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Post‑buckling behaviors 
of thin‑film soft‑substrate bilayers 
with finite‑thickness substrate
Meng Li & Bohua Sun*

Surface buckling behaviors of thin‑film soft‑substrate bilayers have important research value. Recent 
research has focused on bilayers with infinite‑thickness substrates. However, bilayers with finite‑
thickness substrates widely exist. To study this problem more comprehensively, we extended the 
stability theory of a beam on an elastic foundation to bilayers and then established a finite element 
method of bilayers using the neo‑Hookean hyperelastic constitutive model. A self‑contact analysis 
method was coupled to the finite element method so that the further buckling evolution of the film 
surface after folding could be simulated. Based on our analysis of various modulus ratios and thickness 
ratios, the evolution of the buckling path was significantly influenced by the thickness ratio. Without 
considering the situation of a prestressed substrate, four new buckling paths were found. Thus, we 
extended the single buckling path (under infinite thickness substrate) to five types. Our study also 
found that for path four, the substrate with a certain thickness exhibited a special final stable surface 
morphology. That is, regardless of the friction, a new periodic morphology after film folding appeared 
due to the contact slip of the film surface. Finally, further analysis showed that these five buckling 
paths were all dependent on different modulus ratios and thickness ratios.

The film surfaces of thin-film soft-substrate bilayers buckle under in-plane loading. For example, the wrinkling 
of human skin  tissue1, the surface folds of a  macromolecule2–4, the surface morphologies of air-dried  plants5,6, 
the development morphologies of cerebral  sulci7,8, the capillary wrinkling of floating elastic thin  film9, and the 
wrinkling of mountain  ranges10 are all related to buckling instability. Therefore, it is important to study the buck-
ling problem of these structures. Most of the previous studies focused on cases in which the substrate thickness 
was much larger than the  film11–18, that is, the function of the substrate can be equivalent to a semi-infinite elastic 
 subgrade15. Cheng and Xu .16, Pocivavsek et al.17, Brau et al.19, Raayai-Ardakani et al.20, Jiang et al.21. studied the 
initial stage and post-buckling behavior of bilayers with infinite-thickness substrates. Suo et al.22, Zhou and  Xia23 
studied the wrinkling of bilayers with finite-thickness substrates , Suo et al neglected the shear stress on the film/
substrate interface, and used a variable of separation method, got a very good result.  Jin24, Ni et al.25 surveyed 
the research progress on the buckling of thin-film soft-substrate bilayers systematically and summarized the 
typical instability patterns of wrinkling, creasing, delaminated buckling, folding, period-double wrinkling, and 
ridge formation. Thin-film surface folding is still considered to be the final buckling path in the current research, 
and without considering the situation of a prestressed substrate, the buckling path of a typical bilayer with an 
infinite-thickness substrate is wrinkling–period doubling–period quadrupling–quadruple folding.

There are physical limitations in real systems, such as skin tissue attached to bone. This system is composed 
of bilayers of epithelial and dermal tissue, which have different dermis thicknesses. This may lead to inaccurate 
predictions using the infinite-thickness substrate model. In addition, the soft colloids that are widely used in 
chip  packaging26 or rubber materials on soft wire surfaces will form a hardening layer by the action of oxidation 
 corrosion27 and form bilayers for different substrate thicknesses composed of inner soft materials. The surface 
buckling for a finite-thickness substrate model is more applicable for real systems. Thus, it is important to con-
sider the finite-thickness substrate problem of bilayers. In addition, surface folding has been considered to be 
the final buckling stage in recent  studies28,29. Any further buckling behaviors after folding will be discussed in 
this paper.

Herein, based on an elastic half-space method and linear hypothesis, we extended the stability theory of a 
beam on an elastic foundation to bilayer wrinkling. Thus, the analytical solution for film buckling with a finite-
thickness substrate under a smaller load can be solved in the vicinity of the wrinkling. Then, for the post-bucking 
behavior during large deformation, we established a finite element model of bilayers using the Neo-Hookean 
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hyperelastic constitutive model to simulate the buckling behaviors under various modulus ratios and thickness 
ratios. We also coupled the self-contact analysis method to our finite element model, so that the further buckling 
behaviors after folding could be determined. All of the simulation examples were calculated for surface contacted 
slip after folding, and the final stage of the buckling path was considered to be symmetry breaking of the surface 
morphology of the film. We first compared our analytical solution and the finite element model results for film 
wrinkling to verify the accuracy of our finite element model. The change of the buckling path of the film surface 
with the thickness ratio was then studied by more post-buckling simulations. The results showed that the buckling 
path of the film surface was significantly influenced by the thickness ratio, and with the increase in the thickness 
ratio, five type buckling paths were found.

