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Superconductivity in Empty Bands 
and Multiple Order Parameter 
Chirality
Robert Joynt1,2 & Wen-Chin Wu3

Recent experiments have shown rotation of the plane of polarization of light reflected from the surface 
of some superconductors. The photon energy exceeds the electronic bandwidth, so that completely 
filled or completely empty bands must play a role. We show that in strong-coupling theory a Coulomb 
interaction can produce an order parameter in the unoccupied band that explains the observations. 
Thus the phenomenology puts tight constraints on the form of the order parameter in different bands. 
We propose that the experiments have detected, for the first time, the existence of a superconducting 
order parameter in a band far from the Fermi energy. This is only possible because of the sensitivity to 
delicate symmetries: a positive Kerr effect indicates that time reversal and certain mirror symmetries 
are broken in the ordered phase. Furthermore, detailed analysis of the results implies that in UPt3 there 
exist bands that have different order parameter chiralities, opening up complex new possibilities for 
topological superconductivity.

The subject of unconventional superconductivity is now over 30 years old, and the prime driving force in the field 
has been the determination of the form of the order parameter. This is important in itself for possible applica-
tions in quantum computing, and also in order to determine the mechanism of superconductivity. This issue has 
become more urgent in the era of topological superconductivity. The determination has generally proved to be 
surprisingly difficult: unambiguous identifications remain remarkably few in number.

Experiments at optical frequencies are rarely useful in this connection. Superconductivity is fundamentally a 
low-frequency phenomenon, and modification of interband matrix elements by superconductivity are miniscule. 
The Kerr effect1, rotation of the plane of polarization of reflected light through an angle θK, is an important possi-
ble exception to this venerable rule, since it tests time-reversal symmetry breaking.

The Kerr effect in superconductors was already an active area of research both in experiments2 and theories3,4 
in the 1990s. However, positive experimental results are relatively recent. A nonzero signal that begins at the onset 
of superconductivity and grows as temperature decreases has been observed in Sr2RuO4

5, UPt3
6, and URu2Si2

7. 
The simplest theories of the pure system do not give a result large enough to explain the observed magnitude of 
θK ≈ 10−6. In Sr2RuO4 this has been interpreted in different ways. One is to invoke impurity scattering8–10. Another 
is to attribute the effect to interband transitions between bands that cross the Fermi energy11,12. This paper focuses 
on clean UPt3, though we comment on other compounds below. This is the simplest case for our purposes, 
since in UPt3 the bandwidth is less than the energy (0.8 eV) of the light13,14 (see Fig. 1 for a schematic plot).  
Thus the transitions induced by the light can only connect partially occupied with completely unoccupied bands 
and we have a clear-cut example of a material for which the above theories can be ruled out.

We propose that the Coulomb interaction induces a nonzero order parameter in the unoccupied bands that is 
responsible for the Kerr effect. This implies that the Kerr effect experiments probe, for the first time, a supercon-
ducting order parameter in an unoccupied band distant from the Fermi energy. A somewhat similar effect was 
proposed for semiconductors with small gaps15 and may have been seen in a completely occupied band relatively 
near the Fermi energy in LiFeAs16. But this would be the first time that the order parameter in a distant band has 
been seen in experiments. Furthermore, since the present treatment is purely phenomenological the conclusions 
are independent of the microscopic mechanism of superconductivity.
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Kerr Effect in Superconductors
Reflection of light of frequency ω incident on a sample along the z-axis is controlled by the components εxx(ω), 
εyy(ω), εxy(ω), and εyx(ω) of the dielectric tensor. UPt3 is hexagonal and we can assume that tetragonal distortions 
that give rise to the inequality of εxx(ω) and εyy(ω) (linear birefringence) are absent so εxx(ω) = εyy(ω) = ε. In any 
case, the experiments are designed not to be sensitive to linear birefringence1. In a field →u  that breaks time rever-
sal symmetry, including an effective field from an order parameter, the Onsager relation is 
ε ω ε ω→ = −→u u( , ) ( , )xy yx

17 and since the assumption of a linear relation between ε and →u  is well-founded in the 
present case, we find εxy(ω) = −εyx(ω). Then the normal modes in the metal for a propagation direction 

→
= ˆk kz 

are circularly polarized. For each frequency there are two wavevectors k+ and k− that correspond to the two heli-
cities: ω ε=± ±k c( / )2 2 2  and ε±(ω) = εxx(ω) ± i|εxy(ω)|. The different dispersion and absorption for k+ and k− gives 
the Kerr rotation θ ε ε= Re( / )K xy xx

