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Abstract: The molten hydroxide electrolyte Direct Carbon Fuel Cell (MH-DCFC) is a promising
type of DCFC due to its advantages, such as high ionic conductivity, higher electrochemical activity
of carbon (higher anodic oxidation rate and lower overpotentials) and high efficiency of carbon
oxidation due to lower operating temperature (the dominant product of carbon oxidation is CO2

vs. CO). Accordingly, the MH-DCFC can be operated at lower temperatures (roughly 673–873 K),
and thus cheaper materials can be used to manufacture the cell. Nonetheless, MH-DCFCs are still
under development due to several fundamental and technological challenges such as corrosion
problems. Selection of materials and development of a structure that ensures adequate availability
and durability of the cell is crucial for the optimization of the MH-DCFC performance and the further
development of that technology. This article presents the operating characteristics of the MH-DCFC
made of different construction materials, such as carbon steel, stainless steel, and nickel and its
alloys. Nickel and its alloys have proven to be the best materials for the construction of individual
elements of the fuel cell. Inconel alloy 600 was a good catalytic material for cathodes with good
corrosion resistance.

Keywords: direct carbon fuel cell; molten hydroxide electrolyte; corrosion; carbon steel; stainless
steel; nickel

1. Introduction

The direct carbon fuel cell (DCFC) is a power generation device converting the chemical energy
of carbon directly into electricity by electrochemical oxidation of the fuel. The basic structure of
DCFC is similar to other cell types, such as Molten Carbonate Fuel Cell (MCFC) or Solid Oxide Fuel
Cell (SOFC). However, in the DCFC, solid carbonaceous fuels (e.g., hard coals, brown coals, charred
biomass, active carbons, carbon black, graphite, coke, etc.) are used and directly oxidized at the anode
surface, and no gaseous fuels (e.g., H2 or CO) are required, as in the case of MCFC or SOFC.

Compared to other technologies, the solid carbon-fueled fuel cells have several unique features
and advantages [1], offering higher thermodynamic efficiency and lower emission of carbon dioxide per
unit of the generated electricity. Furthermore, the fuel for the DCFC does not require any sophisticated
preparation, since the solid carbon can be easily obtained from various resources [1,2] such as coal,
petroleum coke, charred biomass (e.g., grass, woods, nut shells, corn husks), or even organic garbage.
There are four basic types of direct carbon fuel cells under development, which generally differ with
respect to electrolyte types, which can be either molten carbonates [3,4], solid oxygen ion conducting
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ceramics [5–8], or aqueous [9] or molten hydroxides [10]. Composite electrolytes (so-called hybrid
electrolytes) are also widely used in DCFC prototypes [11–13].

The molten hydroxide Direct Carbon Fuel Cell (MH-DCFC) is considered to be the most promising
type of DCFC, due to its advantages [10], such as high ionic conductivity, the higher electrochemical
activity of carbon (higher anodic oxidation rate and lower overpotentials) and higher efficiency of
carbon oxidation due to the lower operating temperature (the dominant product of carbon oxidation is
CO2 vs. CO). Accordingly, the MH-DCFC can be operated at lower temperatures (roughly 673–873 K),
and thus cheaper materials can be used to manufacture the cell components.

MH-DCFCs are still under development, due to several fundamental and technological challenges,
such as improvement of anode design in order to increase solid fuel reactive sites and reduce the cell
cost, as well as maintaining cell operation at low temperatures, investigating carbon fuel characteristics
and the required level of fuel pre-processing to maximize reactivity, providing a method for supplying
solid carbonaceous fuels to the electrode/electrolyte interface, understanding the long-term effects
of residual impurities in carbon-based fuels, technology scale-up, etc. Due to the strong corrosive
behavior of the molten hydroxide electrolyte, the selection of materials resistant to that environment is
also very important.

The corrosion processes of the cell elements accompanying the processes taking place on the
MH-DCFC electrodes reduce the main electrical parameters, such as current and power density
(both activation overpotential and ohmic polarization are increased). Moreover, substances generated
as a result of these corrosive processes may contaminate the electrolyte and the surface of the carbon
particles, which may cause an undesirable reduction in the redox reactions rate, resulting in an increase
in the activation overpotential and concentration polarization.

The chemical reactions in the molten hydroxides cause corrosive processes in metals and alloys
that are in contact with the electrolyte. From the point of view of the electrochemical corrosion, it is
important to determine the durability of metals and their alloys due to the oxidizing properties of the
corrosive environment. In the case of molten hydroxides, the corrosive effect is primarily determined
by the type of hydroxide (NaOH, KOH, LiOH), temperature and the ability to dissolve oxygen.

Table 1 summarizes the corrosion rates of selected, generally available materials in a molten
NaOH environment. The results relate to corrosion tests carried out at the operating temperature of the
MH-DCFC (673 ÷ 773 K) and higher, i.e., from 853 K to 973 K. The tests were carried out by immersing
the samples in molten hydroxide, and then measuring their weight changes over time. The corrosion
rate was determined in mm year−1.

Table 1. Corrosion rates of selected materials in molten NaOH in mm year−1.

