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I. INTRODUCTION
LTHOUGH stroke mortality is decreasing, the preva-
lence of individuals living with the effects of stroke

622

|EEE Journal of Translational
Engineering in
Health and Medicine

Received 30 April 2024; revised 17 August 2024; accepted 28 August 2024.
Date of publication 3 September 2024; date of current version 12 September 2024.

Digital Object Identifier 10.1109/JTEHM.2024.3454077

A 4-DOF Exosuit Using a Hybrid EEG-Based
Control Approach for Upper-Limb Rehabilitation

ZHICHUAN TANG 12, ZHIXUAN CUI“1, HANG WANG', PENGCHENG LIU"“3, (Member, IEEE),
XUAN XU“1, AND KESHUAI YANG !

!Industrial Design Institute, Zhejiang University of Technology, Hangzhou 310023, China
2Faculty of Science and Technology, Bournemouth University, BHI2 5BB Poole, U.K.
3Department of Computer Science, University of York, YO10 5DD York, U.K.

CORRESPONDING AUTHOR: P. LIU (pengcheng.liu@york.ac.uk)
This work was supported by the National Social Science Fund of China under Grant 22CTQO16.

This work involved human subjects or animals in its research. Approval of all ethical and experimental procedures and protocols was
granted by the Ethics Committee of the Zhejiang University of Technology.

ABSTRACT Rehabilitation devices, such as traditional rigid exoskeletons or exosuits, have been widely
used to rehabilitate upper limb function post-stroke. In this paper, we have developed an exosuit with
four degrees of freedom to enable users to involve more joints in the rehabilitation process. Additionally,
a hybrid electroencephalogram-based (EEG-based) control approach has been developed to promote active
user engagement and provide more control commands. The hybrid EEG-based control approach includes
steady-state visual evoked potential (SSVEP) paradigm and motor imagery (MI) paradigm. Firstly, the reha-
bilitation movement was selected by SSVEP paradigm, and the multivariate variational mode decomposition
(MVMD) and canonical correlation analysis (CCA) method was used for SSVEP EEG recognition; then,
the motion intention was obtained by MI paradigm, and the convolutional neural network (CNN) and long
short-term memory network (LSTM) were used to build a CNN-LSTM model for MI EEG recognition;
finally, the recognition results were translated into control commands of Bowden cables to achieve multi-
degree-of-freedom rehabilitation. Experimental results show that the average classification accuracy of
the CNN-LSTM model reaches to 90.07% =+ 2.23%, and the overall accuracy of the hybrid EEG-based
control approach reaches to 85.26% =+ 1.95%. The twelve subjects involved in the usability assessment
demonstrated an average system usability scale (SUS) score of 81.25 & 5.82. Additionally, four participants
who underwent a 35-day rehabilitation training demonstrated an average 10.33% increase in range of motion
(ROM) across 4 joints, along with a 11.35% increase in the average electromyography (EMG) amplitude
of the primary muscle involved. The exosuit demonstrates good accuracy in control, exhibits favorable
usability, and shows certain efficacy in multi-joint rehabilitation. Our study has taken into account the
neuroplastic principles, aiming to achieve active user engagement while introducing additional degrees of
freedom, offering novel ideas and methods for potential brain-computer interface (BCI)-based rehabilitation
strategies and hardware development. Clinical impact: Our study presents an exosuit with four degrees
of freedom for stroke rehabilitation, enabling multi-joint movement and improved motor recovery. The
hybrid EEG-based control approach enhances active user engagement, offering a promising strategy for more
effective and user-driven rehabilitation, potentially improving clinical outcomes. Clinical and Translational
Impact Statement: By developing an exosuit and a hybrid EEG-based control approach, this study enhances
stroke rehabilitation through better user engagement and multi-joint capabilities. These innovations consider
neuroplasticity principles, integrating rehabilitation theory with rehabilitation device.

INDEX TERMS Exosuit, Bowden cable, motor imagery, SSVEP, rehabilitation.
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has increased due to the expanding and aging population [1].
Under the trend of aging, it is increasingly difficult for tradi-
tional rehabilitation methods to cope with the surging demand
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for rehabilitation. In contrast to labor-intensive techniques
like manual therapy or therapist-assisted exercises, rehabil-
itation exoskeletons provide consistent support throughout
the rehabilitation process, ensuring stable and continuous
assistance. By leveraging high-precision sensors and biomed-
ical signals, such as inertial measurement units (IMU),
electromyography (EMG) signals, and electroencephalogram
(EEG) signals, good control performance and tracking and
evaluation of rehabilitation effect can be achieved [2], [3].
Traditional exoskeletons which typically use rigid frames to
apply driving torque to joints, present a number of challenges
for rehabilitation, such as high weight and large structural
size [4]. In contrast to rigid exoskeletons, soft exoskeletons
have demonstrated superior performance in terms of porta-
bility, safety and weight [5], [6]. The compliant and light
structure eliminates joint misalignment issues and does not
restrict the user’s independent movement. And it can also
be easily worn, replacing some rigid exoskeletons that per-
formed rehabilitation tasks in a fixed posture.

In work related to exosuits, the chosen actuation method
determines the main hardware characteristics of the exo-
suit, further influencing its weight and level of portability.
Nam et al. [7] developed an innovative EMG-driven exoneu-
romusculoskeleton designed for self-help upper limb training
following stroke. The soft pneumatic muscle helped achieve
the structural characteristics of lightweight and compact
design, but this structure still required most of the hardware
to be fixed to the surface of the arm. On the contrary, Bowden
cables consist of inner wires and outer casings, enabling
force transmission while providing flexibility and compli-
ance. They extend the distance between the actuated joint
and the actuator, facilitating remote actuation. Wu et al. [8]
developed a tendon-sheath actuator unit and optimized the
control strategy to achieve stable elbow joint movement.
They integrated most of the hardware on the user’s back,
resulting in a more portable design. Nycz et al. [9] aimed for
lightweight design and placed the actuation module and elec-
tronics module on the upper back. Similarly, they achieved
excellent weight performance through remote actuation with
Bowden cables. In practical development, both exosuits and
Bowden cables exhibit multiple advantages, particularly in
achieving lightweight design and enabling unrestricted user
mobility [10]. However, there is still considerable room for
improvement in terms of the size of the hardware structure,
the layout of the actuation module, the number of degrees of
freedom and weight.

