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Abstract

Approaches used to early and accurately characterize epidemiologic patterns of disease

incidence in a temporal and spatial series are becoming increasingly important. Cluster

tests are generally designed for retrospective detection of epidemiologic anomalies in a tem-

poral or space-time series. Timely identification of anomalies of disease or poisoning inci-

dence during ongoing surveillance or an outbreak requires the use of sensitive statistical

methods that recognize an incidence pattern at the time of occurrence. This report describes

2 novel analytical methods that focus on detecting anomalies of incidence at the time of

occurrence in a temporal and space-time series. The first method describes the paucity of

incidence at the time of occurrence in an ongoing surveillance and is designed to evaluate

whether a decline in incidence occurs on the single current day or during the most recent

few days. The second method provides an overall assessment of current clustering or pau-

city of incidence in a space-time series, allowing for several space regions. We illustrate the

application of these methods using a subsample of a temporal series of data on the largest

dengue outbreak in Taiwan in 2015 since World War II and demonstrate that they are useful

to efficiently monitor incoming data for current clustering and paucity of incidence in a tem-

poral and space-time series. In light of the recent global emergence and resurgence of Zika,

dengue, and chikungunya infection, these approaching for detecting current anomalies of

incidence in the ongoing surveillance of disease are particularly desired and needed.

Introduction

Approaches used to early and accurately characterize epidemiologic patterns of disease inci-

dence in a temporal and spatial series are becoming increasingly important. Statistical analysis

for detecting temporal and space-time anomalies (clusters and paucity) of health-related

events is often required for various epidemiologic and biomedical applications. Cluster tests

are generally designed for retrospective detection of epidemiologic anomalies in a temporal or

space-time series. Timely identification of anomalies of disease or poisoning incidence during

ongoing surveillance or an outbreak requires the use of sensitive statistical methods that
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recognize an incidence pattern at the time of occurrence. However, clusters or outbreaks are

usually detected when the specialists or professionals of health agencies notice an unusually

high frequency of health-related events. Perceptions of clustering or decline in incidence

are often intuitive without statistical analysis. However, what is necessary is to determine

whether or not a cluster or decline in incidence occurs to an extent greater than what would be

expected by chance variation.

Hryhorczuk et al. discussed the importance of enhancing early detection and suggested

using the scan test to detect temporal clustering of poisoning cases in the data reported daily to

poison control centers [1]. The scan test employs a moving window of predetermined length w
and finds the maximum number of cases revealed through the window as it slides over the

entire region [2]. The scan test is structured to detect the largest cluster of incidence. The max-

imum number of events occurring in a window is the test statistic for the scan test. The authors

demonstrated that the scan test can be retrospectively applied in the daily surveillance of poi-

soning clusters in an analysis of the temporal clustering of carbon monoxide poisonings. In

contrast to detecting historical clusters, Grimson et al. proposed a statistical method that is

sensitive to detect clusters in incidence at the time of occurrence [3]. Their method, based on a

binomial distribution, is designed to detect current clusters of incidence with a duration of

one or more days during an ongoing daily data collection and monitoring process. The authors

applied their method to the daily carbon monoxide poisoning incidence data on which the

scan test had been applied in the study by Hryhorczuk et al., and showed that their test for cur-

rent clusters of incidence evidently has more power than the scan test.

The purpose of this report is to illustrate the use of novel statistical approaches that focus on

detecting anomalies of incidence at the time of occurrence in a temporal series and in a space-

time series. In contrast with the existing method for current clustering [3], one approach is

designed to detect paucity of health-related events on the single current day of occurrence or

on the most recent few days in a temporal series. When several space regions are involved,

we suggest a global form of the test for detecting current clusters or paucity of incidence in a

space-time series, depending on the alternative hypothesis. The global test is similar in con-

struction to the Ederer-Myers-Mantel (EMM) test for space-time clustering based on the maxi-

mum frequency in a unit of time [4], the V test for space-time vacuity based on the minimum

frequency in a unit of time [5], and the scan test for space-time clustering [6]. The global test

for incidence anomalies provides an overall assessment, allowing for several space regions

in the setting, and has more power for detecting anomalies than do the tests to investigate

observed overall temporal incidence combined across multiple space regions.