Material
Temperature [K] Time

[h] Reference
673 693 773 783 853 873 953 973

Ni-201 0.023 - 0.033 - 0.06 - 0.96 - - [14]

Nickel - - 0.195 - - - - - 288 [14]

Copper 13.4 - 17.2 - - - - - 288 [15]

Inconel - 0.104 0.363 - - 1.06 - - 288 [15]

Monel 400 - - 0.297 - - 1.31 - - 288 [15]

Monel 500 - 0.087 0.254 - - 0.899 - 5.06 288 [15]

Monel 600 0.028 - 0.06 - 0.13 - 1.69 - - [14]

301 SS 0.043 - 0.08 - 0.26 - 1.03 - - [14]

Carbon steel 5.25 - 3.23 - - 4.15 - - 288 [15]

Ni-Fe alloy - - - 1.8 - - - - 336 [14]

Austenitic steel, type 1 - - - 15.9 - - - - 336 [14]

Austenitic steel, type 2 - - - 24.2 - - - - 336 [14]

Ductile austenitic steel, type 2 - - - 11.8 - - - - 336 [14]

Austenitic steel, type 3 - - - 13.6 - - - - 336 [14]

Forged nickel - - - 0.23 - - - - 336 [16]
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Analysis of the data contained in Table 1 indicates that nickel and its alloys—Monel 600, Monel
500, Inconel—show the highest corrosion resistance. Nickel-based alloys (3% Ni-Fe alloy) are also
characterized by moderate corrosion resistance. It can also be seen that the corrosion rate increases as
the temperature increases. Under the examined conditions, 301SS steel turned out to be attractive,
both in economic terms as well as in terms of corrosion resistance. Austenitic steels, despite expensive
alloying additions, do not show satisfactory corrosion resistance in molten NaOH. Corrosion rates
comparable to those of austenitic steels were obtained for copper. At a temperature of approximately
773 K, the corrosion rate of copper was 17.2 mm year−1, and the corrosion rate of austenitic steel ranged
from 11.8 to 24.4 mm year−1.

Considering the data summarized in Table 1, it appears that a number of construction materials
can be used to manufacture the elements of direct carbon fuel cells with anode, cathode, electrolyte
container, which are used in molten hydroxide electrolyte. Metals and alloys commonly used in
MH-DCFC include carbon steel, stainless steel, nickel and high-nickel alloys [10]. All of these alloys
have been selected, among others, to investigate directly in order to determine the material most
suitable for target cell components construction in MH-DCFC [17].

Carbon steel (iron) is the predominant construction material used in the first generations of
MH-DCFC [18–20]; therefore, it was used by the authors to build the first prototype of the fuel cell [17].

Austenitic stainless steel (SS) 300 series (i.e., SS 304L, SS 316L) was chosen to build the second
prototype of MH-DCFC. 304 and 316 stainless steels are among the most commonly used types of
stainless-steel materials in many applications. Type 304L and 316L SS are extra low-carbon variations of
type 304 and 316 SS (e.g., max. carbon content for 304 SS is 0.08% and for the 304L SS max. carbon level
is 0.030%). All other element ranges are essentially the same (the nickel range for 304 is 8.00–10.50%,
and for 304L it is 8.00–12.00%). The lower carbon SS grades (304L and 316L) overcome the risk of
intercrystalline corrosion. This can take place if the steel is held in a temperature range of 723 K to
1123 K for periods of several minutes, depending on the temperature, and is subsequently exposed
to aggressive corrosive environments. Corrosion then takes place along the grain boundaries. If the
carbon content is below 0.030%, then this intercrystalline corrosion does not take place following
exposure to such temperatures. In general, 316L alloy is more corrosion resistant than type 304 stainless
steels [21].

The third MH-DCFC prototype was manufactured from nickel and high-nickel alloys.
Commercially pure nickel grades (Nickel 200 and 201) are used in a wide range of fields, such as in the
aerospace and chemical industries (including hydroxide services) due to their high corrosion resistance.
Nickel 201 is better suited in situations where high temperatures are applied, due to its lower carbon
content [22,23]. However, nickel is rapidly oxidized in situ to NiO, which is a p-type semiconductor.
The high corrosion resistance of Ni-based alloy Inconel 600 in molten alkaline solution of NaOH was
attributed by Tran et al. [24] to the passive film of Ni–Cr spinel-type oxide which protects and prevents
the leaching of Cr as chromite and chromate from the alloy.

The present work illustrates the construction and performance of a DCFC with hydroxide
electrolyte. Three generations of MH-DCFC prototypes were built and tested in order to determine the
influence of the molten hydroxides environment on the cell performance characteristics and durability
of used materials such as carbon steel, stainless steels or nickel and its alloys.

2. Materials and Methods

2.1. MH-DCFCs Designs and Construction Details

2.1.1. Model I

St3SU type carbon steel was selected for the construction of Model I of the MH-DCFC.
The descriptions of the operation of one of the first carbon fuel cell prototypes, constructed in
1896 by Jacques, show that carbon steel is a cheap and readily available material showing good
corrosion resistance in molten hydroxides at a temperature of 723 K [19,20]. Zecevic et al. [25] also
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confirmed the possibility of using carbon steel (additionally doped with titanium) for the construction
of this fuel cell type. The addition of 1–2% Ti to carbon steel creates a layer of titanium oxide on
the surface of the material, which is a degenerate semiconductor characterized by stable electrical
conductivity and good corrosion resistance. This material also has very good catalytic properties
towards oxygen, which allows it to be used in the construction of the cell’s cathode.

Model I of MH-DCFC was constructed based on the prototype constructed in 1896 by Jacques,
but the distinguishing feature of Model I was the possibility of using granulated carbon fuel in the
anode (Jacques used a carbon rod as a fuel in his prototype). During the experiments, the influence
of molten alkaline environment on the St3SU type carbon steel was determined, whose elemental
composition is summarized in Table 2.

Table 2. Composition of St3SU carbon steel used in the construction of Model I MH-DCFC (wt.%).

