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Oxygen vacancy-driven orbital multichannel Kondo
effect in Dirac nodal line metals IrO2 and RuO2

Sheng-Shiuan Yeh1,2,3, Ta-Kang Su1, An-Shao Lien1, Farzaneh Zamani4, Johann Kroha 4, Chao-Ching Liao1,

Stefan Kirchner 5,6✉ & Juhn-Jong Lin 1,2,7✉

Strong electron correlations have long been recognized as driving the emergence of novel

phases of matter. A well recognized example is high-temperature superconductivity which

cannot be understood in terms of the standard weak-coupling theory. The exotic properties

that accompany the formation of the two-channel Kondo (2CK) effect, including the emer-

gence of an unconventional metallic state in the low-energy limit, also originate from strong

electron interactions. Despite its paradigmatic role for the formation of non-standard metal

behavior, the stringent conditions required for its emergence have made the observation of

the nonmagnetic, orbital 2CK effect in real quantum materials difficult, if not impossible. We

report the observation of orbital one- and two-channel Kondo physics in the symmetry-

enforced Dirac nodal line (DNL) metals IrO2 and RuO2 nanowires and show that the sym-

metries that enforce the existence of DNLs also promote the formation of nonmagnetic

Kondo correlations. Rutile oxide nanostructures thus form a versatile quantum matter plat-

form to engineer and explore intrinsic, interacting topological states of matter.
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Unconventional metallic states and the breakdown of the
Landau Fermi liquid paradigm is a central topic in con-
temporary condensed matter science. A connection with

high-temperature superconductivity is experimentally well
established but the conditions under which these enigmatic
metals form has remained perplexing1. One of the simplest routes
to singular Fermi liquid behavior, at least conceptually, is through
two-channel Kondo (2CK) physics2–4. Despite this long-standing
interest, 2CK physics has thus far only been demonstrated to arise
in carefully designed semiconductor nanodevices in narrow
energy and temperature (T) ranges5–8, while claims of its obser-
vation in real quantum materials are contentious (see “Discus-
sion” section for details). More recently, the interest in Dirac and
Weyl fermions within a condensed matter framework has led to
the exploration of the effects of strong spin-orbit coupling (SOC)
and of topological states which are rooted in a combination of
time-reversal, particle-hole, and space-group symmetries9,10.
While there has been considerable progress in understanding
weakly correlated topological metals, only a few materials have
been identified as realizing topological phases driven by strong
electron correlations, which includes the Weyl–Kondo semi-
metals11. This raises the question if the 2CK counterpart of such a
Weyl–Kondo semimetal, featuring an entangled ground state of
the low-energy excitations of the 2CK effect with band-structure
enforced Dirac or Weyl excitations, could at least in principle be
stabilized. Exploring such a possibility, however, hinges on
whether the 2CK effect can be stabilized at all in native quantum
matter.

In this work we establish that oxygen vacancies (VO’s) in the
Dirac nodal line (DNL) materials IrO2 and RuO2 drive an orbital
Kondo effect. VO’s are prevalent in transition-metal oxides,
including, e.g., TiO2 and SrTiO3, and their properties and rami-
fications have become central research topics as they can lead to
an intricate entanglement of spin, orbital, and charge degrees of
freedom12–15. The active degree of freedom in the orbital Kondo
effect is not a local spin moment but a ‘pseudospin’ formed by
orbital degrees of freedom4. In IrO2 and RuO2, the orbital Kondo
effect is symmetry stabilized by the space-group symmetries of
the rutile structure (Fig. 1). Both materials have been character-
ized as topological metals which feature symmetry-protected
DNLs in their Brillouin zones16,17. This provides a link between
the formation of the orbital Kondo effect and the presence of
DNLs. In IrO2 a nonmagnetic 2CK ground state ensues, while in
RuO2 the absence of time-reversal symmetry results in an orbital
one-channel Kondo (1CK) effect.