The typical buckling path was path five, corresponding to an infinite-thickness substrate. This was consistent 
with the results of  Xu16, and we further compared with other previously reported experimental  data15. Path one 
was a local ridged buckling evolution, which was similar to the surface ridge for prestressed substrates reported 
 previously13,30. However, the local ridge of path one with a very small thickness ratio and very large modulus ratio 
exhibited a different behavior, i.e., with increasing load, the local ridge of the film surface stopped increasing. In 
contrast, the adjacent wave crest began to increase and continued until all of the wave crests increased. Finally, 
the surface morphology became a sinusoidal periodic mode, similar to wrinkling. This mode was similar to the 
telephone cord buckling reported  previously31–33, in which the variations of the buckling behaviors of annealed 
telephone cord films under high compressive stresses with temperature were reported. Path two also appeared 
when the substrate was very thin, but unlike path one, after slightly increasing the substrate thickness, the surface 
of the film retained a sinusoidal periodic mode after wrinkling, and new buckling modes did not appear. Path 
three involved a double period mode after wrinkling in the film surface, but unlike path five, with increasing 
load, the period quadrupling did not appear, but presented a new buckling mode, i.e., the upward wave trough of 
the formed double period mode disappeared, and a new morphology of the film surface that resembled a double 
folding appeared. In path four, the complete buckling evolution of Wrinkling–period doubling–period quadru-
pling–quadruple folding occurred. Upon further loading, the quadruple folding diminished due to contact slip 
of the film surface, and after a period of asymmetric evolution, a stable and symmetric triple folding appeared. 
This final buckling stage of path four was similar to that reported  previously30,34, in which the triple folding of 
bilayers occurred under substrate prestressing. All of the paths are shown in Fig. 1.

Finally, the buckling path changes with different modulus ratios and thickness ratios was given in our paper.

Wrinkling mode of bilayers in small deformation
The thin-film soft-substrate bilayers can be regarded as an incompressible film attached to an elastic half space, 
and we can use the traditional elastic space method to solve this problem. We assume that the film is incompress-
ible with a length of 2L and a thickness of h, and it is attached to an elastic substrate of thickness H. The film and 
substrate do not undergo any relative sliding and separation (Fig. 2).

Figure 1.  Buckling path of bilayers with different thickness ratios. Path one: wrinkling–local ridge; Path two: 
wrinkling–sinusoidal period; Path three: wrinkling–period doubling–double folding; Path four: wrinkling–
period doubling–period quadrupling–quadruple folding–triple folding; Path five: wrinkling–period doubling–
period quadrupling–quadruple folding.
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The deflection of thin film is denoted as w(x), and we assumed that the wrinkling of the bulk structure was 
periodic with period l0 under a symmetric displacement load εn at both ends. The load εn satisfies the following 
relations:

The force of the elastic substrate acting on the film was assumed to be Py (any point Py along the vertical direc-
tion). We considered the differential equation of the deflection of a beam on an elastic foundation. In the case 
of plane strain, this differential equation is as follows:

where D and Q are the bending stiffness and in-plane load, respectively, for a rectangular section, 
D = Ef h

3
/

12(1− µf
2) , Q = Ef hε

/

(1− µf
2) , the ε is the in-membrane compressive strain, Ef  is the film elas-

tic modulus, and µf  is the film Poisson’s ratio.
Py can be obtained by coordinating the deformation of the film and substrate. We consider the situation of a 

small deformation. According to linear elasticity theory, the displacement in two directions, u(x, y), v(x, y), of 
the substrate is given as  follows15:

where µs is the substrate Poisson ratio.
The substrate stress σi(x, y) (i = x, y) satisfies the geometric and physical equations, and we obtain the 

following:

where the Es is substrate elastic modulus.
At y = 0 , the vertical displacement f(x) of the substrate is coordinated with the film deflection, i.e., 

v(x, 0) = f (x) = w(x) , and other boundary conditions can be set to u(x, 0) = 0, u(x,−H) = v(x,−H) = 0.
To solve Eq. (3), we use the Fourier transform. The substrate displacements u, v were transformed along the 

x-axis, yielding

where ũ and ṽ are the frequency transforms of u and v, respectively, and ω is the Fourier parameter. The frequency 
transforms of Eq. (3) are as follows:

The boundary conditions transform to ũ(ω,−H) = ṽ(ω,−H) = 0, ũ(ω, 0) = 0, ṽ(ω, 0) = f̃ (ω) , where

(1)
εn

L
=

1

l0
∫
l0
0 (1−

√

1− wx
2)dx.

(2)Dw(4) + Qw(2) + Py = 0,

(3)
2(1− µs)uxx + vxy + (1− 2µs)uyy = 0,

2(1− µs)vyy + uxy + (1− 2µs)vxx = 0,

(4)
σx(x, y) =

(1− µs)Es

(1− 2µs)(1+ µs)
(ux +

µs

(1− µs)
vy),

σy(x, y) =
(1− µs)Es

(1− 2µs)(1+ µs)
(vy +

µs

(1− µs)
ux),

(5)
ũ(ω, y) = F
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u
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)}

=

∫ ∞

−∞

u
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x, y
)

e−iωxdx,

ṽ(ω, y) = F
{
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(

x, y
)}

=

∫ ∞

−∞

v
(

x, y
)

e−iωxdx,

(6)
2ω2(1− µs)ũ− iωṽy − (1− 2µs)ũyy = 0,

2(1− µs)ṽyy + iωũy − ω2(1− 2µs)ṽ = 0.

Figure 2.  Thin-film soft-substrate bilayers.
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Equation (6) has a derivative operation that forms a decoupling equation

Solving Eqs. (6) and (8) with the boundary conditions, a special solution of the equation is obtained:

where

The solution is the displacement of the finite-thickness substrate. In the general case, we can obtain an accurate 
analytical solution of any initial buckling mode using Eq. (9).

We next solve Eq. (2) in the Fourier space. The expression is rewritten as

where F
(

Py
)

= σ̃y(x, 0) is the Fourier transform of the substrate stress function. By Eq. (4), we obtain

Using Eq. (9), the effect of the substrate F
(

Py
)

 is

All the effects of the substrate constitutive relations and boundary conditions are included in the function �(ω) , 
as follows:

Using Eqs. (9), (11), and (13), we obtain the governing equation of the frequency space:

In the case of a small deformation, a presumptive displacement function f̃ (ω) is included, and the vicinity of 
the initial buckling solution can be obtained by Eq. (15). To study this problem more comprehensively, we used 
a function Z to represent Eq. (15):

We define an intermediate function g(ω) to determine the relationship of the buckling parameters. g(ω) is 
assumed to be

Using the Eq.(16) and Eq.(17), combined with integral operation, easy to get
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(ṽy +

iωµs

(1− µs)
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The integral relation in Equation (18) can be simplified, and the following compressive strain is obtained:

where 
⌢

Q = Ef h
/

(1− µf
2) . The right side of Eq. (19) will no longer be related to parameter ω after the integral 

operation. We now analyze the wrinkling mode of the film. We assumed the Poisson’s ratios µf  and µs were both 
0.43315 to simulate a soft material. Meanwhile, we were more interested in the relationship between the buckling 
mode and the thickness ratio. Thus, the modulus ratio was assumed to 600. We selected the displacement func-
tions f (x) = a cos(kx) and f̃ (ω) = π(δ(ω + k)+ δ(ω − k)) , we set the critical compression strain ε0 of the 
initial buckling stage to an extreme value of ε , and the initial wave number set to k0.

This coincided with the experimental observation that the film surface morphology retained a sinusoidal 
period during surface wrinkling. Further results of Eq. (19) for different thickness ratios are given in Fig. 3, 
which shows that the compression strain of wrinkling changed with the thickness ratio. The case with H

/

h = 1 
often occurs when the substrate is attached to a harder object, such as bones or  wires26,27. Meanwhile, with 
the increase in H

/

h , the extreme point of the curve moved downward such that the critical wavenumber and 
strain were reduced. When H

/

h = 50 , further increases in H
/

h produced negligible changes of the curves, so 
the substrate could be regarded as an infinite-thickness substrate. The extreme point of the curve provides the 
critical compression strain. In the general case, the thinner the substrate is, the smaller the critical wave number 
becomes, and the amplitude from Eq. (1) is larger.