3/2  in a metal (for which |εxx|  1). To have εxy ≠ 0 or εyx ≠ 0, we need breaking of 
both mirror symmetries x → −x and y → −y and time-reversal18. For a spatially uniform conventional singlet 
superconductor with order parameter Δ, time-reversal means Δ → Δ* and a change of gauge is Δ → Δeiφ, so 
any time-reversal transformation is equivalent to a gauge transformation and as a result there is no non-trivial 
notion of time-reversal. For an unconventional superconductor with a momentum-dependent order parameter, 
this is not the case: we might have Δ(p) = cΔ0pz(px + ipy). Then Δ*(p) = cΔ0pz(px − ipy) and no uniform phase 
factor relates Δ and Δ*.

Model Hamiltonian
An appropriate model Hamiltonian for the multiband superconductor UPt3 is:

∑

∑ ∑

µ ξ− = → → →

+ → ′ →′ → −→ ′ −→′ ′ →′

σ
σ σ

→

→ ′ → ′
↑ ↓ ↓ ↑

†

† †

H N n p a n p a n p

V n p n p a n p a n p a n p a n p

( , ) ( , ) ( , )

( , ; , ) ( , ) ( , ) ( , ) ( , ),
(1)

n p

n p n p

, ,

, ,

where ξ →n p( , ) are the single-particle energies measured relative to the chemical potential, σ is the pseudospin, n 
and n′ are band indices, →

σ
†a n p( , ) creates an electron in the state σ→np , and → ′ →′V n p n p( , ; , ) is a singlet pairing 

interaction. The sum runs over all bands within 0.8 eV of the Fermi energy. Since the bandwidths are of order 
B ≈ 0.2 to 0.3 eV, this includes completely full and completely empty bands as well as the usual partially occupied 
bands. Because of the narrow bandwidth, there is no pair of partially occupied bands that have energies as much 
as 0.8 eV apart.

Figure 1.  Schematic plot showing the energy scales in the Kerr rotation angle experiment on UPt3
6. The photon 

energy ħω = 0.8 eV is about the energy separation between occupied and empty bands G, while the band widths 
of the occupied and empty bands B1 and B2 ≈ 0.2 eV, which is smaller than ħω. Thus absorption of the light and 
the consequent polarization rotation is due to interband transitions.
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We have restricted our model to give singlet pairing only for ease of presentation. The conclusions are essen-
tially the same for triplet pairing. H is treated in the mean field approximation in a straightforward generalization 
of the usual BCS-Gor’kov procedure19. However, we include strong coupling in that we make no assumptions 
about frequency cutoffs for the function → ′ →′V n p n p( , ; , ). This leads to a set of coupled gap equations

∑∆ → = − ′ →′ → ′ →′ ∆ ′ →′
′→ ′

n p F n p V n p n p n p( , ) ( , ) ( , ; , ) ( , ),
(2)n p

where β→ = → →F n p E n p E n p( , ) tanh[ ( , )/2]/[2 ( , )], ξ→ = → + ∆ →E n p n p n p( , ) [ ( , ) ( , ) ]2 2 1/2, and β is the inverse 
temperature. Since the experiments are done near the critical temperature, we linearize these equations with 
respect to Δ and βξ ξ→ = → →F n p n p n p( , ) tanh[ ( , )/2]/[2 ( , )]. In this case →F n p( , ) has the full symmetry of the 
lattice.

The point group of the system is D6h for UPt3. The case of interest is that of unconventional superconductivity. 
Let R be a group operation not the identity. We have that ∆ → ≠ ∆ →n Rp n p( , ) ( , ) for all n. It is also true that 

→ ′ →′ = → ′ →′V n Rp n Rp V n p n p( , ; , ) ( , ; , ) so V can be decomposed into channels corresponding to the irreducible 
representations of G. Regarded as a function of →p , we seek the highest eigenvalue of V, which then determines the 
representation actually realized. Calculations for UPt3 using experimental data to estimate → ′ →′V n p n p( , ; , ) were 
done years ago, but were not conclusive20,21 and first principles calculations using the functional renormalization 
group have been done for other systems22, but not for UPt3. In any case, the conclusions of this paper are inde-
pendent of the microscopic model.

