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Clusters of genes acquired by lateral gene transfer in microbial genomes, are broadly referred to as genomic
islands (GIs). GIs often carry genes important for genome evolution and adaptation to niches, such as genes
involved in pathogenesis and antibiotic resistance. Therefore, GI prediction has gradually become an important
part of microbial genome analysis. Despite inherent difficulties in identifying Gls, many computational methods
have been developed and show good performance. In this mini-review, we first summarize the general
challenges in predicting Gls. Then we group existing GI detection methods by their input, briefly describe
representative methods in each group, and discuss their advantages as well as limitations. Finally, we look into
the potential improvements for better GI prediction.

© 2016 Lu, Leong. Published by Elsevier B.V. on behalf of the Research Network of Computational and Structural
Biotechnology. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Lateral gene transfer (LGT) is the transfer of genes from one organism
to another in a way that is different from reproduction. Its ability to
facilitate microbial evolution has been recognized for a long time [1].
Despite the ongoing debate about its prevalence and impact [2-4], the
accumulation of evidence has made LGT widely accepted as an impor-
tant evolution mechanism of life, especially in prokaryotes [5,6]. As a re-
sult of LGT, recipient genomes often show mosaic composition, in which
different regions may have originated from different donors. Moreover,
some DNA sequences acquired via LGT appear in clusters. These clusters
of sequences were initially referred to as pathogenicity islands (PAIs) [7],
which are large virulence-related inserts present in pathogenic bacterial
strains but absent from other non-pathogenic strains. Later, the
discoveries of regions similar to PAls but encoding different functions
in non-pathogenic organisms lead to the designation of genomic islands
(GIs) [8]. GIs are then found to be common in both pathogenic and
environmental microbes [9].

Specifically, a Gl is a large continuous genomic region arisen by LGT,
which can contain tens to hundreds of genes. The size of known Gls
varies from less than 4.5 kb to 600 kb [3]. Laterally acquired genomic
regions shorter than a threshold are also called genomic islets [10,11].
GIs often have phylogenetically sporadic distribution. Namely, they are
present in some particular organisms but absent in several closely relat-
ed organisms. As shown in Fig. 1, GIs have several other well-known
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features to distinguish them from the other genomic regions [10,12,
13], such as different sequence composition from the core genome, the
presence of mobility-related genes, flanking direct repeats (DRs), and
specific integration sites. For example, tDNA (tRNA or tmRNA gene) is
well known as a hotspot for GI insertion [11,14]. However, not all
these features are present in a Gl, and some GIs lack many of these fea-
tures. As a consequence, GIs were also considered as a superfamily of
mobile elements with core and variable structural features [15].

In addition to the restricted GI definition in [16], GIs are often seen as
a broad category of mobile genetic elements (MGEs) [17]. They can be
further grouped into subcategories by mobility: some Gls are mobile
and hence can further transfer to a new host, such as integrative and
conjugative elements (ICEs), conjugative transposons and prophages;
but other GIs are not mobile any more [10]. GIs can also be classified
by the function of genes within as follows: PAIs with genes encoding
virulence factors; resistance islands (REIs) with genes responsible for an-
tibiotic resistance; metabolic islands with genes related to metabolism;
and so on [9]. However, the latter classification may not be definite
since the functions of genes within GIs may not be clear-cut in practice.

GIs play crucial roles in microbial genome evolution and adaptation
of microbes to environments. As part of a flexible gene pool [18], the ac-
quisition of GIs can facilitate evolution in quantum leaps, allowing bac-
teria to gain large numbers of genes related to complex adaptive
functions in a single step and thereby confer evolutionary advantages
[9,10]. Remarkably, the genes inside GIs can influence a wide range of
important traits: virulence, antibiotic resistance, symbiosis, fitness,
metabolism, and so on [9,10]. In particular, PAls can carry many genes
contributing to pathogen virulence [12,13,19], and potential vaccine
candidates were suggested to locate within PAIs [20]. Thus, the accurate
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Fig. 1. The schematic representation of several Gl-associated features. A Gl is often absent
in closely related genomes. It may also have atypical compositional characteristics
compared with the core genome, such as lower GC content. The presence of several
sequence elements is indicative of a GI: flanking conserved regions, DRs, insertion
sequence (IS) elements and mobility-related genes encoding integrase and transposase.

identification of Gls is important not only for evolutionary study but also
for medical research.