Finite element model of thin‑film soft‑substrate bilayers
The initial buckling stage of the thin-film soft-substrate bilayers appeared as a small deformation. Although we 
have given an analytical solution, the post-buckling of large deformation is still difficult to solve. Brau et al.15 
analyzed the infinite substrate buckling behavior used the Green strain. A governing equation of large displace-
ment was provided, the PDEs were solved by a perturbation method and verified with experimental data, and 
an approximate method to predict the film buckling of wrinkling and period doubling was presented. However, 
due to the high nonlinearity of the problem, this method cannot incorporate the hyperelastic constitutive rela-
tion of a soft material. We consider the post-buckling of a finite substrate. It is difficult to obtain a mathematical 
solution, but the finite element method (FEM) provides good  approximations16,23,35.

Based on the powerful FEM, to obtain a more profound understanding of the physical process of film defor-
mation, we considered the contact-sliding of a film after the film was folding. This process used the augmented 
Lagrangian method based on a penalty  function36,37 that is widely used in finite element analysis of adhesive 
friction contact, sliding friction contact, and frictionless contact problems. To ensure the correctness of the 
numerical simulation, a hexahedral mesh was selected, the element size of the film was set to 0.4h along x-axis 
and 0.2h along the y-axis. For the substrate, the element size was same as film thickness along the x-axis, and the 
element size of the y-direction was gradually increased from 0.2 h to 8 h. The film and substrate were compat-
ibly deformed.

The two-sided displacement load of the finite element model was applied using the rigid columns shown in 
Fig. 4. The rigid column and model were set with a contact element with zero friction (to speed up convergence, 
the frictional force of the film and the rigid column can be set to smaller values initially and then set to zero after 

(18)
∫ ∞

−∞

Z(ω)g(ω)dω = 0.

(19)ε =

∫∞

−∞
ω4Df̃ (ω)g(ω)dω +

∫∞

−∞
�(ω)f̃ (ω)g(ω)dω

∫∞

−∞
ω2

⌢

Qf̃ (ω)g(ω)dω
,

Figure 3.  Relationship between the compression strain and the wavenumber given by Eq. (19). The modulus 
ratio was assumed to be 600, and µf  and µs were assumed to be 0.433. The different curves represent the 
different thickness ratios.
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wrinkling, but it is not mandatory). We considered the contact slip of the film surface, a self-contact element was 
set on top of film. The y-direction displacement of the element model was limited at the bottom. Meanwhile a 
displacement load was applied to the rigid columns. Otherwise, the large deformation of the buckling was con-
sidered. We used the Solid 185 element of the ANSYS software and the Neo-Hookeam hyperelastic constitutive 
model. All the simulations were completed using the ANSYS software, and part of the theoretical calculations 
were aided by the MAPLE software. We adopted the default convergence criterion of ANSYS to ensure the reli-
ability of the calculation results.

Initial stage buckling of analytical solution and FEM. We investigated the wrinkling of the finite ele-
ment model under small loads. In this case, the Neo-Hookean hyperelastic constitutive model was similar to a 
linear elastic constitutive model, allowing us to compare our finite element model with the analytical solution 
proposed in Section  2. We considered different modulus ratios and thickness ratios, critical wavelengths �0 , 
and critical loads εn0 of wrinkling obtained by the finite element model and Eq. (19), as shown in Fig. 5. When 
the thickness ratio was large, the FEM and theoretical solutions of the wrinkling wavelength agreed closely. 
However, when the substrate thickness was reduced, our FEM solution was larger than that of Eq. (19), which 
may possibly because of that there is a competition between sinusoidal mode and local ridge mode. In the case 
of thin substrate, the influence of local ridge mode is amplified synchronously. So, with the comprehensive 
influence, although the film is still wrinkled in a sinusoidal mode, there are still systematic differences of the 
wavelength between the idealized theoretical solution and the FEM simulation. For the case of a thick substrate, 
the FEM simulation is in good agreement with the theoretical results. The calculations also show that the FEM 

Figure 4.  Schematic diagram of finite element analysis model of thin-film soft-substrate bilayers.