Testing for excessive aggregations of disease incidence that occurred during a single current

unit of time (e.g., day, week) or most recent few consecutive units of time is used to signal the

occurrence of an excess of incidence in the current time period, permitting the immediate

response and application of early intervention. In contrast, the detection of unusually sparse

incidence of disease at the time of occurrence characterizes the current disease activity and

epidemiologic transmission in an opposite way. A small p-value of the test indicates that a

decline in disease incidence is occurring within the current time period, allowing for immedi-

ate assessment of an intervention strategy and decisions regarding prevention programs in the

ongoing daily monitoring process.

We illustrate these methods using a subsample of a temporal series of data on dengue inci-

dence in 2015 from the Taiwan Centers for Disease Control and demonstrate that they are use-

ful to efficiently monitor incoming data for clustering and paucity of incidence in a temporal

and space-time series. With the recent global emergence and resurgence of epidemic arbovi-

ruses such as Zika, dengue, and chikungunya, statistical methods for detecting current anoma-

lies in the ongoing surveillance of disease are particularly desired and needed.
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Most of the analytic methods for spatial and temporal analysis proposed in the statistical

and epidemiological literature are retrospective in nature, particularly those for spatial analysis.

Several prospective analytic methods for early detection of emerging disease outbreaks were

developed recently, including those used in a temporal series [7–11] and those used in a space-

time series [12]. These prospective analytic methods in a temporal series are designed to iden-

tify disease outbreaks over a broad geographical area (e.g., country) and are useful when

relatively few cases are observed in any one jurisdiction. They usually require knowledge or

assumptions of probability distributions that underlie the data and may need exploratory stud-

ies or preliminary analysis for the estimation of model parameters. In contrast, the analytic

methods that we proposed here require mild assumptions with the null hypothesis of randomi-

zation and are structured to assess whether the incidence during the current few days pro-

gresses at the same rate, at a higher rate, or at a lower rate within a surveillance period. The

spatial scan test for time periodic geographical disease surveillance by Kulldorff (2001) are

designed to detect geographical disease clusters that remain during the last time period for

which data are available [12]. While the global form of the proposed test for detecting current

clusters or paucity of incidence when several space regions are involved is purely temporal in

nature without involvement with the detection of geographical disease clusters.

Methods

Suppose that K health-related events have occurred during T days. Consider the frequency of

health-related events that occurred within the most recent w days in comparison with the fre-

quency of health-related events that occurred in the T—w previous days. What interests us is

to determine whether the observation of x events that occurred on the current day or during

the most recent w days is rare compared with the occurrence of K—x events during the T—w
previous days. Assuming that X is the random variable that represents the number of events

occurring within the most recent w days and that each of the K events independently and

equally occurs on one of the T days, the test for current paucity of incidence, denoted by Pau,

is based on the random variable X with a binomial distribution. The exact p-value formula for

Pau under the null hypothesis of random allocations of K health-related events over the T days

is expressed as follows:

PðX � x jK;T;w; p0 ¼
w
T
Þ ¼

X

i�x

K

i

 !

pi
0
ð1 � p0Þ

K� i
; ð1Þ

where x represents the observed number of events within the most recent w days. The test Pau
assesses the significance of the small frequency at the time of occurrence on the basis of ran-

domization and is used to measure an empirical paucity of incidence within the most recent w
days. A small p-value of Expression (1) indicates that the observed x events occurring within

the most recent w days, compared with the frequency of health-related events occurring during

the T—w previous days, is significantly sparse; that is, a decline in incidence in the current w-

day period occurs within the T-day surveillance period. Expression (1) gives an exact p-value

of the test Pau for current paucity of incidence on the single current day for w = 1 and on the

most recent 3 days for w = 3.