The rutile structure type possesses mirror reflection, inver-
sion, and a fourfold rotation (C4) symmetry which enforce the
presence of DNLs in the band structure of rutile oxides10. Some
of these DNLs are protected from gapping out due to large SOC
by the non-symmorphic symmetry of the rutile structure18,19.
For IrO2 and RuO2 this has been recently confirmed by angle-
resolved photoemission spectroscopy and band structure
studies16,17,19. In the vicinity of VO’s, this set of symmetries
promotes the formation of the orbital 1CK and 2CK effect. The
emergent Majorana zero mode that accompanies the formation
of the 2CK effect is reflected in a singular excitation spectrum
above the ground state which generates a

ffiffiffiffi
T

p
-dependence of

the resistivity ρ(T) below a low-T energy scale20, the Kondo
temperature TK. This requires a well-balanced competition of
two otherwise independent and degenerate screening channels
and makes the 2CK effect extremely difficult to realize, espe-
cially in a natural quantum material4,21,22. If one channel
dominates over the other, the low-T behavior will be that of
conventional fermions. If the 2CK state arises out of orbital
Kondo scattering, magnetic-field (B) independence is expected

for field strengths well above TK as long as gμBB≪W, where g
is the Landé factor, μB is the Bohr magneton, and W is the
conduction electron half-bandwidth. Our study is based on
rutile (MO2, M= Ir, Ru) nanowires (NWs) which allow us to
combine a high degree of sample characterization with an
exceptional measurement sensitivity while probing material
properties in the regime where the characteristic sample
dimension is much larger than the elastic electron mean free
path (cf. Supplementary Note 3). That is, we are concerned with
weakly disordered, diffusive metals which are three-
dimensional (3D) with respect to the Boltzmann transport,
whereas strong correlation effect causes a resistivity anomaly at
low T. Table 1 lists the relevant parameters for the NWs studied
in this work.

Results
Oxygen vacancies in transition-metal rutiles MO2. In Fig. 1a,
the vicinity of an VO, denoted VO1, is shown. The metal ions
surrounding VO1, labeled M1, M2, and M3, form an isosceles
triangle (Fig. 1b). For the sites M1 and M2, an almost perfect C4ν

symmetry exists which implies a corresponding degeneracy
associated with the two-dimensional irreducible representation of
C4ν, see Fig. 1c and Supplementary Note 4. In the pristine system,
the metal ions are surrounded by oxygen octahedra anchored
around the center and the corners of the tetragonal unit cell. The
π/2 angle between adjacent octahedra leads to a fourfold screw
axis symmetry. This non-symmorphic symmetry not only pro-
tects DNLs in IrO2 against SOC-induced splitting17,19. It has also
been linked to the high electrical conductivity of IrO2 (ref. 10)
and, as we find, is in line with the strong tendency to localize
electrons near VO’s required for the formation of orbital Kondo
correlations. Moreover, the fourfold screw axis symmetry ensures
that the C4 rotation axes centered at the sites M1 and M2 near
VO1 are not parallel (ẑ0∦ẑ, see Fig. 1d). This enhances the phase
space for the orbital Kondo effect over orbital order linking sites
M1 and M2 (see also Supplementary Note 5).

Experimental signatures of orbital 2CK effect in IrO2 NWs.
Now we turn to our experimental results which, to the best of our
knowledge, demonstrate the most convincing realization of the
long searched orbital 2CK effect in a solid. Fig. 2 demonstrates the
formation of an orbital 2CK effect in IrO2 NWs. We find that as T
decreases from room temperature to approximately a few Kelvin,
ρ(T) decreases in all IrO2 NWs, as expected for typical metallic
behavior (cf. Supplementary Note 2). However, below T ~ 20 K,
ρ(T) displays a

ffiffiffiffi
T

p
increase of the ρ(T) upon lowering T over

almost two decades in T(!), until a deviation sets in at ~0.5 K. We
performed systematic thermal annealing studies to adjust the
oxygen contents in the NWs, which indicate that the anomalous
low-T transport properties are driven by the presence of VO’s
(ref. 23 and Supplementary Note 1). This is exemplified in Fig. 2.
The top left inset shows a scanning electron microscopy image of
NW A. In the oxygenated NW 3 which should contain a negli-
gible amount of VO’s, ρ(T) decreases monotonically with
decreasing T, revealing a residual resistivity, ρB0, below ~4 K (top
right inset). In contrast, in NWs A, B1 and B2 which contain
large amounts of VO’s, ρ(T) increases with decreasing T, mani-
festing a robust ρ / ffiffiffiffi

T
p

law between ~0.5 and ~20 K. The slope
of NW B2 is smaller than that of NW B1, which indicates a
decrease in the number density of oxygen vacancies (nVO

) due to
prolonged aging (for about 5 months) in the atmosphere. The
data explicitly demonstrate that the ρ / ffiffiffiffi

T
p

behavior is inde-
pendent of B up to at least 9 T. The observed behavior is con-
sistent with the 2CK effect as indicated by the straight solid lines
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which are linear fits to the 2CK effect calculated within the
dynamical large-N method (cf. Supplementary Note 5), with nVO

as an adjustable parameter (see Table 1 for the extracted values
and Supplementary Notes 5 and 6 for the extraction method).