C Ni Fe C Mn S Si P

<0.22 0.3 Bal. <0.24 <1.1 <0.05 0.10–0.35 <0.05

The design scheme and a photo of Model I MH-DCFC are shown in Figure 1. The main part of the
cell was a crucible (pot) made of carbon steel, in which molten electrolyte (NaOH) was contained. The
steel pot also acted as the cell cathode. Electrons returning from the external circuit were transferred to
the cathode through a special holder mounted on the outer part of the crucible. Air from a compressor
(necessary for the electrochemical reaction) was distributed on the cathode surface by special pipe
perforated at the bottom (see Figure 2). To maintain the electrolyte in the liquid phase the crucible was
heated by an electric heater. Reduced heat loss was achieved by securing a prototype using mineral
wool and sealing everything off in a ceramic casing.
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The biochar particles were placed in a special “separator” in the form of a “basket” made of
carbon steel. The side area of the “separator” was the basis for calculating the power and current
densities. The use of such a structure made it possible to directly receive electrons from the biochar
grains without using an additional current collector, adjusting the shape to the needs and prevent
the fuel particles from entering into the electrolyte (at the same time allowing the electrolyte to freely
penetrate into and out of the “separator”).

2.1.2. Model II

Austenitic stainless steel AISI 300 series (304L, 316L, 316Ti), with increased corrosion resistance,
was chosen to construct the second prototype of MH-DCFC, hereinafter referred to as “Model II”.

The alloy steels were covered with a layer of oxides consisting of iron and nickel—FeO, NiO,
Fe2O3—and a smaller amount of mixed oxides such as NiCr2O4 after exposure to molten NaOH at a
temperature of 673 K. The oxide layer on the steel surface, apart from metal oxides, is additionally
formed by compounds such as Fe (OH)3 and FeOOH. The corrosion rate of alloy steels in molten
NaOH significantly decreases in the temperature range 773–873 K. The protective properties of the
oxide coating formed on the steel surface increase probably as a result of enriching it with NiO, Cr3O4,
Cr2O5, CrO compounds. The aforementioned oxides form a layer of high density, evenly adhering to
the surface and showing high resistance to chemical corrosion [15]. Based on literature reports [25]
on the increased corrosion resistance of titanium doped steels, an alloy steel containing about 0.7%
titanium (AISI 316Ti) was also used to build the cell cathode. The composition of the individual steels
is described in Table 3.

Table 3. Composition of stainless steels used in the construction of Model II MH-DCFC (wt.%).

Material
Elemental Composition (wt.%)

Ni Cr Fe C Mn S Si P Other

AISI 304L 8–12 18–20 Bal. <0.03 <2.0 <0.03 <1.0 <0.045 -

AISI 316L 10–14 16–18 Bal. <0.03 <2.0 <0.03 <1.0 <0.045 Mo = 2.0–3.0

AISI 316Ti 10–14 16–18 Bal. <0.08 <2.0 <0.03 <0.75 <0.045 Mo = 2.0–3.0
Ti = 0.7

The scheme and photograph of the MH-DCFC referred as Model II is shown in Figure 3. All the
cell steel parts were manufactured from a corrosion-resistant stainless steel. The main electrolyte
container was manufactured from two types of materials: Nickel 201 (in the lower part) and AISI 304L
alloy (in the upper part) in order to provide sufficient corrosion resistance to liquid sodium hydroxide.
The container was covered with ceramic band heaters providing heat for melting the electrolyte and
maintaining the desired temperature level. The anode was made of AISI 304L steel and formed as by
an especially designed tube with a diameter of 25 mm (see Figure 4a). Three windows were cut in
the side of the anode tube. These windows on the outside were covered with a 50 µm mesh made of
AISI 304L alloy steel, which was fixed to tube with two rings. The total geometric area of the mesh
within the windows was the basis for calculating the current and power densities generated from the
cell. The cathode, shown in Figure 4b, was manufactured from sintered stainless steels AISI 316Ti
(bottom sparger, average pore size of 20 micrometers) and AISI 316L (main air pipe, outer diameter of
10 mm and wall thickness of 2 mm). Anode and cathode were mounted in the lid of the cell (the cathode
is electrically isolated from the anode with a ceramic plug). Current collectors in the form of copper
plates and wires were attached to the anode and cathode to assemble the external circuit.
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2.1.3. Model III

The last prototype, called “Model III”, was made of nickel and its alloys, and was characterized
by the highest corrosion resistance. The analysis of the data contained in Table 1 shows that nickel and
nickel alloys are characterized by very high corrosion resistance in molten NaOH at a temperature of
773 K. As a result of the contact of nickel with molten NaOH, NiO, Ni(OH)2 and γ-NiOOH phases
were formed. The thickness of the oxide layer formed on the nickel surface depends on the conditions
of diffusion of nickel ions through the oxide film and the rate of reaction between the nickel ions and
the molten electrolyte. As a result of the described processes, compounds were formed, including,
among others, Na2NiO2 and Na5NiO4. Due to the use of nickel, the forming oxide phases can slow
down the electrochemical reactions occurs in the cell. Nickel oxidation changes the conductivity of
the material: nickel is ferromagnetic, nickel oxide (NiO)-paramagnetic. Nickel alloys usually contain
45–65% nickel and are widely used in many industries due to their high corrosion resistance.