The exact p-value formula of the test for current clusters by Grimson et al [3], denoted by

Clu, is as follows:

PðX � x jK;T;w; p0 ¼
w
T
Þ ¼

X

i�x

K

i

 !

pi
0
ð1 � p0Þ

K� i
; ð2Þ
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where x represents the observed number of events within the most recent w days. Expression

(2) measures an empirical cluster of incidence at the time of occurrence. A small p-value of

Expression (2) indicates that the occurrence of x events that excessively aggregated within the

most recent w days cannot be explained by chance alone. Expression (2) gives an exact p-value

of the test Clu for current clustering of incidence on the single current day for w = 1 and on

the most recent 3 days for w = 3. The tests Pau and Clu are based on the same binomial ran-

dom variable but characterize opposite aspects of an observed incidence pattern at the time of

occurrence. They are structured to respectively detect current paucity and current clustering

of incidence in a temporal series.

When many space regions are involved, we suggest using the global form of the tests to

detect current clustering or paucity of incidence in a space-time series. Letting Xi be the ran-

dom variable that represents the number of events that occurred within the most recent w days

in the i-th space unit and letting E(Xi) and Var(Xi) denote the expected value and variance of

Xi, respectively, the test M is defined as

M ¼

XR

i¼1

fXi � EðXiÞg

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XR

i¼1

Var ðXiÞ

s ; ð3Þ

If the total number of space units, R, is large and the involved space units are relatively

homogeneous in size, then the global test, M, approximately follows a standard normal distri-

bution under the null hypothesis of random arrangements of health-related events in each of

the space units. The test M provides an overall assessment of current clustering or paucity of

incidence in a space-time series, depending on the alternative hypothesis of M> 0 or M< 0.

A large positive value of the test statistic M indicates that an excess of disease incidence occurs

within the current time period in the time line for several geographically described population

(e.g., hospitals, towns, or counties). In contrast, a small negative value of M indicates that a

decline in incidence occurs within the current time period for several geographically described

population.

Letting Maxi be the maximum frequency in a unit of time in the i-th space-time unit, the

EMM test [13] is expressed as EMM ¼
PR

i ¼ 1
fMaxi � EðMaxiÞg=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PR

i ¼ 1
Var ðMaxiÞ

q

:

Replacing Max with Min in the above expression is the test V for space-time vacuity based on

the minimum frequency that developed in a unit of time [5].

Applications of the tests to dengue outbreak data

Dengue fever is the most common arbovirus infection in humans with virus transmission

occurring in more than 100 countries in tropical regions. It is estimated that 390 million den-

gue infections occur annually, of which 50–100 million cases have apparent clinical manifesta-

tions [14–16]. The data on dengue incidence from Taiwan provide an opportunity to illustrate

the applications of these methods for detecting current temporal and space-time anomalies of

incidence. Dengue fever is a notifiable communicable disease in Taiwan. Information on den-

gue cases collected in Taiwan since 1988 is publicly available through the Taiwan Centers for

Disease Control (http://www.cdc.gov.tw/english/index.aspx) and the Taiwan Government

Open Data website (http://data.gov.tw/). This information includes the date an individual was

diagnosed with dengue infection, his or her residence at diagnosis, place of infection, gender,

and age. The largest dengue outbreak in Taiwan since World War II occurred in 2015. There

were 43,419 confirmed autochthonous cases in Taiwan in 2015, among which 53% (22,842

Assessing current temporal and space-time anomalies of disease incidence
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cases) occurred in Tainan city, which is located in the southern, tropical region of Taiwan. For

the purpose of illustration, we selected a subsample of dengue incidence data in Tainan and

analyzed a temporal series of data on dengue incidence from August to October 2015. Fig 1

displays the daily dengue incidence data for Tainan’s North District from August to October

2015. The first dengue case in Tainan was reported in North District at the end of May 2015. A

district is an administratively defined subdivision of a city in Taiwan and has its own health

department that regularly reports health information to the city government. Tainan com-

prises 37 districts.