Ruling out the 3D electron–electron interaction (EEI) effect.
To complicate matters, the EEI effect in 3D weakly disordered
metals generically leads to a

ffiffiffiffi
T

p
term in ρ(T) at low T (refs. 24,25).

Unambiguously establishing that ρðTÞ � ffiffiffiffi
T

p
indeed originates

from 2CK physics thus requires a proper analysis of the EEI effect of
the charge carriers. For example, for the NW B1 with ρB0= 74 μΩ
cm and the electron diffusion constant D≃ 6.2 cm2 s−1, the 3D EEI
effect would predict a largest possible resistance increase of Δρ/ρ≃
2.8 × 10−4 as T is cooled from 20 to 1 K. Experimentally, we have
observed a much larger resistance increase of 5.1 × 10−3. Further-
more, the 3D EEI effect would predict similar values for the

magnitude of the low-T resistivity increase in NWs B1 and B2 to
within ≈3%, due to their ρB0 values differing by ≈1% (Table 1).
This is definitely incompatible with our observation of a ≈50%
difference. In addition, we find a deviation from the

ffiffiffiffi
T

p
behavior at

~0.5 K. If the
ffiffiffiffi
T

p
anomaly were caused by the EEI effect, no such

deviation should occur (see Supplementary Note 3 for an in-depth
analysis of the EEI effect and its 3D dimensionality in our
MO2 NWs).

VO-driven orbital Kondo scattering in MO2. For IrO2 the
valency of the transition-metal ion M is close to the nominal
valence of +IV in MO2 (ref. 26). Each VO generates two defect
electrons due to charge neutrality. To minimize Coulomb inter-
action, the defect electrons will tend to localize at differentM ions
in the vicinity of the VO. In IrO2 this results in a nonmagnetic 5d6

ground state configuration of the Ir ions. For the electron
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Fig. 1 Atomic arrangement around an oxygen vacancy in MO2 rutile structure. a Schematics for MO2 in the rutile structure. The olive and red spheres
represent transition-metal ions M4+ and oxygen ions O2−, respectively. VO1 represents an oxygen vacancy. b The metal ions M1, M2, and M3 surrounding
VO1 form an isosceles triangle. c The four oxygen ions surrounding M2, labeled O4, O9, O10, and O8, form an almost perfect planar square (while O10, O50,
O30, and O40 only form a rectangle, cf. Supplementary Note 4 for details). d The dxz and dyz orbitals at M2 next to VO1, with ẑ perpendicular to the O4, O8,
O10, and O9 plane, remain essentially degenerate as a result of mirror and C4 rotation symmetry aroundM2. (Due to the non-symmorphic rutile structure,
ẑ∦ẑ0 , where ẑ0 is parallel to the C4 axis at M1.).

Table 1 Relevant parameters for MO2 NWs.

NW d ρ(300 K) ρB0 ℓ(10 K) D(10 K) ρK0 TK nVO
nVO

=nO(%)

IrO2 A 130 147 109 2.5 4.2 (0.65) (20) ~1.9 × 1025 ~0.031
IrO2 B1 190 104 73.9 3.7 6.2 (0.72) (20) ~2.2 × 1025 ~0.036
IrO2 B2 190 106 75.0 3.6 6.0 (0.45) (20) ~1.4 × 1025 ~0.023
RuO2 A 53 193 122 2.2 4.0 0.94 3.0 ~1.5 × 1025 ~0.025
RuO2 B 67 163 120 2.3 4.2 14 12 ~2.3 × 1026 ~0.38
RuO2 C 54 589 434 0.63 1.2 17 69 ~2.7 × 1026 ~0.44
RuO2 D 120 245 160 1.7 3.1 7.0 80 ~1.1 × 1026 ~0.18
RuO2 E 47 761 587 0.47 0.9 30 7.0 ~4.8 × 1026 ~0.79