Nickel is one of the most resistant materials used to make individual components of the tested cell.
Nickel is oxidized to NiO as a result of the oxidizing action of oxygen at high temperature. The thin,
continuous layer of this oxide formed on the metal surface makes nickel resistant to the corrosive effects
of aggressive environments. However, NiO is not a good electron conductor (stoichiometrically pure
NiO has a specific electrical conductivity of only σ = 10−14 (Ω·cm)−1 [26]), so its electron conductivity
must be increased to be a good current collector on the anode and cathode side. This can be achieved
by doping the NiO semiconductor structure with cations of different valencies from that of the starting
material. Doping the NiO oxide with Li+ ions causes the transition of Ni2+ ions into Ni3+ ions in an
amount equivalent to the introduced Li+, which increases the number of gaps in the crystal lattice,
and thus the electrical conductivity. The specific conductivity of the passive layer in the form of
NiO oxide is 10−4 (Ω·cm)−1 in 1000 K, while after the doping process the conductivity increases to
10−1 (Ω·cm)−1 [27].

There are several methods for introducing lithium cations into the NiO layer. The most frequently
used methods include electro-hydrothermal lithiation [28,29] and oxidation-lithiation used for the
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preparation of cathodes for MCFC cells carried out during the cell’s operation (in situ) or outside the
cell (ex situ) [27,30]. In MCFC cells, due to the type of electrolyte, the Li+ ion donor (in situ method) is
lithium carbonate (Li2CO3). In addition to lithium carbonate, the source of Li+ ions can also be lithium
hydroxide (LiOH), lithium oxide (Li2O), lithium nitrate (LiNO3), or lithium chloride (LiCl).

A design scheme and photo of the Model III MH-DCFC are shown in Figure 5. This model
was used to assess the effect of molten hydroxide electrolyte on the nickel and its alloys used for its
construction. The types and elemental compositions of nickel alloys are presented in Table 4. Moreover,
the study was carried out to determine the effect of an aggressive alkaline environment on the LiNiO2

coating prepared in the oxidation-lithiation process, which was responsible for improving the electrical
conductivity of NiO formed under the cell’s operating conditions.
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Figure 5. Design scheme (a) and photograph (b) of experimental Model III of MH-DCFC, made of
nickel and high-nickel alloys.

Table 4. Composition of nickel alloys used in the construction of Model III MH-DCFC (wt.%).

Material
Elemental Composition (wt.%)

Ni Cr Fe C Mn S Si P Other

Nickel 201 Min. 99 - <0.4 <0.02 <0.35 <0.01 <0.2 - Ti < 0.1
Cu < 0.25

Inconel 600 Min. 72 14.0–17.0 6.0–10.0 <0.15 <1.0 <0.015 <0.5 - Cu < 0.5

The main cell container was manufactured from the Nickel 201. The cathode of Model III (Figure 6)
was a tube made of Inconel 600 alloy with an outer diameter of 42 mm (wall thickness 3 mm) and a
length of 135 mm, welded from the bottom to the cell cover. The air was supplied to the lower part of
the cathode by means of a pipe (outer diameter 6 mm and wall thickness 1 mm) placed centrally inside
the main cathode tube. Holes with a diameter of 1 mm, drilled around the circumference of the cathode
main tube, were used to distribute the air along the inside surface of the cathode tube. The anode
(Figure 7) was made of a Nickel 201 alloy tube with an outer diameter of 19.1 mm and a wall thickness
of 1.65 mm. In the side part of the anode, 74 holes, each 6 mm in diameter, were drilled, through which
the electrolyte could flow into the anode chamber. Inside the tube, a coiled nickel mesh (mesh size
63 µm) was placed, the task of which was to stop fuel particles from entering into the electrolyte and
to receive electrons generated in the electrochemical oxidation of carbon. For the calculation of the
current and power densities, the geometric side surface of the nickel mesh was taken into account.
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Figure 7. View of the Model III anode construction before the lithiation process.

The components of the Model III MH-DCFC—in particular, the anode and cathode materials—were
subjected to simultaneous oxidation-lithiation process. Doping cation-defective p-type nickel oxide
(NiO) with lower valence cations (Li+) makes them highly conductive, which is a requirement for
high-performance cathode and anode materials. The lithiated NiO was made by in situ oxidizing and
lithium-doping Ni-base cathode and anode nickel alloys. The source of Li+ was lithium hydroxide
monohydrate (LiOH·H2O; melting point: 743 K). Shortly after the salt had been melted, air was
introduced into the system (0.2 dm3 min−1) in order to accelerate the oxidation of nickel to NiO,
and then lithium ions could be incorporated into the inner surface of NiO film. The process was
carried out at 873 K for 24 h. Afterwards, anode and cathode materials were slowly cooled to room
temperature, and then were washed several times in distilled water and HCl solution (0.05 M) to
remove and neutralize the residue of lithium hydroxide. After washing, the cell components were
dried in a convection oven for 2 h. A depiction of the anode and cathode elements after the lithiation
process is shown in Figure 8.
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Additionally, in order to determine the influence of the molten hydroxide environment on
the durability of the produced LiNiO2 layer, a special ring was placed inside the cathode chamber
(see Figure 9). This ring was weighed before and after each test, and then the fragment was cut off,
and XRD analysis of the surface was performed in order to determine whether, during the lithiation
process, lithium inclusions were formed in the NiO structure in the form of LiNiO2 compounds.
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Figure 9. Depiction of the Inconel 600 alloy ring: before (left) and after the oxidation-lithiation
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2.2. XRD and Microstructural Analysis

Selected materials used for construction of the cell were subjected to X-ray Diffraction (XRD). XRD
is a non-destructive technique for material analysis, including for semiconductors that include passive
layers formed when exposed to molten hydroxides of cell surface materials. X-ray diffractometry
is a technique used in crystallography in which a diffraction image, generated by X-ray diffraction
through a spatial network of atoms in a crystal, is recorded and analyzed to determine the structure
of the network. It is a technique used to learn about the materials and molecular structures of the
substances studied. X-ray diffraction measurements enabled phase identification of the layer on a
metallic substrate. The materials were analyzed using a Seifert 3003 T-T diffractometer with a cobalt
anode, λK_αCo = 0.179 nm.