Gls can be predicted by either experimental or computational
methods. Herein, we focus on the in silico prediction of Gls: given the
genome sequence of a query organism, identify the positions of Gls
along the query genome via computer programs alone. Additional
input information may also be incorporated, such as the genomes of
other related organisms, and genome annotations.

Langille et al. [17] gave a comprehensive review of Gl-related fea-
tures and different computational approaches for detecting GIs. Recent-
ly, in 2014, Che et al. [21] presented a similar review for detecting PAIs.
Here, we want to provide an up-to-date review of representative GI
prediction methods in an integrative manner. Firstly, we highlight the
general challenges in predicting Gls. Then, we subdivide existing
methods based on input information, and describe their basic ideas as
well as pros and cons. We also propose the promising directions for
developing better GI detection methods.

2. Challenges in GI prediction

It is a non-trivial task to find laterally transferred regions of relatively
small size in a long genome sequence. Two prominent challenges in GI
prediction are the extreme variation of GIs and the lack of benchmark
GI datasets.

2.1. The extreme variation of GIs

It seems easy to predict Gls given the various well-characterized
features associated with it. However, the mosaic nature and extreme
variety of Gls increase the complexity of GI prediction [3]. The elements
within a GI may have been acquired by several LGT events (probably
from different origins) and are likely to have undergone subsequent
evolutions, such as gene loss and genomic rearrangement [9].
Consequently, the composition, function and structure of GIs can show
various patterns. This can be illustrated by Gls in the same species
[22], GIs in Gram-negative bacteria [12], and GIs in both Gram-
positive and Gram-negative bacteria [12,15]. The diversity of Gls pre-
vents an effective way of integrating multiple features for prediction.
Choosing only a few features as predictors may discard lots of Gls
without those features. Even if the fundamental property of Gls, the
lateral origin, can be used for prediction, it is still challenging since
LGT itself is difficult to ascertain [23].

2.2. The lack of benchmark GI datasets

There are still no reliable benchmark GI datasets for validating
prediction methods or supervised prediction. With more Gls being

predicted and verified, several Gl-related databases have been deployed
and regularly updated, such as Islander [24], PAIDB [25], and ICEberg
[26] (Table 1). However, these databases are mainly for specific kinds
of GIs, such as tDNA-borne Gls (GIs inserted at tRNA or tmRNA gene
sites), PAls, and ICEs. There are also two constructed GI datasets based
on whole-genome comparison [15,27] (Table 1), which were used as
training datasets for machine learning methods. But the scale of these
datasets is still not large enough, and their reliability has not been
verified by convincing biological evidence.

3. GI prediction methods

In spite of the above challenges, previous methods have made con-
siderable progress in GI prediction. They usually use two most indicative
features of the horizontal origin of GIs: biased sequence composition
and sporadic phylogenetic distribution. Based on the two features,
these methods roughly fall into two categories: composition-based
methods and comparative genomics-based methods [17].

For ease of discussion, we categorize GI prediction methods into two
large groups based on the number of input genomes: methods based on
one genome and methods based on multiple genomes. Methods in the for-
mer group are often composition based, while methods in the latter
group are usually comparative genomics-based. We also include ensem-
ble methods which combine different kinds of methods and methods for
incomplete genomes which predict Gls in draft genomes (in the form of
contigs or scaffolds rather than complete whole genome sequence).
Fig. 2 shows an overview of the methods included in this paper. For
reference, we list available programs which are discussed under each
category in Table 2.

3.1. Methods based on one genome

Most methods based on one genome utilize sequence composition
to identify GIs, but several methods based on GI structural characteris-
tics have also been developed. According to the units for measuring ge-
nome composition, composition-based methods can be divided into
methods at the gene level and methods at the DNA level. In the following
sub-sections, we present the basic idea of composition-based methods
before discussing methods at the gene and DNA level separately.