Testing for current temporal clustering and paucity of incidence

We illustrate the use of the tests Clu and Pau for current clustering and paucity of dengue inci-

dence, respectively, in the ongoing surveillance using the daily data in Fig 1 as follows. Where

a day is the unit of time, setting w = 3 and T = 10, the number of cases reported during the

most recent 3 days are compared with the number of cases that occurred in the previous 7

days. On the 10th day of August, 80 cases that occurred during the most recent 3 days (that is,

August 8–10) are compared with 166 cases that occurred during the 7 previous days (August

1–7). Using Expression (2), the exact p-value for current 3-day clusters of incidence is not sig-

nificant on August 10 with P(X� 80| K = 246, T = 10, w = 3; p = 0.3) = 0.213. The p-values for

current 3-day clusters of incidence on August 11–15 are shown as follows:

August 11: P(X� 85| K = 259, T = 10, w = 3; p = 0.3) = 0.178,

August 12: P(X� 93| K = 278, T = 10, w = 3; p = 0.3) = 0.117,

August 13: P(X� 105| K = 283, T = 10, w = 3; p = 0.3) = 6.18×10−3,

August 14: P(X� 121| K = 307, T = 10, w = 3; p = 0.3) = 2.73×10−4,

August 15: P(X� 141| K = 344, T = 10, w = 3; p = 0.3) = 9.65×10−6.

Fig 1. Daily dengue incidence data for North District, Tainan city, Taiwan, from August to October, 2015.

https://doi.org/10.1371/journal.pone.0188065.g001

Assessing current temporal and space-time anomalies of disease incidence

PLOS ONE | https://doi.org/10.1371/journal.pone.0188065 November 13, 2017 5 / 10

https://doi.org/10.1371/journal.pone.0188065.g001
https://doi.org/10.1371/journal.pone.0188065


A small p-value of 6.18×10−3 on August 13 indicates that an excess of dengue cases for cur-

rent 3-day clusters is identified within the 10-day surveillance period at a nominal significance

level of 0.05; that is, an excess of dengue cases has occurred in the most recent 3-day period.

Low p-values on August 13, 14, and 15 reflect the high incidence on those days in comparison

with the incidence that occurred during the previous few days, indicating that the dengue inci-

dence becomes worse daily, as shown in Fig 1.

Next, we illustrate the use of Expression (1) to evaluate the evidence of a decline in dengue

incidence in the daily monitoring process. On the 22nd of September, 323 cases that occurred

during the most recent 3 days (September 20–22) are compared with 796 cases that occurred

during the 7 previous days (September 13–19). The exact p-value for current 3-day paucity of

incidence on September 22 is not significant with P(X� 323| K = 1119, T = 10, w = 3; p = 0.3)
= 0.214, based on Expression (1). The p-values for current 3-day paucity of incidence on Sep-

tember 23–26 are as follows:

September 23: P(X� 291| K = 1103, T = 10, w = 3; p = 0.3) = 4.45×10−3,

September 24: P(X� 268| K = 1069, T = 10, w = 3; p = 0.3) = 2.01×10−4,

September 25: P(X� 235| K = 1014, T = 10, w = 3; p = 0.3) = 7.18×10−7,

September 26: P(X� 237| K = 986, T = 10, w = 3; p = 0.3) = 1.95×10−5.

On September 23, a small p-value of 4.45×10−3 for current 3-day paucity of incidence is

obtained, indicating that a decline in dengue incidence during the current 3-day period has

occurred within the 10-day surveillance period. Low dengue incidence on September 23–26,

compared with the incidence that occurred during the previous few days, results in very small p-

values of Expression (1), indicating that the dengue incidence declines daily, as shown in Fig 1.