Microstructure analysis was carried out using a scanning electron microscope (SEM); Philips
XL30/LaB6.

2.3. Weight Loss Analysis

The corrosion rate was studied with the use of the weight loss technique. Measurements on test
materials were conducted under the same conditions and the results were compared. Weights were
determined with a precision of 0.0001 g on a RADWAG AS 220/X digital analytical balance.

2.4. Characterization of Carbon Fuels

Two different carbon fuels with different characteristics were used—graphite rod and commercial
biochar. The example fuel samples are shown in Figure 10, while the main properties of the fuels are
shown in Table 5. The particle size of the biochar fuel samples used in the experiments was in the
range of 0.18–0.25 mm.
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Table 5. The main parameters of the fuels used for MH-DCFC tests (all values are given for a “dry” state).

Fuel Sample
Elemental Composition (wt.%) Ash

(wt.%)
Volatile

Matter (wt.%)
Higher Heating
Value (MJ kg−1)C H N S O

Graphite rod 97.4 0.6 0.2 0.00 0.10 1.7 1.2 32.35
Commercial charcoal 84.2 3.3 0.5 0.01 9.29 2.7 16.4 29.93

2.5. MH-DCFC Performance Tests

The special test setup was developed to allow the measurement of the cell’s current and voltage as
well as preparation of the necessary characteristics of the MH-DCFC operation, on the basis of which
the cell performance was evaluated. The scheme and view of the measurement system is shown in
Figure 11.
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Figure 11. Schematic diagram (a) and depiction (b) of the MH-DCFC test setup. 1—electronic
temperature controller (thermostat), 2—digital multimeter, 3—computer PC, 4—data acquisition
module, 5—adjustable external resistor, 6—digital temperature display, 7—mass flow controller,
8—backup power device.

The electrolyte temperature was determined by a K-type thermocouple (NiCr-NiAl) and was
maintained at the desired value by an electronic temperature controller. The Tektronix DMM 4040
digital multimeter was used to measure the open circuit voltage of the fuel cell. To determine the cell
current intensity at various loads, an external resistance setup MDR-93/2-52 was used and connected
to the cell circuit thus providing the possibility to adjust the electrical resistance of the external circuit
(in the range 0.1–10,000 Ω). The data acquisition module Advantech USB-4711A was used for the
measurement of the cell voltage and the decrease of the voltage on an external resistor. The obtained
average voltage values (at the cell terminals and the external resistance terminals) were used to calculate
the current (and power) using the equations:

I =
Uz

Rz
(1)
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P = U·I (2)

where:

I—current in the circuit, [A],
Uz—voltage drop across the resistor, [V],
Rz—resistances of resistor, [Ω],
P—cell power, [W],
U—voltage at the cell terminals, [V].

The module was connected to a personal computer (PC) where the data was displayed and stored.
The amount of air fed into the cell was controlled by a thermal mass flow controller (Brooks 4850) with
a Local Operator Interface (LOI) to view, control and configure the control device. It was possible
to adjust the gas flow rate from 0.1 dm3 min−1. To 2 dm3 min−1. To attenuate short-term surge
suppression and eliminate the effects of power grid interferences on the recorded data, the emergency
standby backup power device PowerCom UPS BNT-1500AP, with a noise filter EMI/RFI, was also
used during the experiments. The tool also acted as an ‘emergency power supply device’ for the data
recording system in case of power failure.

At the beginning of each test, an appropriate amount of sodium hydroxide was put into the main
cell container (Model I and II) or eutectic mixture of NaOH (90 mol%) with LiOH (10 mol%) in case
of Model III and then heated up to the desired temperature. After the temperature level of 723 K
was reached and the electrolyte was completely melted, both the cathode and the anode were slowly
immersed into the electrolyte and the cell data (current, voltage, temperature, etc.) were recorded.
The air to the fuel cell was fed from a compressor (pressure of 0.15 MPa) with controlled flow rate of
0.5 dm3 min−1.

3. Results

3.1. Model I

The variations of the cell voltage plotted against time for the current I = 0 A (open circuit
voltage—OCV) are shown in Figure 12a, and the relationships between cell voltage, power density,
and current density (performance characteristics; polarization curves) for a commercial biochar and
graphite are plotted in Figure 12b. Performance characteristics were determined after 3 h of cell
operation without external load.

As indicated by the results presented in Figure 12a, the OCV values increased slowly until they
reached a stable plateau after roughly 1 h and then remained quite stable. The differences between
the OCV values, particularly at the initial period of cell operation, were probably brought about by
gradual wetting of the inner surface of the fuel (biochar particles and graphite electrode surface) by
liquid molten electrolyte [31]. The OCV values measured by digital multimeter after 3 h of operation
were 1.075 V and 0.852 V for biochar and graphite, respectively.

The voltage–current density characteristics (Figure 12b) show that the limiting current condition is
reached nearly 7.77 mA cm−2 with biochar as a fuel and 4.2 mA cm−2 for graphite, while the maximum
values of power density were respectively: 5.1 mW cm−2 and 2.5 mW cm−2.