The major assumption of composition-based methods is that muta-
tional pressures and selection forces acting on the microbial genomes
may result in species-specific nucleotide composition [52]. Thus, a
laterally transferred region may show atypical composition which is dis-
tinguishable from the average of the recipient genome. Under this as-
sumption, most compositional methods try to choose certain sequence
characteristics as discrimination criteria to measure the compositional
differences. Several features have been shown to be good criteria, in-
cluding GC content, codon usage, amino acid usage, and oligonucleotide
(k-mer) frequencies [53]. Based on these criteria, single-threshold
methods are often adopted for GI prediction. The atypicality of each
gene or genomic region is measured by a score derived from the com-
parison with the average of the whole genome via similarity measures.
The genes or genomic regions with scores below or above a certain
threshold (either predefined or dynamically computed) are supposed
to be atypical. The consecutive atypical genes or genomic regions are
finally merged to get candidate GIs.

3.1.1. Methods based on gene sequence composition

Methods based on gene sequence composition are often designed to
detect LGT, or laterally transferred genes [54], and only a few methods
are specifically developed to detect Gls. The methods for LGT detection
can be utilized to identify GIs by combing clusters of laterally
transferred genes, but they are supposed to be less sensitive, since
some genes inside a GI may not show atypicality to allow the whole
GI being captured. Here we mainly discuss specific methods for GI
detection.
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Table 1

The available datasets related to genomic islands.
Name Feature Availability
Database
PAIDB [25,28] The only database including most reported PAIs and REIs http://www.paidb.re.kr/about_paidb.php
Islander [24,29] Intended to be gold standard dataset for accurately mapped Gls http://bioinformatics.sandia.gov/islander
ICEberg [26] Providing comprehensive information about ICEs http://db-mml.sjtu.edu.cn/ICEberg/

Constructed dataset
RVM datasets [15]
IslandPick datasets [27]

331 GIs and 337 non-Gls from 37 bacteria of 3 genera
771 Gls and 3770 non-Gls from 118 bacteria of 12 orders

Not available
http://www.pathogenomics.sfu.ca/islandpick_GI_datasets/

Some GI detection methods combine multiple discrimination
criteria, such as Karlin's method [55] and PAI-IDA [30]. Karlin's method
and PAI-IDA predict GIs and PAIs by evaluating multiple compositional
features (GC content, dinucleotide frequencies, codon usage, and amino
acid usage). Karlin's method is a single-threshold method, while PAI-
IDA uses iterative discriminant analysis. Both methods use a sliding
window to scan the genome, and sequences or genes inside each
window are used for computation.

Other methods use only a single discrimination criterion, such as
IslandPath-DINUC [40,56] and SIGI-HMM [31]. IslandPath-DINUC uses
a single-threshold method to predict GIs as multiple consecutive
genes with only dinucleotide bias. SIGI-HMM predicts Gls and putative
donor of laterally transferred genes based solely on the codon usage
bias of individual gene. As an extension of SIGI [57], an earlier method
based on scores derived from codon frequencies, SIGI-HMM substitutes
the previous heuristic method with Hidden Markov Model (HMM) to
model the laterally transferred genes and native genes as different
states.

Methods based on gene sequence composition are generally easy
to implement and apply. But what they indeed find are composition-
ally atypical genomic regions in terms of certain criteria. So there are
many false positives and false negatives. Native regions may easily
be detected as false positives owing to their atypical composition
for reasons other than LGT, such as highly expressed genes [58]. At
the same time, ameliorated Gls [52] or GIs originated from genomes
with similar composition may not be detected. But the false positives
can be reduced by eliminating well-known non-Gls. For example, by
filtering out putative highly expressed genes based on codon usage,

SIGI-HMM was reported to have the highest precision in a previous
evaluation [27].

For methods performing comparisons with the genomic average,
laterally transferred regions may contaminate the genome and reduce
the accuracy of predictions [59]. Furthermore, the predicted boundaries
of Gls are not precise, since the boundaries between laterally transferred
genes and native genes can be compositionally ambiguous [54].
Additionally, these methods at the gene level require reliable gene an-
notations. Thus, they may not be applied to newly sequenced genomes,
which have no or incomplete annotations.