The split transition in UPt3
23,24 implies that this representation is multi-dimensional, which for singlet super-

conductivity means E1g or E2g. We choose the former for definiteness, but our conclusions apply equally to these 
two representations. It is important to note that in the linear regime, Eq. (2) determines the representation, but 
not which combination of basis functions is chosen by the system. This degeneracy is broken at higher order and 
there must be complex coefficients for a Kerr rotation to occur. Thus we have that ∆ → = ∆ → ±n p n p p p ip( , ) ( , ) ( )z x y0 , 
where ∆ → = ∆ →n Rp n p( , ) ( , )0 0  for all R.

Order Parameter Symmetry in Different Bands
We may separate the bands into partially filled bands, of which there are 5 in UPt3 indexed by 1 ≤ n ≤ 5 and com-
pletely filled or empty bands, indexed by n > 5. There are 6 separate Fermi surfaces in UPt3. For n > 5, →F n p( , ) is 
of order 1/B or less. We expect ∆ ′ →n p( , )  for n′ > 5 to be induced by a coupling → ′ →′V n p n p( , ; , ) that is 
off-diagonal in the band indices, connecting partially filled to completely filled or completely empty bands.

Then there are two questions that are crucial for the calculation of θK. 1. How are the Ising-like variables ± in 
the equation ∆ → = ∆ → ±n p n p p p ip( , ) ( , ) ( )z x y0  determined as n varies? 2. What is the order of magnitude of 
∆ →n p( , )  for n > 5?

	 1.	 The first question is fairly easy to answer in our model. → ′ →′V n p n p( , ; , ) couples only bands with a (px + ipy) 
with other bands with a (px + ipy) gap and couples only bands with a (px − ipy) with other bands with a 
(px − ipy) gap, i.e., it is diagonal in the ± degree of freedom. However, this coupling can be of either sign. Of 
course there are no symmetries in the band index, so the couplings have no particular relation to each 
other. In a Ginzburg-Landau approach, we may define η η∆ → = ∆ → +n p n p p p p( , ) ( , ) ( )z x x y y0  where the 
“internal” order parameter η η η→ = ( , )x y  depends on the band index. The free energy in E1g is then

α η η β η η γ η η η η η η= → ⋅ → + → ⋅ → + → ⋅ → + → ⋅ → + → ⋅ →⁎ ⁎ ⁎ ⁎F J( ) ( ), (3)m m m m m m m m m mn m n m n
2 2

with a summation convention over the band indices m and n in effect. To break time-reversal symmetry 
we need the γm to be positive, and we need some of the Jmn to be positive for some pair (m, n) of bands that 
differ in energy by 0.8 eV. Then we have a problem of determining the ground state of an Ising magnet with 
more-or-less random couplings. We may expect both (px + ipy) and (px − ipy) to occur in the absence of 
physical considerations to the contrary.

	 2.	 The second question is more complicated. The size of ∆ →n p( , )  for the partially occupied bands (n ≤ 5) is 
at least partially constrained by experiment. We expect at least one and perhaps more of the gaps to be of 
order 2kBT, i.e., about 10−4 eV. The superconductivity for n > 5 is induced from the partially occupied 
bands. For estimation purposes, we choose 2 bands from Eq. (2), denoting them by g for partially occupied 
and e for empty. We consider the separable forms: → →′ = − → →′⁎V g p g p g f p f p( , ; , ) ( ) ( )g  and 

→ →′ = − → →′⁎V g p e p g f p f p( , ; , ) ( ) ( )e  with → = +f p p p ip( ) ( )z x y , so that ∆ → = ∆ →g p f p( , ) ( )g
(0)  and 

∆ → = ∆ →e p f p( , ) ( )e
(0) . The assumption that ∆e

(0) is induced means that the corresponding component of 
→ →′V e p e p( , ; , ) is small and we set it to zero. Then Eq. (2) yields

∆ 


− ∆ 


= ∆ ∆ ∆ = ∆ ∆( ) ( )g F g F g F1 ( ); , (4)g g g g e e e e e g e g g
(0) (0) (0) (0) (0) (0) (0)

where ∆ = ∑
→ →

→F F g p f p( ) ( , ) ( )g g p
(0) 2

 and ∆ = ∑
→ →

→F F e p f p( ) ( , ) ( )e e p
(0) 2

. At T = 0 we have that ∆ ≈F N( ) (0)g g g
(0)

ω ∆ln( / )c g
(0)  while ∆F ( )e e

(0)  is of order 1/ωc. The latter estimate also requires that the cutoff ωc is not too much less 
than the bandwidth, justified if the interaction comes from the Coulomb interaction. We find that 
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|∆ ∆ | ∼ | |g g/ /e g e g
(0) (0) . Since all the bands are f-like in UPt3, the Coulomb matrix elements at short distances are 

expected to be comparable, and this gives reason to suppose that |∆ ∆ |/e g
(0) (0)  is of order unity. Figure 2(a) gives a 

schematic plot showing that strong Coulomb interaction Vc can generate superconducting order parameters in 
the empty bands.