The differences in cell operation, associated with a particular fuel, are probably the effect of the fuel
specific surface area (and thus the reaction kinetics), or are brought about by so-called crystallographic
disorders (crystal structure disorder). Compared with graphite, the structure of biochar is in a more
disordered form. The reactivity of disordered carbon is much higher than that of the graphitic carbon
because the disordered carbon contains many more edge sites as well as various types of defects that
are more reactive than crystalline sites.

Polarization is caused by chemical and physical factors associated with various elements of the
fuel cell. These factors limit the reaction processes when current is flowing. The current–voltage
characteristics shape (Figure 12b) depends on many factors, but in general it can be seen that both



Materials 2020, 13, 4659 12 of 21

curves were dominated by the ohmic polarization (middle region of the polarization curves) related
to the resistances of the electrolyte and electrodes. In both cases, regions related to concentration
polarization (end regions of the characteristics) are also noticeable. However, only graphite was
characterized by a clear region associated with activation losses (occur at low currents), which may be
related to its lower reactivity compared to biochar.

Materials 2020, 13, x FOR PEER REVIEW 11 of 21 

 

𝐼 = 𝑈௭𝑅௭ (1) 𝑃 = 𝑈 ∙ 𝐼 (2) 

where: 
I—current in the circuit, [A], 
Uz—voltage drop across the resistor, [V], 
Rz—resistances of resistor, [Ω], 
P—cell power, [W], 
U—voltage at the cell terminals, [V]. 

The module was connected to a personal computer (PC) where the data was displayed and 
stored. The amount of air fed into the cell was controlled by a thermal mass flow controller (Brooks 
4850) with a Local Operator Interface (LOI) to view, control and configure the control device. It was 
possible to adjust the gas flow rate from 0.1 dm3 min−1. To 2 dm3 min−1. To attenuate short-term surge 
suppression and eliminate the effects of power grid interferences on the recorded data, the emergency 
standby backup power device PowerCom UPS BNT-1500AP, with a noise filter EMI/RFI, was also 
used during the experiments. The tool also acted as an ‘emergency power supply device’ for the data 
recording system in case of power failure. 

At the beginning of each test, an appropriate amount of sodium hydroxide was put into the main 
cell container (Model I and II) or eutectic mixture of NaOH (90 mol%) with LiOH (10 mol%) in case 
of Model III and then heated up to the desired temperature. After the temperature level of 723 K was 
reached and the electrolyte was completely melted, both the cathode and the anode were slowly 
immersed into the electrolyte and the cell data (current, voltage, temperature, etc.) were recorded. 
The air to the fuel cell was fed from a compressor (pressure of 0.15 MPa) with controlled flow rate of 
0.5 dm3 min−1. 

3. Results 

3.1. Model I 

The variations of the cell voltage plotted against time for the current I = 0 A (open circuit 
voltage—OCV) are shown in Figure 12a, and the relationships between cell voltage, power density, 
and current density (performance characteristics; polarization curves) for a commercial biochar and 
graphite are plotted in Figure 12b. Performance characteristics were determined after 3 h of cell 
operation without external load. 

 
Figure 12. The variation of the fuel cell voltage vs. time (a) and the performance characteristics (b) of 
MH-DCFC Model I constructed from carbon steel. 
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During the analysis of the fuel cell operation, progressive corrosion of carbon steel and the
presence of corrosion products in the electrolyte were observed. The formation of non-conductive oxide
layers on the surface of the crucible (cathode) and separator (anode) could have a major impact on the
concentration polarization. Even if mass transport (supply of substrates and removal of products to
and from the surface of the electrodes) was fast enough, as a result of the formation of oxide layers,
it was difficult to transfer the electric charge. In addition, in the case of a solid graphite electrode,
its surface was covered with a layer of corrosion products, which probably limited the transport of
hydroxyl ions to reaction zones. The described processes probably had the greatest impact on the high
value of the internal resistance of the cell, which in the case of graphite was 2.19 Ω, while for charcoal
it was 1.69 Ω.

The second stage of the research was to carry out the long-term test for Model I. In this case,
biochar was used as fuel (0.5 g). The cell worked under a load of 20 Ω, which corresponded to the
maximum power obtained during determination of cell performance characteristics. The voltage and
current values determined during the long-term experiment are plotted in Figure 13.
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The fuel cell, after working for 27 h, reached a final voltage of about 0.09 V. It can also be seen that
the current intensity, despite the progressive voltage drop, maintained a value in the range of 10 to
18 mA throughout the entire duration of the test. Strong corrosion of the cell construction materials
was found after the test, which can be seen in the pictures in Figure 14. In addition, the electrolyte
had a dark brown color, indicating the penetration of corrosion products into it. The production of
non-conductive oxide layers on the cell elements, in particular on the crucible (cathode) and separator
(anode) surfaces, could have an impact on the observed voltage and current fluctuations. Since the
current did not decrease over time, as was the case for voltage, and after the experiment a biochar
weight loss of only 0.12 g (24% compared to the initial mass) was found, it can be concluded that the
voltage drop at the electrodes of the cell was caused by progressive corrosion.
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(cathode), (b) air supply pipe, (c) separator (anode).

Carbon steel, despite the positive results obtained by Jacques, quickly degraded in the environment
of molten NaOH. The main corrosion product is iron oxide (Fe2O3), which is shown in the diffraction
pattern recorded for the electrolyte tank fragment (cathode) after the cell had finished working
(Figure 15). In the case of the separator, the visible black color corresponds to fragments of unreacted
fuel (biochar).
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Similar results were obtained by Zecevic at al. [25]. Carbon steel oxidizes very quickly and corrodes
in the presence of oxygen contained in the electrolyte. The cathode surface becomes nonconductive
after oxidation due to the formation of Fe2O3. On the other hand, the cathode, made of mild steel with
addition of titanium, enables cell operation for over 540 h. With the use of mild steel doped with 2 wt%
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of titanium (Fe2Ti), the formation of a layer of oxide is caused on the material surface, which represents
the degenerated semi-conductor characterized by a stable electrical conductivity and good corrosion
resistance. This material also has very good chemical stability and promising catalytic properties for
the oxygen reduction reaction [25].