Some rehabilitation exoskeletons are designed to perform
pre-set repetitive movements, with patients engaging in a
passive role [11], [12]. This method, similar to continuous
passive motion (CPM), can sometimes limit rehabilitation
effectiveness [13]. To overcome this, researchers have devel-
oped various exoskeletons that aim to boost user engagement
and improve rehabilitation outcomes [14], [15]. Recent stud-
ies show that neuroplasticity plays a key role in recovery
after nerve injury. Patients who actively participate in their
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rehabilitation are better able to promote neuroplasticity [16].
Translating these findings into clinical practice involves
designing rehabilitation exoskeletons that incorporate task-
specific exercises, high-repetition movements, and personal-
ized therapy regimens, all of which are crucial for promoting
neuroplasticity [17]. Huang et al. [18] have developed a
hand rehabilitation system, emphasizing the importance of
neuroplasticity, especially with high-repetition training. The
clinical measurements show a 35% average improvement in
training effectiveness. Compared to biomechanics-based or
passive rehabilitation, incorporating neuroplastic principles
and promoting user engagement is a positive and beneficial
exploration for rehabilitation outcomes. However, the effec-
tiveness of such approaches still requires further intricate
work for validation. For the evaluation of exosuits intended
for rehabilitation purposes, it is often a complex task that
frequently encounters issues such as individual differences,
consistency of procedures, and participant dropouts midway
through the process. In the work of Proietti et al., they
developed a soft inflatable robotic glove for stroke survivors
to use independently at home. After 4 weeks of use by
ten chronic moderate-to-severe stroke survivors, significant
improvements were observed in Fugl-Meyer Assessment
(FMA) scores and range of motion (ROM), demonstrating the
effectiveness of remote and autonomous rehabilitation [19].
Brain-computer interface (BCI) can convert EEG signals
from brain activity to output commands [20]. Among various
BCI paradigms, motor imagery (MI) and steady-state visual
evoked potential (SSVEP) are widely used for their high
performance [21], [22]. SSVEP is widely used because of
its high accuracy and stability, less training required, and
lower subject differences [23], [24]. It can offer numerous
control commands, typically distinguishing several to tens of
commands [25]. Research by Bakardjian et al. indicates that
flashing stimuli at frequencies from 5.6 to 15.3 Hz, peaking
at 12 Hz, elicit the strongest response, with weaker responses
at 28 and 42 Hz. In an eight-command BCI system, the
average accuracy was 98% with a 3.4-second delay [26]. Mul-
tivariate variational mode decomposition (MVMD) extends
variational mode decomposition (VMD) to multi-channel
signals [27]. MVMD can decompose multi-channel SSVEP
EEG signals into several multivariate modulated oscillations,
effectively leveraging the different characteristics of the har-
monic spectrum. As a result, MVMD has the potential to
enhance the canonical correlation analysis (CCA) algorithm
and its application in BCI control [28]. MI is notable for
its independence from physical movement, naturally promot-
ing brain activity [29]. When users imagine their own body
movements, the primary motor cortex of the brain exhibits
desynchronization of neural activity, called event-related
desynchronization (ERD) or synchronization (ERS). Specif-
ically, u waves (8-14 Hz) and B waves (14-30 Hz) are
the main frequency spectra of ERS and ERD [30]. Gener-
ally, MI paradigm can provide two relatively stable control
commands. Introducing more commands would result in a
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significant decrease in accuracy and user fatigue [31]. As our
study aims to develop an exosuit with four degrees of free-
dom, using MI alone may not generate a sufficient number of
control commands. Therefore, we have developed a hybrid
EEG-based control approach that combines SSVEP and MI
paradigms to provide more control commands and realize
active rehabilitation.

Controlling an exosuit with EEG signals is a complex task
that involves overcoming the challenge posed by the low
signal-to-noise ratio of EEG signals. In recent years, in addi-
tion to traditional EEG feature extraction and classification
methods, deep learning algorithms such as convolutional
neural network (CNN) have also been applied to MI classifi-
cation. Tabar et al. [32] used CNN and stacked autoencoders
(SAE) for feature extraction and classification of MI EEG
signals, and achieved better classification performance by
improving the input form, with a 9% increase compared
to the winner algorithm of BCI IV 2b. Sakhavi et al. [33]
used a new temporal representation of the data and a CNN
architecture for classification. This new representation was
achieved by modifying filter bank common spatial patterns
(FBCSP), and the final framework improved by 7% com-
pared to the winner algorithm of BCI IV 2a. However, EEG
signals are fundamentally unstable time series signals. There-
fore, combining time series information can also improve
the classification accuracy of EEG [34], [35]. Meanwhile,
long short-term memory network (LSTM) has been widely
used in the processing of EEG signals. LSTM solves the
problem of recurrent neural network (RNN) gradient disap-
pearance by introducing gate mechanisms. In the work of
Schirrmeister et al., 44 channels of EEG data went through
temporal convolution with 25 linear filters, and spectral
features were used to extract and characterize specific fre-
quency components of the EEG signals [36]. Wang et al. [37]
proposed a LSTM-based network for -classifying MI
tasks, which achieved excellent performance by extracting
effective features through a one dimensional-aggregation
approximation. LSTM can better capture the dependencies
between time-series data, thus improving the performance of
classification.