Figure 5.  Result comparison of the results of the finite element method (FEM) and Eq. (19). The different 
curves show the effect of the thickness ratio: (a) FEM and theoretical solutions of wrinkling wavelength change 
with modulus ratio, and (b) FEM and theoretical solutions of critical load.
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and theoretical solutions of the critical load agreed closely (as shown in Fig. 5b). We also compared the results 
of ref 22 with the theoretical solution and the FEM results we proposed, as shown in Fig. 6. Through the results, 
the solutions obtained with different boundary conditions are slightly different, and the FEM solution is a little 
higher than the theoretical solution.

Buckling path of local ridge. Due to physical constraint of the substrate in a bilayer system, the inital 
buckling mode shows a sinusoidal period mode. The film surface morphology also generally exhibited a sinu-
soidal period after wrinkling. However, when the modulus ratio was very large and the thickness ratio was very 
small, our simulation showed a different buckling evolution in which the sinusoidal period mode became a 
local ridged mode. With increasing load, the adjacent wave crests began to increase until all of the wave crests 
increased, and the surface of the film exhibited a sinusoidal period mode again.

Based on the comparison of the FEM solution and previously reported  results32, for the conditions in our 
FEM simulations, the elastic contribution of the substrate can be neglected due to the very large modulus ratio 
and very small thickness ratio. However, the bottom edge restriction cannot be ignored. Thus, the buckling 
path of the bilayers in this case is similar to the buckling of a film in contact with an air layer and fixed on a 
stiff substrate. Our FEM simulation results were also similar to the experimental results reported  by32. In their 
experiment, the confined air layer enclosed in the thin layer can be assumed as an elastic substrate with very 
small stiffness (the elastic stiffness here is very small, and the influence of shear stiffness is ignored). Accordingly, 
the antisymmetric axial plane of the warped thin layer is similar to the fixed lower surface of our finite element 
model. So, the thin layer and the air layer of the experiment can form a bilayers with small thickness ratio and 
large modulus ratio as shown in Fig. 7. The FEM solution of thin-film soft-substrate bilayers with a modulus 
ratio of 600 and a thickness ratio of 5 was analyzed. The buckling path was wrinkling, followed by local ridge 
formation, and finally, sinusoidal period structure formation. As shown in Fig. 7b and c, our FEM simulation 
results were similar to previously reported experimental  results32. We selected a symmetric model and observed 
the amplitude change of seven wave crests (for dimensionless purposes, Ai/�0 was chosen), and all of the solu-
tions were entered and shown in Fig. 7d (the several lines prior to bifurcation in the figure are overlapping, and 
amplitudes are following the same paths).

Buckling path of bilayers with large thickness ratio. We next analyzed the post-buckling of thin-film 
soft-substrate bilayers. To compare with experimental  data15, we set the modulus ratio to 120, and the thickness 
ratio was 60. The simulation results are shown in Fig. 8.

The observed amplitude changes of A1 , A2 , and A3 are shown in Fig. 9 as the load was increased (the several 
lines prior to bifurcation in the figure are overlapping, and amplitudes are following the same paths). The com-
parison shows that our FEM method provides a suitable method for predicting the wrinkling–period doubling 
mode. As for the quadruple period, there were some errors between the FEM solution and the experimental data. 
However, the simulation results using a lattice model method showed the same error trend as that of previously 
reported  data16.

The buckling path shown in Fig. 8 is the typical evolution of the thin film with a very large substrate thick-
ness. To distinguish this from other paths, it is denoted as path five. In this path, the final buckling stage was a 
quadruple folding of the film surface. A further increased load could not form any new symmetric periods but 
broke the quadrupling mode, causing the surface morphology to be disordered.

We next reduced the thickness ratio, and our FEM simulation gave the path four mode shown in Fig. 10. In 
this example, the thickness ratio was set to 45, and the modulus ratio was set to 400. The result of our simulation 
revealed a new morphological transformation, i.e., the quadruple folding to the triple folding (Fig. 11).