Testing for current space-time clustering and paucity of incidence

We selected 11 districts in Tainan with the highest dengue rates to illustrate the testing for

current clustering and paucity of incidence in a space-time series, using the test M shown in

Expression (3). The rates, which were the numbers of dengue cases per 100,000 persons, ran-

ged from 0 to 4,497 among the 37 districts in Tainan in 2015. The 11 districts with the highest

rates were West Central (rate of 4,497), North (4,313), South (2,785), East (1,673), Anping

(1,401), Yongkang (1,159), Annan (984), Yujing (480), Rende (422), Xinhua (358), and Guiren

(315). The remaining 26 districts had a rate of 202 or less. Fig 2 presents the district-specific

dengue incidence intensity in Tainan in 2015.

For the purpose of illustration, we analyzed a temporal series of dengue incidence data over

these 11 districts on August 1–15 and September 13–26, 2015, which are the same time periods

as those in the analysis above using Clu and Pau. Where a day is the unit of time, w = 3,

T = 10, and R, the total number of space units, is 11 in the model conditions. We obtained M =

1.29 on August 10, which gives a p-value of 0.098 and does not reject the null hypothesis of

randomization at a 0.05 nominal significance level. The test statistics and p-values of M for

current 3-day clusters in the 10-day surveillance period on August 11–15 are as follows:

August 11: M = 1.91 with a p-value of 2.79×10−2,

August 12: M = 1.51 with a p-value of 6.53×10−2,

August 13: M = 2.79 with a p-value of 2.66×10−3,

August 14: M = 3.56 with a p-value of 1.83×10−4,

August 15: M = 5.27 with a p-value of 6.85×10−8.
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Small p-values (< 0.05) for current 3-day clusters are identified on August 11 and August

13–15, indicating that there exists a significantly important departure from the expected

frequencies and that the dengue incidence becomes worse each of these days over these 11

districts.

Next, we illustrate the use of the M test to evaluate the evidence of a space-time decline in

dengue incidence within the ongoing daily surveillance. In the same settings of w = 3, T = 10,

and R = 11, M is applied to the data on September 22. We obtain M = 1.11, which gives a p-

value of 0.886, and do not reject the null hypothesis of randomization at a 0.05 nominal signifi-

cance level. No decline in dengue incidence is detected over these 11 districts on September

22. The p-values for current 3-day paucity of incidence on September 23–26 in the 10-day sur-

veillance period are presented as follows:

September 23: M = -2.76 with a p-value of 2.87×10−3,

September 24: M = -6.66 with a p-value of 1.39×10−11,

September 25: M = -9.53 with a p-value of 7.28×10−22,

September 26: M = -10.06 with a p-value of 4.30×10−24.

The very small p-values presented above show that a space-time decline in dengue inci-

dence is detected on September 23–26. We note that the size of the decline increases daily over

the 4-day period. The global test M is more powerful for detecting temporal anomalies in inci-

dence than do Pau and Clu to investigate observed overall annual incidence combined over

the 11 districts because the global test uses temporal incidence information for each of the 11

districts [4–6].

Fig 2. District-specific dengue incidence intensity map in 2015 Tainan.

https://doi.org/10.1371/journal.pone.0188065.g002
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Discussion

Cluster tests are generally designed for retrospective detection of epidemiologic anomalies

over a temporal or space-time series. Existing tests for clustering that focus on detecting the

times of large or “peak” incidence in a temporal or space-time series, including the EMM test

[4,13], scan test [2,6], and Maxima test [17,18], are all based on the maximum frequency in a

unit of time. We and others have developed tests that focus on the times of paucity of events,

including the empty cells (or empty columns) test [17,18], run of empty cells tests [19], and

Minima and V tests that are based on the minimum frequency in a unit of time [5,20]. In this

report, we illustrated the use of novel statistical approaches to testing of significance for the

small or large frequencies at the time of occurrence on the basis of random allocations of dis-

tinct epidemiologic events into consecutive days, which underlies a binomial distribution. The

first approach uses a test that describes the paucity of disease incidence at the time of occur-

rence in an ongoing surveillance and is designed to evaluate whether a decline in incidence

occurs on the single current day of occurrence or during the most recent few days, which is

the test Pau. In contrast, the existing test, Clu, represents a direct measure of clustering as

many cases accumulating at the time of occurrence and is used to assess the evidence of

whether an excess of disease incidence has occurred on the single current day or during the

most recent few days [3]. The second approach uses the global form of the tests in a temporal

series to test for current clustering or paucity of incidence in a space-time series, depending on

the alternative hypothesis of M> 0 or M< 0, which is the M test.