In this paper, we aim to integrate a lightweight four-
degree-of-freedom exosuit with an active control approach
to enhance rehabilitation outcomes, distinguishing it from
the commonly observed single-joint or two-joint assistive
exoskeletons in related studies. The exosuit is actuated by
Bowden cables, which are characterized by their lightweight,
compact size, and remote actuation capabilities. This design
allows us to achieve four degrees of freedom in rehabilita-
tion with a straightforward hardware structure. In terms of
control, we propose a hybrid EEG-based control approach
that combines SSVEP and MI paradigms to provide more
control commands, enhance user engagement, and improve
rehabilitation outcomes. For SSVEP paradigm, we use the
MVMD-CCA algorithm. The application of MVMD-CCA
improves the detection ability of SSVEP EEG signals,
enabling accurate and fast classification. Meanwhile, we
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developed a CNN-LSTM model to improve the classification
performance of MI EEG signals. We conducted both offline
and online experiments and compared them with existing
algorithms. Finally, we conducted both usability assessment
and rehabilitation assessment. Usability assessment was per-
formed using the system usability scale (SUS) to assess users’
experience and ease of use with the exosuit. The rehabilitation
assessment involved capturing changes in participants’ aver-
age EMG amplitudes and joint ROM across multiple joints
after 35 days of rehabilitation training. These changes were
used to validate the multi-joint rehabilitation effects.

Il. EXOSUIT DESIGN

A. DESIGN GOALS

The exosuit we developed facilitates rehabilitation in the
upper limbs for four joints: non-thumb fingers, wrist, elbow
and shoulder. The following features of exosuit should be
implemented while ensuring the actuating effect.

1) ACTIVE CONTROL

Active control performance enables users to perform reha-
bilitation more actively and independently, improving their
level of participation and confidence, as well as rehabilitation
outcomes. And it directly affects operability and usability of
the exosuit.

2) MULTIPLE DEGREES OF FREEDOM
Multi-degree-of-freedom control can better simulate the
movements of human muscle and skeletal system, providing
more natural and smooth rehabilitation tasks. In addition,
utilizing the features of Bowden cables, we can transmit
power with a small volume and lightweight structure, which
enables us to replicate our method on multiple joints, achiev-
ing coordinated control with multiple degrees of freedom.

3) COMFORTABLE, PORTABLE, AND LOW-COST

Good usability and portability allowing users to easily use
it without the help of others and adapt to possible home-use
conditions. Low cost is also essential, which can ensure better
production and promotion of the exosuit. At the same time,
the exosuit should be as light and comfortable as clothing to
reduce the burden of using.

B. HARDWARE DESIGN AND MATERIALS

Fig. 1 shows the structure of the exosuit. We use nylon shirt
fabric as the basic carrier, and the exosuit is comprised of
three parts: strap module, Bowden cable actuation module
and electronics module. Strap module enables the exosuit to
closely conform to the user and provide some room for size
adjustments to accommodate individual differences. Unlike
rigid exoskeletons that can apply power directly to the joints,
the exosuit can only avoid deformation of the flexible part by
closely fitting the actuated joint, thus allowing the Bowden
cables to exert power more effectively on the joint. The strap
module is also used as a carrier to fix other structures, such as
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FIGURE 1. Hardware structure.

inner wires, outer casings and end connectors, which are all
fixed on the surface of the strap module. The inner wire and
outer casing are crucial parts of the Bowden cable actuation
module, extending and fixed along the direction of muscle
action on the strap module. The other components of the
Bowden cable actuation module are placed in a 3D-printed
box, including actuators, screw rods, and 3D-printed limit
rods. The electronics module integrates a CNC Shield V3
board, an Arduino Uno board, a 2800 mAh battery, and other
interfaces, which are also set in a 3D-printed box and placed
under the actuation module box.

1) 4-DOF BOWDEN CABLE ACTUATION MODULE

Compared with other actuation methods, Bowden cables are
small in size and light in weight, and can easily pass through
narrow and tortuous spaces while providing power transmis-
sion. By referencing the position and direction of the muscles,
we can set the position of the Bowden cable to determine the
location and angle of the actuation. The exosuit we developed
actuates four joints, including finger flexion, wrist flexion,
elbow flexion, and shoulder internal rotation. The specific
structure of Bowden cable actuation module is shown in
Fig. 2.

In real life, most movements rely on the coordinated work
of multiple joints. For example, grabbing desk items requires
the cooperation of shoulder joints, elbow joints, and finger
joints, while moving objects and drinking water require the
involvement of wrist joints. Due to the complexity of the
musculoskeletal system, it is very challenging to develop an
exosuit that can perform multiple complete movements. Cur-
rently, many exosuits are designed to primarily assist specific
joints, including the elbow, wrist, and finger joints. Most of
these exosuits typically support only 1-2 joints. However,
in the case of the elderly, their shoulder joint tends to experi-
ence a more rapid loss of strength compared to the other three
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FIGURE 2. Structure of Bowden cable actuation module.

joints [38]. In Gaponov’s cable-driven exosuit, the method for
actuating the shoulder joint is demonstrated by extending the
suspended fulcrum above the shoulder to increase the length
of the lever arm, generating sufficient power to assist shoulder
abduction. However, this sacrifices the stability of the exo-
suit and makes the structure much more complex [39]. This
reflects the current limitations in the development process of
exosuits, as it is often challenging to balance the actuating of
the shoulder joints with the portability of the exosuit. So we
have abandoned external rotation of the shoulder joint and
opted to support only the internal rotation of the shoulder joint
to ensure a simpler structure for the exosuit. Specifically, the
anchor point is set on the inner side of the right upper arm,
and the actuating direction is from right to left. The Bowden
cable passes front side of the nylon shirt, and this layout poses
a challenge to portability of wearing. Thus, we assembled a
3D-printed quick-release connector at the end of the inner
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FIGURE 3. Bowden cable structure for actuating the elbow joint.

wire, which users can fix on the inner upper arm anchor point
after wearing the exosuit.