Diameter d is in nm, room-temperature resistivity ρ(300 K), residual resistivity ρB0, and Kondo resistivity in the unitary limit ρK0 are in μΩ cm, the electron mean free path ℓ(10 K) is in nm, the electron
diffusion constant D(10 K) is in cm2 s−1, the Kondo temperature TK is in K, and the number density of oxygen vacancies nVO

is in m−3. nO denotes the oxygen atom number density in the rutile structure.
In all 4-probe configuration for transport measurements, the length between the two voltage probes is ~1 μm. The ℓ(10 K) and D ¼ 1=½ρe2NðEFÞ� ¼ 1

3 vF‘ values are calculated through the free-electron
model, where N(EF) is the density of states at the Fermi energy, and the Fermi velocity vF≈ 5.0 × 105 and 5.5 × 105 m s−1 in IrO2 and RuO2, respectively. For each IrO2 NW, we have empirically taken the
ρK0 value to be the maximum value of the measured Kondo resistivity at ~0.5 K and TK≃ 20 K. These values are listed in parentheses. IrO2 NW B has been measured twice before and after oxygenation
in air and labeled B1 (first measurement) and B2 (second measurement).
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localizing on ion M2 or M1 (Fig. 1a), the symmetry of the
effective potential implies the almost perfect degeneracy of the
orbitals dxz and dyz as defined in Fig. 1d. It is this orbital
degeneracy that drives the orbital 2CK effect in IrO2 where the dxz
and dyz form a local pseudospin basis, while the spin-degenerate
conduction electrons act as two independent screening channels.
Group theoretical arguments ensure that the exchange scattering
processes between conduction electrons and pseudospin degree of
freedom have a form compatible with the Kondo interaction27 (cf.
Supplementary Note 5). Deviations from perfect symmetry which
act as a pseudo-magnetic field are expected to become visible at
lowest T. This explains the deviations from the

ffiffiffiffi
T

p
behavior

observed below ~0.5 K in Fig. 2. If the two defect electrons
localize at sites M1 and M2, a two-impurity problem might be
expected which could lead to inter-site orbital order between the
two defect electrons28. The non-symmorphic rutile structure,
however, ensures that the C4 rotation axes centered at the sites
M1 and M2 are not parallel. This together with the local nature of
the decomposition provided in Supplementary Eq. (3) (see Sup-
plementary Note 5) favor local orbital Kondo screening in line
with our observation. These conclusions are further corroborated
by demonstrating tunability of the orbital 2CK effect to its 1CK
counterpart.

Experimental signatures of orbital 1CK effect in RuO2 NWs.
RuO2 is also a DNL metal with the same non-symmorphic
symmetry group as IrO2 but weaker SOC. In contrast to IrO2, it
lacks time-reversal symmetry19,29. Based on the analysis for IrO2,
we expect that VO’s in RuO2 will drive an orbital 1CK effect. This

is indeed borne out by our transport data on RuO2 NWs. Fig. 3a
shows the T dependence of the time-averaged Kondo resistivity
〈ρK〉 for NW C, where ρK(T)= ρ(T)− ρB0, and 〈…〉 denotes
averaging. (RuO2 NWs often demonstrate temporal ρ fluctua-
tions. Details can be found in Supplementary Note 2.) At low T,
〈ρK〉 follows the 1CK form30. The inset demonstrates the recovery
of a Fermi-liquid ground state with its characteristic 〈ρK〉∝ T2

behavior below ~12 K and unambiguously rules out the 3D EEI
effect. Fig. 3b shows ρ(T) of NW E in B= 0 and 4 T. For clarity,
the B= 0 data (black symbols) are averaged over time, while the
B= 4 T data (red symbols) are non-averaged to demonstrate the
temporal fluctuations of the low-T ρ(T) (ref. 31). Note that, apart
from the aforementioned much smaller resistance increase as
would be predicted by the 3D EEI effect compared with the
experimental results in Fig. 3a, b, no

ffiffiffiffi
T

p
dependence is detected

here. In fact, the low-T resistivity anomalies conform very well to
the 1CK scaling form for three decades in T/TK (Fig. 4a). Thus,
the 3D EEI effect can be safely ruled out as the root of the
observed low-T resistivity anomalies in RuO2 NWs.

As a further demonstration of the B-field independence, we
present in Fig. 3c ρ(T) data for NW A in magnetic fields of strength
B= 0, 3, and 5 T. With TA

K = 3 K, NW A has the lowest TK among
NWs A–E (Table 1). The data between 50mK and 10 K,
corresponding to T/TK= 0.017–3.3, can be well described by the
1CK function (solid curve). The dash-dotted curves depict the
magnetoresistance predicted by the spin-12 Kondo impurity model30

with gμBB/kBTK= 1.0, 2.0, and 4.1, as indicated, where kB is the
Boltzmann constant. Our experimental data clearly demonstrate B
independence, ruling out a magnetic origin of this phenomenon.