3.1.2. Methods based on DNA sequence composition

The increase of newly sequenced genomes without complete
annotations necessitates GI prediction based on DNA sequences
alone. Without the aid of gene boundaries, the large genome has
to be segmented by other measures. According to genome segmen-
tation approaches, methods based on DNA sequence composition
can be classified into two major kinds: window-based methods and
windowless methods.

Window-based single-threshold methods are commonly used for GI
detection. These methods use a sliding window to segment the whole
genome sequence into a set of smaller regions. There are several
representative programs, including AlienHunter [32], Centroid [33],
INDeGenlUS [35], Design-Island [34] and GI-SVM [36]. The major differ-
ences among them are in: the size of the sliding window, the choice of
the discrimination criterion and similarity measure, and the determina-
tion of the threshold.

Gl prediction methods
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Fig. 2. The hierarchical overview of computational methods for predicting genomic islands which are discussed in this paper.
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Table 2
The summary of selected programs for predicting genomic islands.

Program Form

Availability

Methods based on gene composition of one genome
PAI-IDA [30]
SIGI-HMM [31]

Command line
Graphical interface

Methods based on DNA composition of one genome
Window-based methods

AlienHunter [32]

Centroid [33]

Design-Island [34]

INDeGenlUS [35]

GI-SVM [36]
Windowless methods

GC Profile [37,38,60]

MJSD [39]

Command line
Command line
Command line
Command line
Command line

Web-based
Command line

Methods based on GI structure of one genome
Direct integration methods

IslandPath [40]
Machine learning methods

GlDetector [41]

GIHunter [42]

Web-based

Command line
Command line

Methods base on multiple genomes
tRNACc [43]
IslandPick [27]

Web-based
Command line

Ensemble methods

IslandViewer [44-46] Web-based

EGID [47] Command line
GIST [48] Graphical interface
PredictBias [49] Web-based

PIPS [50] Command line

Methods for incomplete genome

GI-POP [51] Web-based

Upon request
https://www.uni-goettingen.de/en/research/185810.html

http://www.sanger.ac.uk/resources/software/alien_hunter
Upon request
http://www.isical.ac.in/~rchatterjee/Design-Island.html
Upon request

https://github.com/icelu/GI_Prediction

http://tubic.tju.edu.cn/GC-Profile
http://cbio.mskcc.org/~aarvey/mjsd/

http://www.pathogenomics.sfu.ca/islandpath/

http://www5.esu.edu/cpsc/bioinfo/software/GIDetector
http://wwwb5.esu.edu/cpsc/bioinfo/software/GIHunter

http://db-mml.sjtu.edu.cn/MobilomeFINDER/
http://www.pathogenomics.sfu.ca/islandviewer/download/

http://www.pathogenomics.sfu.ca/islandviewer
http://wwwb5.esu.edu/cpsc/bioinfo/software/EGID
http://wwwb5.esu.edu/cpsc/bioinfo/software/GIST
http://www.bioinformatics.org/sachbinfo/predictbias.html
http://www.genoma.ufpa.br/lgcm/pips

http://gipop.life.nthu.edu.tw

Both AlienHunter and GI-SVM use a fixed-size overlapping window
of fixed step size. AlienHunter is the first program for GI detection on
raw genomic sequences. It measures segment atypicality via relative
entropy based on interpolated variable order motifs (IVOM). The
threshold can be obtained by either k-means clustering or standard
deviation (when there are fewer samples). GI-SVM is a recent meth-
od using either fixed or variable order k-mer frequencies. It detects
atypical windows via one-class SVM with spectrum kernel. An auto-
matic threshold can be obtained from one dimensional k-means
clustering.

Centroid partitions the genome by a non-overlapping window of
fixed size. The average of k-mer frequency vectors for all the windows
is seen as the centroid. Based on the Manhattan distances from each
frequency vector to the centroid, outlier windows are selected by a
threshold derived from standard deviation. INDeGenlUS is a method
similar to Centroid. But it uses overlapping windows of fixed size and
computes the centroid via hierarchical clustering.