Magnitude of θK
In order to calculate θK we need the diagonal complex dielectric function εxx(ω = 0.8 eV). This has been deter-
mined by reflectivity measurements and a Kramers-Kronig analysis25,26. In this frequency range it is necessary 
to include several Lorentz oscillators to fit the data, showing that there are interband transitions at ω = 0.8 eV. 
This is in agreement with band calculations13,14. We extract the approximate values Reεxx(ω = 0.8 eV) ≈ 3 and 
Imεxx(ω = 0.8 eV) ≈ 25 from these results.

The key quantity is of course the off-diagonal dielectric function εxy(ω = 0.8 eV). The result for a single pair of 
bands (m, n) is

∑ε ω δ ω= → −→ − → − →π

ω →

∆ → ∆ →

→ →

⁎
J p J p E p E pRe ( ) ( ) ( ) [ ( ) ( )],

(5)
xy

p
x

mn
y

mn m p n p
E p E p n m

64 ( ) ( ) Im[ ( , ) ( , )]
( ) ( )m n

2

obtained from the anomalous part of the lowest-order bubble diagram. This is not the total dielectric function. To 
get that we must also sum over all pairs. Here →J p( )x y

mn
,

( )  are the interband matrix elements of the current operator 
between single-particle states in the partially occupied m-band and the empty n-band. An analogous expression 
would hold for transitions from a completely full band to a partially occupied band. This expression for εxy is to be 
compared to that for the familiar normal-state dielectric function

∑ε ω π
ω

δ ω ξ ξ= → → − → + → .
→

J p J p p pIm ( ) 32 ( ) ( ) [ ( ) ( )]
(6)

xx
p

x
mn

x
mn

n m2
( ) ( )

Although Eqs (5) and (6) contain quantities which are poorly known, only the ratio is involved in the Kerr angle 
θK. It is only this that allows us to give an order of magnitude estimate for θK. To make the estimate we consider 
two scenarios for the band structure.

Scenario 1. We take the single-particle energies ξ →p( )m , ξ →p( )n  to be random uncorrelated variables that are 
uniformly distributed over a bandwidth B, and the center of the m and n bands are separated by an energy G (see 
Fig. 1). In the model the averages over the current matrix elements are assumed to be the same for the two bands, 
and there are no correlations in momentum space between the gap functions ∆ →m p( , ), ∆ →⁎ n p( , ) and →J p( )x

mn( ) , 
→J p( )y

mn( ) . The computation of the ratio then reduces to a determination of the ratio of the density of states parts of 
Eqs (5) and (6). The result is:

ε

ε ω
ω

∼
∆ ∆ 


∆






≈ × .−

B
I I

Re
Im

2 ln 5 10
(7)

xy

xx

m n c

m
s s

7

Figure 2.  (a) Schematic plot showing that strong Coulomb interaction Vc can generate superconducting order 
parameters in the empty bands. Blue (red) circles denote Cooper pairs with positive (negative) chirality. Note 
that the chirality is interpreted as spin, and the interaction can promote chirality ferromagnetism or chirality 
antiferromagnetism. (b) Schematic plot showing that Kerr rotation creates a broken pair with different chirality 
of the two order parameters involved. If only one chirality is involved, then no Kerr rotation results.
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Here Δm, Δn are the average values of ∆ →m p( , ) , ∆ →n p( , ) , taken to be approximately equal to 2kBTc, ωc is the 
cutoff for the gap ∆ →m p( , ) and we have assumed that ωc does not differ by orders of magnitude from B, which we 
take to be B = 0.2 eV. Is is the normalized angular integral over the anisotropic gap functions. We discuss it further 
below. Eq. (7) gives the contribution to the ratio Reεxy/Imεxx from one pair of bands. If we sum over all bands and 
the ratio does not vary much from pair to pair, then we may combine this value with the normal-state experimen-
tal value of εxx(ω) quoted above to find θK ~ 2 × 10−7 at zero temperature, which is about 20% or so of the value 
one would get if the experimental results measured near Tc are extrapolated to T = 0.