Bowden cables consist of an outer casing and an inner
wire. The outer casing serves mainly to protect and guide
the inner wire, preventing interference from external friction
and ensuring dynamic efficiency. As shown in Fig. 3, outer
casings are fixed on the surface of the strap module along the
direction of muscle extension, forming a channel for power
transmission. The end of the outer casing extends the inner
wire, and the end of the inner wire is fixed to the anchor point
on the surface of the joint being pulled. The direction of the
power is towards the end of the outer casing. Fig. 3 shows
how the inner wire pulls the elbow joint into flexion.

2) WEIGHT OPTIMIZATION

The weight of the exosuit can directly affect the user’s
wearing burden. During the prototype development process,
we took into account the weight performance of each module.
This required us to balance weight and power when selecting
the actuator. The driving distance and power requirement also
dictated a certain motor specification to achieve the design
goals. We selected a stepper motor with a 125mm length
screw, with a single maximum driving force of 65N and
a weight of 230g. We chose inner wire and outer casing
products from Shimano (Shimano Ultimate, Smm, Sakai,
Osaka, Japan), which are excellent in weight and friction. For
the battery, we selected a 2800 mAh lithium battery. With a
lightweight design approach for each module, we achieved a
weight of 2374 grams for the exosuit.

C. CONTROL STRATEGY

SSVEP, as an external stimulus, presents challenges in pro-
moting the motivation of subjects. In addition, MI paradigm
poses challenges in providing sufficient number of com-
mands. Therefore, we combined the advantages of both to
provide more control commands and to realize active reha-
bilitation. The SSVEP and MI paradigms are used for the
respective purposes of selecting rehabilitation movements
and recognizing motor intentions.

1) HYBRID EEG-BASED CONTROL APPROACH
The hybrid EEG-based control approach is shown in Fig. 4,
which includes two steps: a selection step and a recognition
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step. We define these two steps as STEP1 and STEP2 respec-
tively. In STEPI, we ran a pre-designed flashing stimuli
program on the computer screen. The stimulus program
contains 7 images representing 7 different rehabilitation
movements, evenly distributed on the computer screen, flash-
ing at frequencies ranging from 10 to 16Hz. The 7 images and
their corresponding flashing frequencies are shown in Fig. 5.
These movements encompass four single-joint movements
and three multi-joint coordinated movements, involving the
finger, wrist, arm, elbow, moving a cup, lifting a dumbbell,
and drinking. After starting the program, subjects visually
select one of the seven predetermined movements by direct-
ing their gaze towards it. We collect SSVEP signals from
eight electrodes located in the occipital lobe, including POz,
PO3, PO4, PO5, PO6, Oz, O1, and O2, to obtain eight-
channel SSVEP signals.

MVMD and CCA were used for SSVEP EEG recogni-
tion. CCA and its improved algorithms have been widely
used for the recognition of SSVEP in BCI, demonstrating
excellent performance in terms of speed and accuracy [40],
[41]. Considering the advantages of multivariate modulated
oscillations and the multichannel nature of EEG signals,
we employ an MVMD-CCA algorithm [27] to enhance the
recognition accuracy of SSVEP.

In the hybrid EEG-based control approach, STEP2 is
focused on identifying right-hand MI to trigger the exo-
suit’s movement. This binary classification distinguishes
right-hand MI (positive class) from all other states, including
resting and left-hand MI, which are grouped as ‘non-right-
hand MI” (negative class). During the STEP2, the subject is
required to perform MI to output control commands. When
the subject performs right-hand MI, the recorded EEG signal
will be filtered by the FBCSP method and then undergoes fea-
ture extraction and classification by the CNN-LSTM model
we built. If the classification result is right-hand MI, we can
infer that the subject is in an active participation state in the
selected movement, and the control command will be sent to
the Bowden cable actuation module to actuate the movement
selected in STEPI1. In this process, CNN-LSTM model is
used to decode the spatial and temporal features in the MI
signal, and the proposed method can achieve satisfactory
results in subsequent experiments. Fig. 6 shows the complete
process of the hybrid EEG-based control approach.

2) ALGORITHM
In STEP1, the subject selects a movement by gazing at images
flashing at different frequencies. The collected EEG signals
are preprocessed to enhance quality through filtering and arti-
fact removal. The CCA algorithm calculates the correlation
between the EEG signals and reference signals generated by
visual stimuli at different frequencies.

We define f; as the target stimulus frequency and Y; as the
reference matrix containing the fundamental wave and har-
monics, which generate the SSVEP response. The reference
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STEP1 :This process requires the subject to select one of
seven rehabilitation movements by SSVEP paradigm
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FIGURE 4. Hybrid EEG-based control approach. (A) Selection step. The selection step uses the SSVEP paradigm to allow the subject to choose 1 of
7 movements. The result classified by MVMD-CCA will be sent to STEP2; (B) Recognition step. The movement selected in STEP1 is played on the computer
screen, and the subject performs MI, and then the collected EEG data will be sent to the CNN-LSTM model for classification, and then sent control

command to the Bowden cable actuation module.
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FIGURE 5. The corresponding relationship between the movement and its
flashing frequency, the movement marked with an asterisk means that
the movement is a multi-joint movement.

matrix is expressed as follows:
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where N, represents the harmonic order, f; represents the
sampling frequency, and M represents the number of sam-
pling points. For j multi-channel SSVEP signals X
(X1,%2,. .. Xj )T, the correlation coefficient o between X and
each stimulation frequency reference matrix Y; calculated by
CCA is shown in the following equation.
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The CCA algorithm seeks to find optimal linear transfor-
mations Wx and Wy to maximize the correlation coefficient
pi between the SSVEP signal X and each reference matrix
Y;. Each obtained correlation coefficient is used as a feature
dimension, resulting in a seven-dimensional feature vector
o1, P2, P3, P4, P5, P6, p7] for the seven stimulus targets.