Design-Island is a two-phase method utilizing k-mer frequencies. It
incorporates statistical tests based on different distance measures to
determine the atypicality of a segment via pre-specified thresholds. In
the first phase a variable-size window is used to obtain initial GIs,
whereas in the refinement phase a smaller window of fixed size is
used to scan over these putative GIs for getting final GI predictions.

Some of these methods are designed to alleviate the problem of
genome contamination. Design-Island excludes the initially obtained
putative GIs when computing parameters for the entire genome in the
second phase. GI-SVM measures the atypicality of all the windows si-
multaneously via one-class SVM, and only some windows contribute
to the genomic signature.

To deal with the imprecise GI boundaries that result from a large
step size, AlienHunter uses HMM to further localize the boundaries be-
tween predicted Gls and non-Gls. But most other programs do not con-
sider this issue.

The few windowless methods mainly include GC Profile [37,60] and
M]JSD [39].

GC Profile is an intuitive method to calculate global GC content dis-
tribution of a genome with high resolution. The abrupt drop in the pro-
file indicates the sharp decrease of GC content and thus the potential
presence of a GI. This method was later developed into a web-based
tool which is used for analyzing GC content in genome sequences [38].
However, other features have to be used together with GC Profile for
GI prediction due to the poor discrimination power of GC content.

MJSD is a recursive segmentation method based on Markov Jensen-
Shannon divergence (M]SD) measure. The genome is recursively cut
into two segments by finding a position where the sequences to
its left and to its right have statistically significant compositional
differences. Subsequently, each segment is compared against the
whole genome to check its atypicality via a predefined threshold.

Methods based on DNA sequence composition have the similar
advantages and disadvantages as methods based on gene sequence
composition.

Specifically, window-based methods can be highly sensitive with
appropriate implementations. For example, AlienHunter was reported
to have the highest recall in previous evaluation [27], and GI-SVM was
recently shown to have even higher sensitivity than AlienHunter [36].
But their precisions are quite low due to the limited input information.
They are also inherently incapable of identifying the precise boundaries
between regions with compositional differences [39].

In contrast, windowless methods can delineate the boundaries
between GIs and non-Gls more accurately [39]. GC Profile has suc-
cessfully discovered a few reliable GIs in several genomes [60]. But
it seems subjective to access the abruptness of jump in the GC profile,
and only GIs with low GC content can be detected. MJSD is better at
predicting Gls of size larger than 10 kb [39], but the procedure to de-
termine segment atypicality still suffers from the contamination of
the whole genome.
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3.1.3. Methods based on GI structure

The presence of compositional bias is usually not sufficient to assure
the foreign origin of putative GIs. Thus, it is necessary to develop
methods based on multiple Gl-related structural features. According to
the approaches of integrating different features, methods based on GI
structure can be divided into direct integration methods and machine
learning methods.

The direct integration methods adopt a series of filters to get more
reliable GIs. But some integrated features are only used for validation,
since it is difficult to systematically use them for prediction given the
extreme GI structural variation. There are mainly two representative
programs: IslandPath [40] and Islander [24].

IslandPath is the first program integrating multiple features (GC bias,
dinucleotide bias, the presence of tDNAs and mobility-related genes) to aid
Gl detection. But IslandPath only annotates and displays these features
in the whole genome, leaving it to the user to decide whether a region
is a GI or not. Based on these computed features, a GI can be identified
as multiple consecutive genes with both dinucleotide bias and the
presence of mobility-related genes (IslandPath-DIMOB) [56].

Islander incorporates a method to accurately detect tDNA-borne GIs.
Islander seeks specific tDNA signature to find candidate GIs. Several fil-
ters are used to exclude potential false positives, such as regions with-
out integrase genes. Recently, the filtering algorithms are refined via
incorporating more precise annotations available now [29].

Several machine learning approaches based on constructed GI
datasets have been proposed, including Relevance Vector Machine
(RVM) [15], GIDetector [41], and GIHunter [42]. The major differences
among them are in the choices of training datasets, Gl-related features,
and learning algorithms.

RVM is the first machine learning method to study structural models
of Gls. It is based on the datasets constructed from comparative geno-
mics methods. Eight features of each genomic region are used to train
GI models: IVOM score, insertion point, GI size, gene density, repeats,
phage-related protein domains, integrase protein domains and non-
coding RNAs.