Scenario 2. We take the bands to have a similar shape, so that there is correlation built into the variables ξ →p( )m , 
ξ →p( )n . As displayed in Fig. 3, a simplified symmetric two-band structure is taken: εgk = ħ2k2/2m* and εek = εgk + G 
with G being the average band gap between two bands and m* being the effective mass of electrons. In this case, 
the result is

ε

ε ω
∼

∆
−

.
G

I
Re
Im

4
(8)

xy

xx
s

2

2 2

It is assumed that Δm ≈ Δn ≡ Δ. Intraband theories typically give θ ω∼ ∆ ∼ −( / ) 10K
2 8, which is smaller. When 

ω >∼ G, the result (8) predicts that θK can be highly enhanced due to a resonance effect. For instance, if G = 0.9ω, 
θK will be one order of magnitude larger than what is predicted by one-band theory, θ ω∼ ∆( / )K

2, in good agree-
ment with experiment.

Multiple Chiralities
These order-of-magnitude considerations all assume that θK does not vanish by symmetry, which of course can 
happen if the angular integral in Eq. (5) vanishes: Is = 0. Resolving this question amounts to a symmetry analysis 
of the factor → −→ ∆ → ∆ →⁎J p J p m p n p( ) ( ) [ ( , ) ( , )]x

mn
y
mn( ) ( )  for each pair of bands that are separated by the laser pho-

ton energy 0.8 eV. Both the real and the imaginary part of ∆ → ∆ →⁎m p n p[ ( , ) ( , )] contribute to θK. The product JxJy 
transforms according to the E2g representation of D6h. The representation of ∆ → ∆ →⁎m p n p[ ( , ) ( , )] is in general 
reducible, and if we define it as ΓΔ, then the integral vanishes if and only if the E2g × ΓΔ representation does not 
contain the A1g (identity) representation. θK itself will vanish if and only if the integral in Eq. (5) vanishes for every 
pair of bands. Again we will use the example that ∆ →m p( , ) and ∆ →n p( , ) both transform as the E1g representation, 
but the considerations apply to all representations. For this case we have essentially two possibilities. The first is 
∆ → ∆ → ∼ + + = +⁎ ⁎m p n p p p ip p ip p p p( , ) ( , ) ( ) ( ) ( )z x y x y z x y

2 2 2 2 , and we find ΓΔ = A1g and since E2g × A1g = E2g, 
Is = 0 and there is no contribution to θK for a pair of bands both of which are of the (px + ipy) type. The second case 
is  ∆ → ∆ → ∼ + − = − +⁎ ⁎m p n p p p ip p ip p p p ip p( , ) ( , ) ( ) ( ) ( 2 )z x y x y z x y x y

2 2 2 2 ,  which gives ΓΔ =  E2g.  Since 
E2g × E2g = A1g + A2g + E2g, Is ≠ 0 a pair of this type can contribute to nonzero θK. Thus, continuing the analogy 
with the Ising model, each band being of the ± type, we see that a “ferromagnetic” state with all bands of the + 
type or all bands being of the - type does not lead to a Kerr rotation. We must have a mixture of “+” and “−” gaps 
on different bands. Qualitatively, we may perhaps think of the Kerr rotation as the creation of a broken pair that 
must be able to absorb both the energy and the angular momentum of the photon - this can only occur if the 
chirality of the two gaps involved is different [see Fig. 2(b) for a schematic plot].

Conclusion
The observation of a nonzero Kerr rotation in UPt3 is seen to have a multitude of consequences, going well 
beyond the fact that it demands that there must be time-reversal symmetry breaking. There must also exist a pair-
ing field in a completely filled or a completely empty band, since the photon energy exceeds the bandwidth. The 

Figure 3.  The band structure of Scenario 2. G denotes the average band gap between two bands. In this case the 
system can take advantage of a resonance and there is enhancement of the Kerr rotation.
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observation of this pairing field is novel: in fact we believe it is the first time that it has been observed in exper-
iments in a band that is very distant in energy from the Fermi energy. The existence of this pairing field is also 
not enough to explain the phenomenon: there must be a subtle pattern of relative symmetry between the bands 
involved, which gives additional interest to the system. There must be superconductivity with opposite chiralities 
pz(px + ipy) and pz(px − ipy) coexisting in the same sample. This raises many interesting questions for the topology 
of the electronic states. We expect that both the theory of Majorana fermions in the vortex cores and that of the 
protected surface states must be generalized to accommodate this additional complexity.
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