The MVMD-CCA algorithm is proposed to enhance the
detection performance of the CCA algorithm for SSVEP.
MVMD reconstructs the input signal with minimal band-
width. Using the Hilbert transform for modeling, MVMD
decomposes the input data x(n) = [x1(n), x2(n), ..., xc(n)]
into K multivariate oscillations, as follows:

K
x(n) =" ux(n),

k=1

“

where uy(n) = [uk 1(n), ug 2(n), ..., ur c(n)] is the kth mul-
tivariate oscillation obtained by MVMD. The analytic signal
u,j(n) of uy(n) can be obtained using the Hilbert transform

(360 + ) w1 ()
(500 + ;) w2

k
uy

(n) (5)

(s + L) k. c()

By introducing MVMD, multichannel EEG signals are
processed more effectively, which enhances classification
accuracy. Meanwhile, the CCA algorithm directly performs
classification by comparing the values of correlation coeffi-
cient, resulting in fast classification speed. If the correlation
coefficient p; is below a set threshold 6, it is considered
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at the current moment.

that the subject’s state is inactive or the signal quality
is insufficient to ensure the accuracy of the classification
results, and thus the current round of classification is skipped.
For more details on the MVMD algorithm, refer to [27]
and [42].

In STEP2, we used CNN-LSTM model, which consists of
three stages: FBCSP, CNN and LSTM. As shown in Fig. 6,
we segmented the 4-second MI EEG signal into 4 windows,
each with a length of 1 second. Then, for each window,
we process the signal using FBCSP and CNN respectively to
obtain the spatial features of the EEG signal. Next, the spatial
features obtained from each window are used as time-series
inputs to the LSTM to extract the temporal features and
perform classification of the signal. The final output of the
model is the classification result of right-hand MI or non-
right-hand MI.

CSP is a classic algorithm that can be used for signal
recognition and analysis in the Event-Related Desynchroniz-
ation/Event-Related Synchronization (ERD/ERS). FBCSP is
an extended version of CSP, which adds more filters to extract
EEG signal features at different frequencies. In the FBCSP
algorithm we use, the Chebyshev type II filter is used to
decompose the EEG of 4 windows into 8 frequency bands,
including the frequency of 8-26 Hz, each filter bandwidth
is 4 Hz with a 2 Hz overlap, and the center frequencies of the
filters are 10 Hz, 12 Hz, 14 Hz, 16 Hz, 18 Hz, 20 Hz, 22 Hz,
and 24 Hz, respectively. Where Z, ; represents the feature of
FBCSP, XhT is the EEG signal of the bth bandpass filter in
the rth (1-4) time window, Wb = [WbT], WbT2, WbT3, WbT4]
represents the weights of the FBCSP filter. The matrix Cp J
is the covariance matrix of the bth bandpass filter signal for
the jth class of MI signal, and Ej; is the diagonal matrix
containing the eigenvalues of Cp ;.

Zps = W) Xp.1.
Cp jWp,j = (24:1 Cb,j) W iEp.j, (6)
for each class, we select the CSP features for the EEG signals
of the rth time window of the tth bandpass filter. The CSP
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feature is expressed as

diag(W] X, X[, Wp)
o =log —————20——, @)
(W Xp X[, W)

where W, represents the combining matrix of the first 2 and
last 2 columns of Wy ; (j = 1,2,3,4), diag(-) denotes the
diagonal elements of a matrix, tr(-) denotes the trace of a
matrix, fp ; is the output of FBCSP in the form of feature
vectors which are input into the CNN model. The size of the
feature vector is 8 x 8, and the CNN model incorporates 2 hid-
den layers as shown in Fig. 6. In each convolutional layer, the
input signal is convolved with a 3 x 3 filter kernel, and the
activation function R is used to transform linear operations
into non-linear ones. The output of each convolutional layer
is expressed as

hec; = R(conv(Wy, x1) + by), )

where conv represents the convolution operator, x; is the input
of the /-th hidden layer, W, is the weight matrix, b; is the
bias value, and hc; is the output of the / hidden layer. The
activation function R is chosen as the rectified linear unit
(RELU) function. The RELU function is defined as

RELU(q) = max(0, a). ©)

After two convolutional layers, a 2 x 2 max pooling layer
is used to reduce the size of the feature matrix. Through the
CNN, we obtain hc3 with a size of 2 x 2 x 16, which is then
reshaped to a 1 x 64 output, denoted as o, to fit the input
shape of the LSTM. Here, ¢ represents the 7-th time window.
The CNN structure is shown in Fig. 6.

The input signal to the LSTM is defined as x;; = oy,
(t =1,2,3,4). The main feature of the LSTM contains three
gates: the forget gate, external input gate, and output gate.
The forget gate decides what information to discard from the
previous unit and can be expressed as

fro =W [y, x40, (10)

where h; ;1 represents the output of the prior cell, x; ; is the
input to the hidden layer, / represents the /th hidden layer, Wlf
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and b’; present the weight matrix and bias value, and o is the
sigmoid function that determines the degree of forgetting of
information.

The structure of the external input gate is similar to that
of the forget gate, and is specifically designed to learn new
knowledge to replace forgotten information,

ir = (W} - [hi—1, %111 + b)), (11)
C; = tanh(Wf - [hy—1, x1.0] + bE), (12)

where W,i, Wy, b§ and b] are the weight matrix and bias
values, respectively. The LSTM unit C;; can be updated by
the following equation.