We remark on the relation between the residual resistivity ρB0
and the concentration of orbital Kondo scatterers nVO

extracted
from ρK0, the Kondo contribution to the ρ(T→ 0) (see
Supplementary Note 6), for RuO2 NWs. With the exception of
NW B, our data indicate an approximately linear relation between
nVO

and ρB0 (Table 1 and Supplementary Fig. 3). It is not
unexpected that the approximately linear relation between ρB0
and nVO

holds for larger impurity concentrations, corresponding
to larger values of ρB0 as all defects, screened dynamic and static
defects, contribute to ρB0. This relation strongly demonstrates
that the low-T resistivity anomalies are indeed due to VO-driven
orbital Kondo effect. (We focus on RuO2 NWs because of the
larger number of samples with a larger variation of ρB0 values
compared with IrO2 NWs).

Comparison of 2CK and 1CK ρ(T) curves. Figure 4a demon-
strates that 〈ρK〉/ρK0 for RuO2 NWs follow the universal 1CK
scaling over three decades in T/TK while TK ranges from 3 to 80
K! To further substantiate the subtle but distinct differences
between the

ffiffiffiffi
T

p
dependence of the 2CK behavior in IrO2 NWs

from the 1CK scaling form, we plot 〈ρK〉/ρK0 as a function offfiffiffiffiffiffiffiffiffiffiffiffi
T=TK

p
for IrO2 NWs A and B1, together with RuO2 NWs B–E

and the 1CK function, in Fig. 4b, c, respectively. (The value for
ρK0 was identified with the maximum values of the measured
ρK(T) anomalies.) Fig. 4d illustrates that a dilute system of 2CK
scattering centers immersed in a metallic host indeed displays affiffiffiffi
T

p
term in its low-T ρ(T). This

ffiffiffiffi
T

p
power-law behavior is

determined by the leading irrelevant operator near the 2CK fixed
point32 and captured by the dynamical large-N method33–35.

Discussion
Despite the ubiquitous appearance of magnetic Kondo scattering in
real quantum materials36, no convincing demonstration of the
orbital Kondo effect37 or the 2CK effect22,38 exists. Many claims rest
on a model of two-level systems immersed in a metallic host as a
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Fig. 2 Orbital 2CK resistivity of IrO2 NWs. ρ versus
ffiffiffi
T

p
for IrO2 NWs A,

B1 and B2 in magnetic fields B= 0, 6, and 9 T, as indicated. For clarity, the
data of NWs B1 and B2 are shifted by 34.7 and 33.6 μΩ cm, respectively. A
ρ /

ffiffiffi
T

p
law, which is B independent, is observed between ~0.5 and ~20 K

in all three NWs. The straight solid lines are linear fits to the 2CK
resistivities calculated by the dynamical large-N method (see text). Top
left inset: a scanning electron microscopy image of NW A. The scale bar is
1 μm. Top right inset: Low-T ρ(T) curves of NW A and a reference,
oxygenated NW 3 (diameter d= 330 nm, ρ(300 K)= 124 μΩ cm).
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possible route to 2CK physics3,4. Theoretical arguments have,
however, made it clear that this is not a viable route to nonmagnetic
Kondo scattering22,38. Moreover, the creation of scattering centers
in a real quantum material necessarily places the system in the
weakly disordered regime where a conductance anomaly, the
Altshuler–Aronov correction, occurs whose T dependence can be
mistaken for a 2CK signature, see, e.g., refs. 39–42. Dilution studies
on common Kondo lattice systems43,44, on the other hand, typically
create disorder distributions of Kondo temperatures that may result
in a behavior of observables, which can easily be mistaken for that
of a generic non-Fermi liquid45.

We have shown that the low-T resistivity anomaly in the
transition-metal rutile IrO2 is caused by VO’s, demonstrating key
signatures of an orbital 2CK effect and ruling out alternative
explanations due to, e.g., the EEI effect. The most convincing
argument in favor of 2CK physics would be the demonstration of
direct tunability of 2CK physics to 1CK physics upon breaking
the channel degeneracy. This is difficult, as the channel degen-
eracy is protected by time-reversal symmetry. A perhaps less
direct, yet complementary, demonstration of this tunability is
provided by our results for RuO2 NWs which develop an orbital
1CK effect. In RuO2, the antiferromagnetic order breaks the
channel degeneracy. Our analysis also indicates that the under-
lying symmetries which support the existence of DNLs in the
Brillouin zones of both transition-metal rutiles also aid the for-
mation of orbital 2CK and 1CK physics.

