving trend. Machine
learning on class-imbalanced data, on the other hand, is biased in
favor of the majority class, which is compounded by the high
dimensionality of the feature space. The SMOTE is a popular
oversampling technique that produces class-balanced data. In

this study, we also looked into whether applying the SMOTE
improves clustering by computing the feature importance score
with and without the SMOTE. The SMOTE from imblean.o-
ver_sampling package was used.
The feature importance ranking was calculated by dividing the

dataset by 10-fold and averaging the results over 10 iterations.
Each iteration calculates the feature importance score using 90%
of the dataset and is repeated 10 times using a different 90% of
the dataset. The scores were standardized to a range of 0−1
before being averaged for ease of comparison. The arithmetic
mean of the scores acquired from 10 iterations was used to
establish the overall feature ranking. Similarly, the clustering
evaluations were repeated five times, with a 5-fold split of the
dataset for each feature subset chosen using different selectors,
and the average ARI and NMI were calculated. The 95%
confidence intervals of the ARI and NMI were determined by
250 bootstrap iterations using a sample that is 15% of the size of
the dataset for the final ensemble feature subset comparison.
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