Cry=fis-Cri—1+irs - Crs. (13)

Finally, we obtain the output /;; by the output gate. The
output vector y of the entire neural network is equal to the
output of the LSTM, which is %3 4.

o1 = oW/ - [h—1,x1,,] + b)), (14)
hys = oy - tanh(Cy ;). (15)

Ill. EXPERIMENTS

To evaluate the performance of the hybrid EEG-based con-
trol approach and the exosuit in real-world environment,
we designed both an offline training experiment and an
online control experiment. In the offline training experiment,
we developed a CNN-LSTM model for each subject in the
experiment to classify the user’s motion intention in STEP2.
In the online control experiment, the subjects used our exo-
suit, and we evaluated its performance in the rehabilitation
tasks. In addition, we conducted usability assessment and
rehabilitation assessment. Usability assessment utilized the
SUS to access users’ experience and ease of use of the
exosuit. The rehabilitation assessment aimed to validate and
evaluate the effectiveness of the exosuit in multi-joint reha-
bilitation under long-term usage conditions.

Nine healthy graduate students (6 males and 3 females,
age:24 + 2, height:169 £+ 9 cm, weight:60 = 12 kg) and
three moderate stroke survivors (1 male and 2 females, age:62
=+ 3, height: 162 £+ 5 cm, weight:56 £+ 9 kg) participated
in our offline experiment, online experiment and usability
assessment. Additionally, four stroke survivors (2 males and
2 females, age:64 + 4, height:165 + 7 cm, weight:56 +
8 kg) with muscle weakness participated in our rehabilita-
tion assessment. Each subject signed informed consent forms
before the experiment, and the experiment was reviewed and
approved by the Ethics Committee of the Zhejiang University
of Technology.

A. OFFLINE TRAINING EXPERIMENT

The aim of the offline training experiment was to obtain the
CNN-LSTM model for each subject. Subjects wore an EEG
cap connected to the Biosemi acquisition device (ActiveTwo,
BioSemi instrumentation, the Netherlands) to collect 28-
channel data (FC5, FC3, FC1, FCz, FC2, FC4, FC6, C5, C3,
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FIGURE 7. Timing diagram of one trial.

Cl1,Cz,C2,C4,C6,CP5, CP3, CP1, CPz, CP2, CP4, CP6, P5,
P3,P1, Pz, P2, P4, P6). The reference electrode was placed at
the mastoid of the left ear, and the ground electrode consisted
of two independent electrodes, CMS and DRL. Conductive
gel was used to reduce the impedance between the electrodes
and the scalp to ensure that the impedance value of each
electrode was below 5kS2. The sampling rate of the device
was 1000 Hz.

The experiment required subjects to sit in front of a com-
puter screen with their hands naturally resting on the desk in
a relaxed state. They were asked to avoid blinking their eyes
and making unnecessary head or body movements as much
as possible. Fig. 7 shows the timing diagram of one trial.
Each subject was required to complete 240 trials, including
120 left-hand MI and 120 right-hand MI. Each trial lasted
for 8 seconds, starting with an acoustical warning tone at
second 2 and a 2-s ““4”’ sign presentation. Then, a cue (“‘ <"
or “— ") randomly appeared on the screen (seconds 4-8) to
indicate the left hand or right hand movement that the subject
needed to imagine. To avoid fatigue, there was a random
interval of 2-5 seconds between each trial and a 2-minute
rest period between every 30 trials. The 4-second MI EEG
(seconds 4-8) of each trial was used as an input sample for
the hybrid EEG-based control approach. Due to individual
differences in EEG signals, the ERD/ERS pattern was used
to identify whether the user is in the state of right-hand MI or
non-right-hand MI.

In the CNN-LSTM model training process, each subject’s
data were used to train their own model. All data were divided
into five parts randomly: three parts for the training set used
for model construction (60% of the data), one part for the
validation set used for optimal parameter selection (20% of
the data), and one part for the testing set used for model
evaluation (20% of the data). In addition, to compare with
other methods, we selected three methods, i.e., CNN [43],
LSTM [22], and CSP+SVM [44], to train the CNN-LSTM
model on the same training set and then test these models
using the same testing set.

B. ONLINE CONTROL EXPERIMENT

The aim of the online control experiment was to evaluate the
performance of hybrid EEG-based control approach and the
exosuit, as shown in Fig. 8. Subjects were asked to sit
in a relaxed posture on a chair, facing a computer screen,
while wearing the EEG cap and the exosuit. The subject’s
task was to complete the rehabilitation training pre-set by
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FIGURE 8. Online control experimental scenario.

us, which was reminded in the form of speech. During the
experiment, one of the seven movements would randomly
appear, with each movement appearing nine times. Each
subject needed to complete a total of 63 movements. After
completing every three movements, there was a 10-second
rest interval. For the three multi-joint movements, different
joints are actuated in distinct sequences. In the drinking water
movement, the sequence starts with the fingers, followed
by the wrist, with the elbow and shoulder moving simul-
taneously. In the moving a cup movement, the fingers are
actuated first, followed by the simultaneous movement of the
wrist and shoulder. In the dumbbell lifting movement, the
fingers are actuated first, followed by the wrist, and finally
the elbow.

The flashing stimuli program guided subjects in the exper-
iment. Firstly, it verbally announced a movement, and then
the subjects selected the corresponding movement from
7 images. Once the selection was made by STEP1, the sub-
jects performed right-hand M1, and the collected EEG signals
were classified by the CNN-LSTM model. If the classifi-
cation result was right-hand MI, the control signal was be
transmitted to the actuation module.