Materials condensing in the rutile structure type and its deri-
vatives form an abundant and important class that has helped
shaping our understanding of correlated matter. The metal-
insulator transition in VO2, e.g., has been known for 60 years46,

yet its dynamics is still not fully understood47. The demonstration
that the non-symmorphic rutile space group supports a VO-dri-
ven orbital Kondo effect in MO2 holds promise for the realization
of novel states of matter. The potential richness of orbital Kondo
physics, e.g., on superconducting pairing, was recently pointed
out in ref. 37 but may be even richer when considering the pos-
sibility of its interplay with topological band structures. Specifi-
cally, we envision the creation of a 2CK non-symmorphic
superlattice of VO’s in IrO2 where the 2CK Majorana modes
entangle with the band structure-enforced Dirac excitations
forming a strongly correlated topological non-Fermi liquid state.
Understanding its properties will foster deeper insights into the
interplay of topology with strong correlations beyond the usual
mean field treatment. The theoretical approach to this non-
symmorphic superlattice is reminiscent of the topologically
garnished strong-coupling fixed-point pioneered in the context of
Weyl–Kondo semimetals11,48, suitably generalized to capture the
intermediate coupling physics of the 2CK effect and its low-T
excitations. The fabrication of superlattices of Kondo scattering
centers has already been demonstrated49 while defect engineering
of vacancy networks, including VO networks is currently explored
in a range of materials50,51. The specifics of this unique state and
its manufacturing are currently being explored.

Methods
NW growth. IrO2 NWs were grown by the metal-organic chemical vapor
deposition method, using (MeCp)Ir(COD) supplied by Strem Chemicals as the
source reagent. Both the precursor reservoir and the transport line were controlled
in the temperature range of 100–130 °C to avoid precursor condensation during the
vapor-phase transport. High purity O2, with a flow rate of 100 sccm, was used as
the carrier gas and reactive gas. During the deposition, the substrate temperature
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was kept at ≈350 °C and the chamber pressure was held at ≈17 torr to grow
NWs52,53. Selected-area electron diffraction patterns52 and X-ray diffraction (XRD)
patterns54 revealed a single-crystalline rutile structure.

RuO2 NWs were grown by the thermal evaporation method based on the vapor-
liquid-solid mechanism, with Au nanoparticles as catalyst. A quartz tube was
inserted in a furnace. A source material of stoichiometric RuO2 powder (Aldrich,
99.9%) was placed in the center of the quartz tube and heated to 920–960 °C.
During the NW growth, an O2 gas was introduced into the quartz tube and the
chamber was maintained at a constant pressure of ≈2 torr. Silicon wafer substrates
were loaded at the downstream end of the quartz tube, where the temperature was
kept at 450–670 °C (ref. 55). The morphology and lattice structure of the NWs were
studied using XRD and high-resolution transmission electron microscopy (HR-
TEM). The XRD patterns demonstrated a rutile structure55, and the HR-TEM
images revealed a polycrystalline lattice structure56.

Electrical measurements. Submicron Cr/Au (10/100 nm) electrodes for 4-probe
ρ(T) measurements were fabricated by the standard electron-beam lithography
technique. The electrode fabrication was done after the thermal treatment
(annealing and/or oxygenation) of each NW was completed. To avoid electron
overheating, the condition for equilibrium, eVs≪ kBT, was assured in all resistance
measurements57, where e is the electronic charge, and Vs is the applied voltage
across the energy relaxation length. The electrical-transport measurements were
performed on a BlueFors LD-400 dilution refrigerator equipped with room-
temperature and low-temperature low-pass filters. The electron temperature was
calibrated down to ≲50 mK. In several cases (RuO2 NWs B–E), the measurements
were performed on an Oxford Heliox 3He cryostat with a base temperature of
≃250 mK. The magnetic fields were supplied by superconducting magnets and
applied perpendicular to the NW axis in all cases.

Data availability
All data collected or analyzed during this study is available in the main text or the
Supplementary Information material.

Code availability
Details on the numerics is available upon request from the authors.
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