Pau and Clu, which are structured to characterize current disease activity and epidemio-

logic transmission in opposite ways, are useful to determine whether a decline or cluster in

incidence has occurred on the single current day or during the most recent few days in the

ongoing daily monitoring process, respectively. Statistical approaches that are sensitive to

current paucity or clustering of incidence in a temporal and space-time series as presented

here provide early and accurate recognition and identification of clusters and declining inci-

dence, which are required for application and assessment of early intervention strategies and

for effective disease prevention and control [21]. For instance, health authorities may expand

(or change) an intervention strategy as soon as a decline in incidence is (or is not) detected

after the use of certain insecticide sprays in a given region. When an excess of disease incidence

is identified at a time point, intervention can be initialized immediately. Climate factors, such

as sudden cold spells or heat waves, may instantly affect disease activity and epidemiologic

transmission. The use of the tests, Pau, Clu, and M, allows health authorities or investigators

to statistically evaluate the association between the local climate variables and disease inci-

dence. Diseases for which activity and transmission are affected by environmental or climatic

factors are particularly modifiable by intervention.

The use of daily testing in an ongoing surveillance process raises the issue of multiple com-

parisons. Procedures, such as Bonferroni and False Discovery Rate corrections, have been

developed for controlling false positives by using a smaller nominal significance level (< 0.05)

for rejecting the null hypothesis [22]. While the use of these adjustments also reduces the over-

all statistical power and may miss true positives. More importantly, Mantel and others empha-

size that the purpose of applying the tests in a monitoring process is “signaling” rather than

hypothesis testing [1,3,13,23–25]. Therefore, the use of multiple comparison procedures is not

recommended here. In the applications to dengue incidence above, we set T = 10 (surveillance

period) and w = 3 (current period). The choice of the appropriate size of unit scale in time for

testing anomalies of incidence depends on the disease, the frequency and duration of an out-

break, and perhaps other considerations. We suggest using various sets of the values of w and

T for further charactering and comparing the temporal patterns of incidence at the time of
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occurrence, particularly when the knowledge of the disease etiology is lacking. In the applica-

tion for daily ongoing surveillance of infectious diseases such as dengue or Zika, one may

consider a smaller number for w (e.g., 1 or 3) and T (e.g., 7 or 10). In interpretation of the out-

comes of the analysis, we must emphasize that the results are based on the specific sizes of unit

scales in time or space chosen.

Recently, Kulldorff (2001) stressed that p-values should be used as an indicator concerning

the evidence for true clustering and the amount of effort for the investigation should be depen-

dent on this evidence rather than maintaining a strict cut-off for the p-value to determine

detected clusters to be investigated or not [12]. In addition to using multiple comparison

adjustments, understanding the correlation between the proposed tests on the two consecutive

days will be very helpful for controlling false signal rates. This correlation structure is complex

and warrants future research.

The recent global emergence of Zika virus infection and its severe forms, Guillain-Barre

syndrome and microcephaly, which have been associated with the Zika virus in French Poly-

nesia and Brazil, suggest that Zika has become a very serious global public health problem

[26]. Active disease surveillance is designed to monitor disease activity and epidemiologic

transmission. Health authorities must be able to accurately determine whether a decline or

cluster in incidence is happening at the time of disease occurrence [21,27]. Statistical methods

to efficiently monitor incoming data for clustering and paucity of incidence in a temporal and

space-time series as presented here are increasingly desired in light of the recent global emer-

gence of Zika and dengue infection.
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