C. USABILITY AND REHABILITATION ASSESSMENTS

1) USABILITY ASSESSMENT

Twelve participants (nine healthy graduate students and three
moderate stroke survivors) took part in our usability assess-
ment. They were invited to assess the ease of use and their
user experience after using the exosuit we developed. We pre-
pared a SUS questionnaire, comprising 5 positive statements
and 5 negative statements. To better tailor the original SUS
to our work, we have replaced “system” with ‘“‘exosuit”
from the original work, and adjusted the themes of Q7 and
Q8 to “convenience” and ‘“comfort”. Each statement has a
five-point scale, ranging from strongly disagree to strongly
agree [50]. Odd-numbered questions Q1, Q3, Q5, Q7, and Q9
are positive, while the rest are negative. For odd-numbered
questions, the score is the scale position minus 1. For even-
numbered questions, the score is 5 minus the scale position.
Multiply the sum of the scores by 2.5 to obtain the overall
value of SUS. The SUS score ranges from 0 to 100.
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2) REHABILITATION ASSESSMENT

To verify the multi-joint rehabilitative effectiveness of the
exosuit, four stroke survivors with muscle weakness par-
ticipated in our rehabilitation. They underwent a total of
35 days of rehabilitation training using our exosuit under
guidance. In order to reduce participant fatigue and mini-
mize the interference of data collection procedures with the
rehabilitation process, and considering that we are capturing
long-term trends, data were recorded every other day, totaling
18 days of data. Throughout the rehabilitation training, the
subjects did not receive any other rehabilitation treatments.
Each day of rehabilitation training, excluding preparation
time, lasted approximately 15 minutes. The training included
flexion movements of four joints involving muscles such as
the pectoralis major, biceps brachii, flexor digitorum super-
ficialis, and flexor carpi ulnaris muscle. If data collection
was needed for the day, EMG sensors were attached to the
aforementioned muscles during the flexion process to record
EMG signals. Following the rehabilitation training, approxi-
mately 10 minutes of joint ROM recording (about 2.5 minutes
per joint) was conducted. We use goniometers of various
specifications to measure the ROM.

With the participants’ consent, we used marking ink to
label the electrode positions on the skin surface. This ink is
harmless to the human body and can last for several days.
Once the markings disappeared, they were reapplied to the
original positions to ensure consistency of sensor placement.

IV. RESULTS AND DISCUSSIONS

A. CNN-LSTM PUBLIC DATASET RESULTS

To verify the effectiveness of our CNN-LSTM model,
we firstly applied it to a public dataset. The dataset we
used is the BCI Competition IV 2a dataset, where 9 subjects
performed MI tasks of left hand, right hand, both feet, and
tongue, with two sessions on different days recorded for each
subject. Each session consisted of 6 runs, each comprising
48 trials (12 for each of the four possible classes), with
short breaks between runs, yielding a total of 288 trials per
session. For all 9 subjects, the average classification accu-
racy of CNN-LSTM model was 80.11%. Table 1 shows the
comparison with other algorithms, which is a relatively good
result. Our model demonstrated a certain advantage in terms
of accuracy, and we believe that the CNN-LSTM cascaded
model can indeed perform better in processing data with
features such as time series and spatial information. However,
to evaluate the effectiveness of the exosuit in practical use,
online experiments are needed. Before that, our proposed
hybrid EEG-based control approach requires offline training
experiments to collect the EEG data of each subject and
establish their own model.

B. RESULTS OF OFFLINE EXPERIMENT

1) ERD/ERS ANALYSIS

Fig. 9 shows the time course of ERD/ERS and EEG topogra-
phies. For left-hand and right-hand MI, the EEG power in
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FIGURE 9. The time course of ERD/ERS from second 0 to 8 and EEG topographies from second 5 to 7 for left-hand and right-hand Ml across all trials and

all subjects.

TABLE 1. Accuracies of CNN-LSTM and other methods on BCl Competition IV Dataset 2a.

Methods Subject Avg.
A0l A02 A03 A04 A05 A06 A07 A08 A09

Gouy-Pailler et al. [45] 0.66 0.42 0.77 0.51 0.50 0.21 0.30 0.69 0.46 0.50
Ang et al. [46] 0.68 0.42 0.75 0.48 0.40 0.27 0.77 0.75 0.61 0.57
LDA 0.76 0.41 0.83 0.56 0.35 0.26 0.79 0.80 0.72 0.61
Vidaurre et al. [47] 0.76 0.38 0.87 0.60 0.46 0.34 0.77 0.76 0.74 0.63
Ai et al. [48] 0.77 0.54 0.84 0.70 0.63 0.61 0.77 0.84 0.86 0.73
Sakhavi et al. [33] 0.88 0.65 0.90 0.67 0.63 0.45 0.90 0.83 0.80 0.74
Fang et al. [49] 0.86 0.65 0.90 0.64 0.76 0.52 0.91 0.89 0.87 0.78
CNN-LSTM 0.89 0.62 0.91 0.73 0.79 0.66 0.91 0.85 0.85 0.80

the 8-12 Hz frequency band at C3, Cz, and C4 was averaged W Stroke survivor Healthy student

across all trials and subjects and displayed as relative percent-

age of EEG power compared to a reference period. . v
For left-hand MI, a significant ERD (5-7s) followed by § 6

an ERS (7-8s) was observed over the contralateral side C4. 2 w

Meanwhile, a weaker ERS (5-7s) was observed over the @

ipsilateral side C3. For right-hand MI, an ERD and a weaker ”

ERS were observed over the contralateral side C3, with a 0

Pl P2 P3 P4 Ps P6 P7 P8 P9 PIO PIl1 PI2

weaker ERD observed at Cz. EEG topographies of ERD/ERS
patterns were further analyzed from 5 to 7 seconds for all tri-
als and subjects, where blue indicates ERD (power decrease)
and red indicates ERS (power increase).