3.2. Model II

The variations in OCV plotted against time, and the relationships between cell voltage, power
density, and current density, are shown in Figure 16.
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MH-DCFC Model II constructed from austenitic stainless steel 300 series.

As in the case of Model I, the OCV slowly increased over time and reached a plateau after an hour
(see Figure 16a). The voltage measured after 3 h of cell operation was 0.95 V for biochar and 0.6 V for
graphite. The use of different materials for the construction of the anode and cathode was probably the
reason for obtaining lower OCV voltage values compared to Model I (it is probably that the values of
the potentials generated on the electrodes were different).

As can be seen in Figure 16b, Model II produced an increased performance, with maximum power
densities of above 6.7 mW cm−2 with graphite rod serves as a fuel. For biochar, the maximum power
densities were comparable with the first prototype and equaled to 4.8 mW cm−2.

The use of materials characterized by greater corrosion resistance in the environment of molten
hydroxides in the construction of Model II improved the quality of the electrolyte, which could be
visually assessed. This probably resulted in an increase in the obtained power density (especially in
the case of graphite), as well as a lower internal resistance (1.54 Ω for graphite and 1.19 Ω for biochar).

Model II was also subjected to a long-term test in order to determine the stability of operation
and the influence of the molten NaOH environment on individual cell components, and thus on the
cell’s lifetime. In this case, biochar was also used as fuel (9.0 g), and the cell was operated under a load
of 50 Ω. The voltage and current values determined during the long-term experiment are plotted in
Figure 17.

The fuel cell operation was analyzed for 93 h, after which a voltage drop at the terminals below
0.1 V was noted. After the experiment, a biochar mass loss of 3.1 g (≈34% compared to the initial
weight) was found. Due to the materials used, the cell worked three times longer than Model I;
however, the progressive corrosion of individual cell elements negatively affected the operation of the
device, which could be indicated by the observed voltage and current fluctuations. Figure 18 presents
photos of the anode, cathode and electrolyte crucible after the long-term test.
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Figure 18. Images of individual construction parts of Model II after the long-term test: (a) anode,
(b) cathode, (c) electrolyte crucible.

The different colors of the layers that have formed on the surface of the cell elements after
long-term testing allow to determine the type of oxides:

• red, brown—iron (III) oxide; Fe2O3,
• dark brown—iron (II) chromate; Fe2CrO4,
• yellow—iron (III) oxide monohydrate; Fe2O3 · H2O, sodium chromate; Na2CrO4,
• black—nickel (II) oxide; NiO.

The collection of electric charges from biochar particles was done through a steel mesh. The steel
mesh during the operation of the cell was covered with an oxide layer, which in addition to iron oxides
also formed nickel and chromium oxides. These oxides show high electrical resistance, which could
have worsened the electron charge collection from biochar particles, and this in turn would explain
the lower operating parameters obtained for biochar compared to graphite, for which the charge was
collected directly from the electrode surface. Like the Model I, oxide layers formed on the surface cell
anodes and cathodes were probably the main reason for the observed voltage and current fluctuations.

Model II elements are made of 304L and 316L corrosion-resistant alloy steel (containing chromium
and nickel—additives responsible for increasing the corrosion resistance of steel). The electrolyte tank
in the case of Model II was built of two types of materials: in the lower part made of nickel, in the upper
part made of 304L alloy steel. The heterogeneity of the material from which the crucible was made
resulted in accelerated degradation of steel as a less noble material during the operation of the cell,
under current conditions, at the Ni/304L contact point. At the interface of both materials, a micro-cell
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and steel (and especially the steel component, i.e., Fe) were formed, undergoing oxidation. The result
of steel digestion was visible as a layer of rust in the upper part of the crucible (see Figure 18c).

The cathode was a 316Ti stainless steel tube with a porous air sparger made of sintered 316L steel
powder. It can be seen that 316Ti steel was disintegrated and corrosion products were deposited on
the surface of the tube. In the case of the air sparger made of 316L steel, a black oxide layer is visible,
which is most likely NiO.

The XRD patterns (Figure 19) of the anode and cathode surface after long-term operation of the
Model II shows that apart from the austenitic phase of iron (III) oxide (hematite; Fe2O3) and iron
oxyhydroxide (lepidocrocite; γ-FeO[OH]), a solid residue of Na2CO3 was formed on the surface of the
anode tube resulting from the carbonation of the electrolyte.
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3.3. Model III

In the case of the MH-DCFC Model III, the electrolyte was a mixture of molten sodium and lithium
hydroxides (molar ratio: 9:1). Lithium hydroxide was the donor of Li+ ions, which served the in situ
lithiation process of the NiO layer during the cell operation. Figure 20 shows the OCV changes vs.
time and the performance characteristics of the Model III fueled by biochar and graphite.

Using nickel and its alloys in the construction of Model III contributed to a significant increase in
the most important electrical parameters, such as OCV, power and current densities, when biochar was
used as a fuel. In turn, for graphite, the change in the cell structure and the materials used resulted in a
slight decrease in the current and power density values, which could be caused by a change in the
electrolyte composition (pure NaOH was used in Models I and II, while the electrolyte in Model III
was the NaOH-LiOH mixture).
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Figure 20. The variation of the fuel cell voltage vs. time (a) and performance characteristics (b) of the
MH-DCFC model III constructed from nickel.