GIDetector utilizes the same features and training datasets as RVM,
but it implements decision tree based ensemble learning algorithm.
GIHunter uses the similar algorithm as GIDetector, but adopts slightly
different features and datasets. GI size and repeats are replaced by highly
expressed genes and average intergenic distance. The training datasets are
replaced by IslandPick datasets. The predictions of GIHunter for thou-
sands of microbial genomes are available online at http://www5.esu.
edu/cpsc/bioinfo/dgi/index.php.

Methods utilizing GI structure can generate more robust predictions.
For example, the high reliability of GIs inserted at tDNA sites leads to
very few false positives in the predictions from Islander [29]. But these
methods depend on accurate identification of multiple related features,
such as tRNA genes, mobility-related genes, and virulence factors.

Direct integration methods are straightforward, but many GIs may
be filtered out due to the lack of certain features. For example,
IslandPath-DIMOB was shown to have very low recall in spite of high
accuracy and precision [27].

Conversely, machine learning approaches can systematically inte-
grate multiple GI features to improve GI prediction. This can be partly
reflected by the high recall and precision of GIHunter [42]. However,
the performance of supervised methods is closely related to the quality
of training datasets.

3.2. Methods based on several genomes

Methods based on several genomes detect Gls based on their spo-
radic phylogenetic distribution. They compare multiple related ge-
nomes to find regions present in a subset but not all the genomes. The
comparison procedure often involves analyzing results from sequence
alignment tools [17], such as local alignment tool BLAST [61], and
whole-genome alignment tool MAUVE [62].

BLAST and MAUVE can be used to find unique strain-specific regions
(GI candidates), whereas MAUVE can also be used to find conserved re-
gions. For example, Vernikos and Parkhill performed genome-wide
comparisons via all-against-all BLAST, and then applied manual inspec-
tion to find reliable GIs for training GI structural models [15]. They also
differentiated gene gain from gene loss via a maximum parsimony
model obtained from MAUVE alignments. Despite the tediousness of
manual analysis, there are only two automatic methods based on
several genomes: tRNAcc [43] and IslandPick [27].

The tRNAcc method utilizes alignments from MAUVE to find Gls
between a conserved tRNA gene and a conserved downstream flanking
region across the selected genomes. It was later integrated into
MobilomeFINDER [63], an integrative web-based application to predict
Gls with both computational and experimental methods. Complemen-
tary analysis is also incorporated in tRNAcc to provide additional sup-
port, including GC Profile, strain-specific coding sequences derived
from BLAST analysis, and dinucleotide differences. But appropriate
genomes to compare have to be selected manually.

To facilitate genome selection, IslandPick builds an all-against-all
genome distance matrix and utilizes several cut-offs to select suitable
genomes to compare with the query genome, making it the first
completely automatic comparative genomics method. The pairwise
whole-genome alignments are done by MAUVE to get large unique re-
gions in the query genome. After being filtered by BLAST to eliminate
genome duplications, these regions are considered as putative GIs.

Due to the inaccuracies of composition-based methods, methods
based on several genomes are preferred if there are appropriate ge-
nomes for comparison [27]. But uncertainties still exist in their predic-
tions. Firstly, the results are dependent on the genomes compared
with the query genome [27]. Secondly, it is hard to distinguish between
gene gain via LGT and gene loss [23]. Thirdly, genomic rearrangements
can cause difficulties in accurate sequence alignments [62]. In addition,
the applications of methods based on several genomes are limited, since
the genome sequences of related organisms may not be available for
some query genomes.

3.3. Ensemble methods

Different kinds of methods often predict non-overlapping Gls [17]
and complement each other [39]. To make the best of available
methods, ensemble methods have been proposed to combine different
methods.