Figure 6.  Comparison of the results of ref 22 with the theoretical solution and the FEM results: (a) The 
modulus ratio is 1000 , the poisson’s ratio of substrate is 0.4, the poisson’s ratio of film is 0.3 (b) poisson’s ratio of 
substrate is 0.5, the other parameters are the same as in (a).
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Paths two and three are formed by further reducing the substrate thickness. To simulate these situations, 
we selected example thickness ratios of 20 and 10 with a modulus ratio of 240. Figure 12 shows path three for 
a thickness ratio of 20. The upward wave trough after the period doubling disappeared but formed a double 
folding mode.

We are most interested in the amplitude changes of A1 and A2 in Fig. 12. Similarly, Fig. 13 shows the FEM 
simulation of path two, in which the film retained a sinusoidal period structure after wrinkling . The amplitude 
changes of paths two and three are shown in Fig. 14a and b (the several lines prior to bifurcation in the figure 
are overlapping, and amplitudes are following the same paths), respectively.

Results and analysis. We analyzed the FEM simulations with different modulus ratios and thickness 
ratios, and all of the results are presented as the two-dimensional image shown in Fig. 15. Paths one to five show 
the buckling evolution of the thin-film soft-substrate bilayers, and different modulus ratios and thickness ratios 
produced different buckling paths.

Figure 7.  FEM solution of thin-film soft-substrate bilayers with a modulus ratio of 600 and a thickness ratio 
of 5: (a)–(c) FEM simulation results of the bilayer buckling path; (d) Observed amplitude changes with the 
increase in load (the color contours represent the different wave crest) ; (e), (f) The experimental result reported 
 by32.
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Concluding remarks
This paper considers the actual physical limitations of thin-film soft-substrate bilayers with the finite-thickness 
substrates. The buckling evolution path simulations of the bilayers were simulated by the FEM method with 
different modulus ratios and thickness ratios with compression loads imposed on both sides. We also extended 
the buckling theoretical analysis to bilayers with finite thicknesses. The general solution of an arbitrary surface 
deflection with a linear elasticity model was given to verify the correctness of the FEM method. The post-buckling 
behavior of large deformation was simulated by our FEM model.

Figure 8.  FEM solution of thin-film soft-substrate bilayers with a modulus ratio of 120 and a thickness ratio 
of 60. The buckling sequence of the film was wrinkling, followed by period doubling, and finally, quadruple 
folding.

Figure 9.  Comparison of the FEM results and experimental  data15 of the observed amplitude changes with the 
increase in load. The curves correspond to our FEM simulations (the color contours represent the different wave 
crest), and the points are experimental data from  Reference15.
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Our calculations showed that the film buckling went through five paths with the change of the thickness 
ratio of the film and substrate. We hope our results will play a role in predicting or adjusting the film surface 
morphology after buckling.

Finally, there is some error between our FEM results and the experimental data in the final buckling stage, 
which may be related to the selection of our constitutive relationship. Perhaps a new constitutive equation such 
as consider of the strain stiffening model of Gent or Ogden may be contribute to reduce the error of simulations.

Figure 10.  FEM simulation of path four. In this case, the quadruple folding was not the final buckling stage, but 
a triple folding occurred when considering the contact slip of the film surface. The observed amplitude changes 
are shown in Figure 11.

Figure 11.  Amplitude changes of A1 , A2 , A3 , and A4 with the increase in the load (the color contours represent 
the different wave crest). A1 , A2 , and A3 are the typical buckling modes(the several lines prior to bifurcation 
in the figure are overlapping, and amplitudes are following the same paths). However, the change of A4 
corresponded to quadruple symmetry breaking and triple symmetry formation.
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Figure 12.  FEM simulation of path three for a modulus ratio of 240 and thickness ratio of 20. The film surface 
buckling mode was wrinkling–period doubling–double folding, and unlike paths four and five, due to the 
constraint of the substrate, the amplitude of A3 did not appear.

Figure 13.  FEM simulation with a modulus ratio of 240 and thickness ratio of 10. Here, the buckling mode 
only had a sinusoidal period, and we observed the amplitude change of A1.

Figure 14.  Amplitude changes of paths two and three: (a) observed changes of path two, and (b): observed 
changes of path three (the color contours represent the different wave crest).
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