The results shown in Figure 20a indicate that, in the case of graphite, the cell reached a stable
voltage after an hour, while for biochar, the voltage stabilization was achieved after 2 h. Finally, after 3 h
of non-load operation, the measured OCV was equal to 1.05 V and 0.67 V for biochar and graphite,
respectively. The estimated internal resistance was 0.39 Ω for graphite and 0.52 Ω for biochar. The
obtained maximum power and current densities were, respectively, 5.3 mW cm−2 and 29.5 mA cm−2

for graphite and 33.5 mW cm−2 and 75.0 mA cm−2 for biochar.
The decrease in the internal resistance value and the increase in other electrical parameters

(compared to Models I and II) were most likely related to the reduction of corrosion of the cell
components (in particular the anode and cathode). Moreover, after each of the tests, no contamination
of the electrolyte with corrosion products was observed.

Positive results of the preliminary tests of model III, similarly to Models I and II, were verified
with the long-term test. The mass of used biochar was 2.6 g, while the external load of the cell was set
to 1 Ω. The voltage and current values recorded during the long-term experiment are presented in
Figure 21.
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Figure 21. The variation of the fuel cell voltage and current vs. time during the long-term experiment
test of the model III MH-DCFC.

The fuel cell worked for more than 43 h, after which a voltage drop at the terminals to about
0.02 V was noted. After the experiment, it was found that the entire mass of biochar had reacted,
which may explain the gradual decrease in current and voltage over time. No corrosion products were
observed in the electrolyte after the test. Similarly, the construction materials did not show any signs of
corrosion, and their appearance was identical to that after the lithiation process (cf. Figure 8). Due to
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the elimination of the problem of progressive corrosion of cell elements, the explanations required
visible fluctuations in voltage and current during cell operation. The most probable cause of the
occurring fluctuations was the decreasing amount of fuel in the separator and the associated loss of
biochar particles in contact with the current collector (nickel mesh).

Molten hydroxide electrolyte DCFC manufactured from nickel was also examined by Guo el al. [32].
No significant changes in the value of recorded electrical parameters generated from the cell and no
significant electrolyte degradation were found during 100 h of experimentation. The test performed
for various operating temperatures of cells in the range of 643–823 K showed that the increase in
temperature leads to the increased conductivity of both electrolyte and oxide layers formed on the
surfaces of electrodes while cells’ power also increased [32].

In the case of Model III, electrodes were made of nickel (Nickel 201) and high-nickel alloy
(Inconel 600). To observe surface and structural changes of materials exposed in molten NaOH,
microstructure tests were performed. Figure 22 presents the microstructures of the tested materials
after a long-term test. The structure of the Inconel 600 and Nickel 201 alloys indicates that a good
adherent and protective oxide layer was formed. No pitting or similar material discontinuities can be
observed. The bright areas in the pictures are products resulting from the reaction of the electrolyte
with the material. XRD analysis (Figure 23) indicated that the main components of Inconel 600 material,
regardless of the time the material was exposed in the electrolyte, were the NiO phase and the LiNiO
phase. The presence of the lithium–nickel phase, even after 43 h of exposure, was satisfactory, because
it means that the surface layer containing the LiNiO phase continuously protects and maintains
its semiconductor properties by doping nickel oxide with lithium (which was the intention of the
lithiation process).
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As can be seen from the analysis of the data summarized in Table 6, the nickel lithiation process
prevents corrosion. The weight increase of the sample after 77 h of cell operation may result from the
strengthening of the nickel oxide layer on the material surface as well as the simultaneous incorporation
of lithium ions in the NiO structure.

Table 6. Changes in the mass of the high-nickel Inconel 600 alloy depending on the Model III
operating time.

Time [h]
Mass Changes

[g] [%]

24 (lithiation process) +1.95 +6.1
34 (first run after lithiation process) −0.0004 −0.0008

77 (after 43 h long-term test) +0.0072 +0.0723

4. Conclusions

From the experimental results presented and briefly discussed in the present paper, the following
conclusions can be formulated:

1. Three MH-DCFCs with different configurations and construction materials were successfully
tested at the laboratory scale. The obtained results clearly indicate that the effects of construction
materials on the operation performance of the MH-DCFC are quite promising with respect to the
potential application of the DCFC technology for large-scale power generation.

2. The performance of the direct carbon fuel cell with molten hydroxide electrolyte can be significantly
improved by optimizing the cell design and the electrodes materials.

3. Carbon steel, despite the positive results obtained during the first MH-DCFC tests conducted by
Jacques in 1986, quickly degrades in an environment of molten NaOH.

4. AISI 300 series austenitic stainless steels are materials characterized by greater corrosion resistance
in the environment of molten hydroxides. However, the obtained results indicate that these
steels are not suitable for the construction of the MH-DCFC, due to their progressive corrosion
processes, resulting in the reduction of the cell’s lifetime.

5. Nickel and its alloys were proven to be the best materials for the construction of individual
elements of the fuel cell. Inconel alloy 600 was a good catalytic material for the cathode with
good corrosion resistance.

6. The shape of the current–voltage characteristics depends on many factors, but in general it can
be seen that those curves were dominated by the ohmic polarization related to the resistances
of the electrolyte and electrodes. Therefore, it is very important to avoid corrosion of the cell’s
construction materials as well as the leakage of corrosion products into the electrolyte.
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