One way of combination is to merge the predictions from multiple
programs. This approach is implemented in IslandViewer [44] and
EGID [47]. IslandViewer is a web-based application combining three
programs: SIGI-HMM, IslandPath-DIMOB, and IslandPick. It provides
the first user-friendly integrated interface for visualizing and
downloading predicted Gls. Newer versions of IslandViewer include
further improvements [45,46], such as improving efficiency and flexibil-
ity, incorporating additional gene annotations, and adding interactive
visualizations. But the underlying integration method is mainly a
union of predictions from individual programs. Unlike IslandViewer,
EGID uses a voting approach to combine predictions from five pro-
grams: Alienhunter, IslandPath, SIGI-HMM, INDeGenlUS, and PAI-IDA.
A user-friendly interface for EGID is provided in the program GIST [48].

Another way of combination is to filter the predictions from one
method by other methods. This approach is common for PAI prediction,
since it is critical to utilize multiple features to discern PAls from other
GIs. Several PAI detection programs adopt this approach, including
PAIDB [64], PredictBias [49] and PIPS [50]. These programs often com-
bine composition-based methods, comparative genomics methods,
and homology-based methods.

Both PAIDB and PredictBias firstly identify putative GIs based on
compositional bias. For PAIDB, the putative GIs homologous to published
PAls (overlapping with PAI-like regions obtained from homology
searches) are seen as candidate PAls. SIGI-HMM and IslandPath-
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DIMOB are later integrated into PAIDB for GI predictions [28]. To over-
come the dependency on known PAls, PredictBias constructs a profile
database of virulence factors (VFPD). If the putative GIs (or eight contig-
uous genes) have a pre-specified number of significant hits to VFPD,
they are seen as potential PAls. PredictBias also integrates comparative
analysis to validate the potential PAIs.

PIPS integrates multiple available tools for computing PAl-associated
features. It filters out the initial predictions from comparative genomics
analysis via empirical logic rules on selected features (GC content, codon
usage, virulence factors and hypothetical proteins).

Combining the predictions of several programs is supposed to
perform better than individual programs. Actually, IslandViewer was
shown to increase the recall and accuracy without much sacrifice of pre-
cision [17], and EGID was reported to yield balanced recall and precision
[47].

The available ensemble methods are mostly characterized by user-
friendly interfaces, but the combination procedures do not seem to be
sophisticated enough. Some valuable predictions made by one method
may be discarded in the ensemble method. For example, PredictBias
was shown to have lower sensitivity and accuracy than PIPS on two
bacterial strains [50], which reflects the effects of different integration
strategies on the performances to some extent.

3.4. Methods for incomplete genomes

Thanks to low-cost high-throughput sequencing, an increasing
number of microbial genomes are being sequenced. However, many of
these genomes are in draft status. So there is a need to predict GIs in
incomplete genomes. Currently, there are only two programs for this
purpose: GI-GPS [51] and IslandViewer 3 [46]. Both programs firstly as-
semble the sequence contigs into a draft genome, and then use methods
similar to those for predicting GIs in complete genomes.

GI-GPS is a component of GI-POP, a web-based application integrat-
ing annotations and GI predictions for ongoing microbial genome pro-
jects. GI-GPS uses an assembler within GI-POP for genome assembly.
Then an SVM classifier with radial basis function kernel is applied to
segments obtained from a sliding window of fixed size along the ge-
nome. The classifier is trained on IslandPick datasets and selected Gls
from PAIDB. GI-GPS utilizes compositional features in model training
to tolerate potential errors in the assembled genome. The predictions
from the classifier are filtered by homologous searches to keep only se-
quences with MGE evidence. Then the boundaries of filtered sequences
are refined by repeats and tRNA genes.

IslandViewer 3 maps the annotated contigs to a completed reference
genome to generate a concatenated genome. Then it uses this single
genome as input to the normal IslandViewer pipeline.

GI-GPS and IslandViewer 3 make it feasible to predict Gls for
draft genomes. But they are still simplistic and limited. For example,
IslandViewer 3 is restricted to the genome which has very few contigs
and reference genomes of closely related strains of the same species
[46]. Furthermore, it seems inappropriate to apply methods similar to
those developed for complete genomes, since draft genome sequences
do not have as high quality as whole genome sequences.