2) MODEL CLASSIFICATION RESULTS

Table 3 presents the MI classification accuracies of the
CNN-LSTM model for 8 subjects. We also established mod-
els using CNN, LSTM, and CSP+SVM for each subject
for comparison with our CNN-LSTM model. The average
classification accuracy of CNN-LSTM model (90.07% =+
2.23%) was 4.14%, 7.56%, and 10.06% higher than that
of CNN (85.93% =+ 2.14%), LSTM (82.51% =+ 1.16%),
and CSP+SVM (80.01% =+ 1.92%), indicating better MI
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FIGURE 10. SUS scores of three stroke survivors and nine healthy
students.

classification performance of the CNN-LSTM model. A 4
(CNN-LSTM, CNN, LSTM, and CSP4+-SVM) x 2 (left hand
MI and right hand MI) repeated measures ANOVA was
applied to evaluate the interaction of recognition method x
MI class and the main effect of recognition method and MI
class on the classification performance. A confidence level of
95% was selected. As show in Table 2, the results of variance
analysis indicated no significant interaction effect between
recognition method and MI class (F = 0.002, p > 0.05);
recognition method had a significant effect on classification
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FIGURE 11. Records of range of motion and average EMG amplitude during 35-day rehabilitation training across all subjects.

TABLE 2. ANOVA results for recognition methods and Ml classes.

Comparison F-value  p-value
Recognition Method x MI Class Interaction 0.002 >0.05
Recognition Method Main Effect 98.583 <0.05
MI Class Main Effect 0.003 >0.05

TABLE 3. Classification accuracies of four methods on the same testing
set for each subject.

Subject Acc (%)
CNN-LSTM CNN LSTM  CSP+SVM
1 86.64 86.61 84.12 78.80
2 90.14 85.02 83.46 83.04
3 87.43 86.11 82.61 83.68
4 88.93 84.61 81.75 79.10
5 91.28 88.70 81.02 79.23
6 89.29 82.81 84.20 81.16
7 87.79 88.48 83.31 83.90
8 92.87 85.57 80.63 80.12
9 93.17 90.12 82.06 78.48
10 89.92 84.16 83.53 81.26
11 89.45 85.62 81.40 82.17
12 93.88 83.30 82.04 78.80

Average+std 90.07+2.23 85.93+2.14 82.51+1.16 80.01%1.92

performance (F = 98.583, p < 0.05), while MI class had no
statistically significant effect on classification performance
(F =0.003, p > 0.05).

C. RESULTS OF ONLINE CONTROL EXPERIMENT

The results of task success rates for each subject in the
online control experiment are shown in Table 4. Task success
rate is defined as the percentage of successful execution
of the selected movement by the subject, meaning it was
successfully recognized in both STEP 1 and STEP 2. The
average success rate for individual rehabilitation task was
85.26%=+1.95%.

D. RESULTS OF ASSESSMENTS

1) USABILITY ASSESSMENT

Fig. 10 shows the SUS scores for all participants. P1, P2 and
P3 represent stroke survivors, while the rest of the participants
are healthy students. The average score of all participants
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TABLE 4. SSVEP accuracies, Ml accuracies, and overall success rate of
hybrid EEG-based control approach.

Subject Ace (%) Task Success Rate
SSVEP MI
1 96.83 87.30 84.53
2 95.24 85.71 81.63
3 93.65 87.30 81.76
4 96.83 88.89 86.07
5 93.65 90.48 84.73
6 96.83 88.89 86.07
7 95.24 92.06 87.68
8 93.65 90.48 84.73
9 98.41 87.30 85.91
10 96.83 90.48 87.61
11 95.24 92.06 87.68
12 93.65 90.48 84.73
Averagetstd 95.50+1.57 89.29+1.96 85.26+1.95

reached 81.25 £ 5.82 (Cronbach’s o = 0.64), indicating a
favorable level of usability.

2) REHABILITATION ASSESSMENT

An increase in the average EMG amplitude indicates a
stronger electrical signal generated during muscle contrac-
tion, predicting an increase in muscle strength and contraction
ability. Therefore, the average EMG amplitude serves as
one of our reference indicators for evaluating rehabilitation
effectiveness. During the muscle rehabilitation process, ROM
of the joints also increases correspondingly with the increase
in muscle strength and flexibility. By regularly monitoring
changes in participants’ ROM, we can assess their muscle
rehabilitation progress.

According on our tracking records, the average rehabili-
tation effectiveness of the subjects is shown in Fig. 11. The
4 joints involved in rehabilitation exhibited an average ROM
increase of 10.33%. The average EMG amplitude of the
4 main muscles involved in the movement of these 4 joints
increased by 11.35%. We observed a decline in user attention
and motivation during the long-term rehabilitation process.
Subjects had reported that they needed to concentrate in order
to continue with the rehabilitation process. This led us to
consider adding more engaging content to the rehabilitation
process to help maintain subjects’ motivation.
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V. CONCLUSION
In this paper, we developed a 4-DOF exosuit for upper-limb
rehabilitation that aimed at restoring movement ability in
individuals with movement disorders due to stroke. The
exosuit features active control performance, four-degree-of-
freedom, portability, and lightweight. This active control is
realized through a hybrid EEG-based control approach, inte-
grating the SSVEP and MI paradigms. The hybrid approach
leverages MVMD-CCA for SSVEP EEG recognition and a
CNN-LSTM model for MI EEG recognition, demonstrating
high classification accuracy. Another important goal of the
hybrid EEG-based control approach is to facilitate an active,
repetitive, and moderately intense rehabilitation process.
As mentioned in the introduction, leveraging neuroplastic
principles to develop rehabilitation methods based on active-
ness, repetition, and specificity holds significant potential,
although relevant confirmatory research is still underway.
The SUS scores demonstrate the favorable usability of the
exosuit, with the majority of participants able to immediately
engage in rehabilitation training. We recorded users’ EMG
amplitude and joint ROM during the 35-day rehabilitation
training. The data we recorded showed an increase in both
the average EMG amplitude and the average ROM, implying
improvements in muscle strength and flexibility. In the future,
we aim to further enhance the lightweight and reliability
of the exosuit, and extend the exosuit to additional joints.
Additionally, our goal is to optimize the MI algorithm to
improve classification performance and enable multiple com-
mand outputs through MI.
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