4. Summary and outlook

Since the discovery in microbial genomes, the importance of Gls has
been gradually appreciated. Extensive research has demonstrated mul-
tiple Gl-associated signatures, but these features show great variation in
different genomes. Nevertheless, several of these features have been re-
vealed to be effective in GI detection and applied in many computation-
al methods, including compositional bias, structural markers and
phylogenetically restricted distribution. Based on the input data, we
classify these methods into four large groups, which are further divided
into subgroups based on the features utilized or the methodology
adopted. It should be noted that some methods may belong to multiple

categories. For example, tRNAcc and GI-GPS can also be classified as
ensemble methods.

In short, distinct kinds of methods detect GIs based on diverse
features and assumptions, and thus generate predictions of different
reliabilities. Methods based on gene or DNA composition of a single ge-
nome provide only rough estimations, since they usually take advantage
of very limited information. Methods based on GI structure utilize mul-
tiple lines of evidence, and are supposed to be more reliable. But compo-
sitional or structural features in a single genome can only provide static
information for GI prediction. Instead, methods based on several ge-
nomes can reveal genetic flux among closely related genomes and pro-
vide dynamic information [3]. Therefore, they can be more accurate. To
get more comprehensive and reliable results, it seems desirable to use
methods based on more evidence, such as ensemble methods and
methods based on GI structure. This can be illustrated by the evaluations
of some methods on the well-studied S. typhi CT18 genome (Table 3).

19 reference Gls were obtained from [39], excluding two GlIs of size
smaller than 5 kb. The predictions of each program were either
downloaded from the corresponding website (IslandViwer (including
the predictions from SIGI-HMM, IslandPath-DIMOB, and IslandPick),
tRNAcc, GIHunter) or from running the program on local machine
with optimal parameters (GI-SVM, EGID). The evaluation metrics (Re-
call, Precision, F1) were measured as those in [36]. All the relevant
data and scripts can be found at https://github.com/icelu/GI_Prediction.

Although the sophistication and performance of GI prediction
methods have been steadily improved, there is still room for further im-
provement. For instance, the precision and recall of current methods are
still not high enough [43], suggesting the presence of many false nega-
tives and false positives. This can be improved either by more advanced
integration of multiple kinds of methods or refinement on a single kind
of methods.

For GI prediction based on a single genome, machine learning
methods may help. On one hand, DNA composition-based prediction
can be seen as contiguous subsequence based anomaly detection [65],
whose goal is to find anomalous contiguous subsequences significantly
different from other subsequences in a long sequence. From this
perspective, many computational approaches for outlier detection
may be adapted for GI prediction. On the other hand, it seems feasible
to apply more sophisticated supervised learning algorithms for
structure-based GI prediction, since the accumulation of reliable GIs
can provide a more solid basis for model training.

For GI prediction based on incomplete genomes, methods directly
applied to sequence contigs without initial genome assembly may be
developed. Despite the challenges in analyzing short sequences, there

Table 3
The comparisons of selected programs for predicting genomic islands on S. typhi CT18
genome.

Program Category Recall Precision F1

GI-SVM Methods based on DNA 0.895 0.446 0.596
composition

EGID Ensemble methods 0.779  0.535 0.634

SIGI-HMM Methods based on gene 0.241 0.556 0.337
composition

IslandViewer Ensemble methods 0.654 0.670 0.662

GIHunter Methods based on GI structure  0.827  0.676 0.744

IslandPath-DIMOB  Methods based on GI structure  0.553  0.788 0.650

tRNAcc Methods based on several 0.286  0.993 0.444
genomes

IslandPick Methods based on several 0.060 1.000 0.114
genomes

The evaluations were based on 19 reference GIs obtained from [39], excluding two Gls of
size smaller than 5 kb. The predictions of each program were either downloaded from the
corresponding website (IslandViwer (including the predictions from SIGI-HMM,
IslandPath-DIMOB, and IslandPick), tRNAcc, GIHunter) or from running the program on
local machine with optimal parameters (GI-SVM, EGID). The evaluation metrics (Recall,
Precision, F1) were measured as those in [36]. All the relevant data and scripts can be
found at https://github.com/icelu/GI_Prediction.
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has been a method proposed to detect LGT in metagenomic sequences
which consist of contigs from different species in an environment [66].
This approach may be inspiring for predicting GIs from the contigs
directly.
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