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Significant underestimation of radiative forcing by
aerosol–cloud interactions derived from satellite-
based methods
Hailing Jia 1,2,3, Xiaoyan Ma1✉, Fangqun Yu 2✉ & Johannes Quaas 3

Satellite-based estimates of radiative forcing by aerosol–cloud interactions (RFaci) are con-

sistently smaller than those from global models, hampering accurate projections of future

climate change. Here we show that the discrepancy can be substantially reduced by cor-

recting sampling biases induced by inherent limitations of satellite measurements, which tend

to artificially discard the clouds with high cloud fraction. Those missed clouds exert a

stronger cooling effect, and are more sensitive to aerosol perturbations. By accounting for the

sampling biases, the magnitude of RFaci (from −0.38 to −0.59Wm−2) increases by 55 %

globally (133 % over land and 33 % over ocean). Notably, the RFaci further increases to −1.09

Wm−2 when switching total aerosol optical depth (AOD) to fine-mode AOD that is a better

proxy for CCN than AOD. In contrast to previous weak satellite-based RFaci, the improved

one substantially increases (especially over land), resolving a major difference with models.
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By acting as cloud condensation nuclei (CCN), aerosol can
alter cloud properties and precipitation1,2, thereby influ-
encing the Earth’s radiation budget and hence climate

change. An increase in CCN number concentration will generate
a cloud with more droplets. The consequence is scattering more
solar radiation back to space, thus exerting a negative climate
forcing. This is known as the cloud albedo effect or the Twomey
effect1. Although extensive investigations have been made to
quantify the radiative forcing by aerosol–cloud interaction
(RFaci), significant uncertainties remain on its magnitude3,4.

The satellite-based RFaci using retrievals of column aerosol and
cloud properties, typically in the range of −0.2 to −0.7Wm−2

(see refs. 5–9), is much weaker than the modeled values of −0.3 to
−1.8Wm−2 (see ref. 3). Though observational estimates based on
metrics like aerosol mass, that are derived including additional
model information, tend to generate higher RFaci (−0.97 ±
0.23Wm−2)10,11, they are still generally lower than modeled
values. Studies constraining numerical models with satellite
observations reported smaller RFaci values than that from models
alone12,13. It is also noteworthy that, by putting a larger weight to
satellite-based studies, the best estimate of RFaci by IPCC
decreased from −0.7Wm−2 (see ref. 3) to −0.45Wm−2 (see
ref. 4). Therefore, it is essential to reconcile significant differences
between satellite- and model-based RFaci, in particular, to
improve the estimates from an observational perspective.

In addition to the uncertainties of model simulations, this
discrepancy may also be partly due to satellite-related issues. The
most unavoidable limitation is retrieval biases in both aerosol and
cloud properties, such as overestimated aerosol optical depth
(AOD) due to either cloud contaminations14 or cloud adjacency
effects15, as well as misestimated cloud effective radius (CER)
thus cloud droplet number concentration (Nd) owing to inade-
quate retrievals applied to broken and/or inhomogeneous
clouds16. Further investigations suggested that the covariation of
retrieval biases in aerosol and cloud properties could incur a false
correlation between them, thereby underestimating the cloud
albedo effect17. By utilizing satellite simulators, Ma et al.18 found
that low-aerosol loading conditions are not well detected by
satellites, but modeled clouds are sensitive to aerosol perturba-
tions in these conditions, which contributes a large part to the
difference of cloud susceptibilities derived from model and
satellite. Also, whether the Nd–AOD relationship under present-
day (PD) can be used to determine the preindustrial (PI) Nd

19,20,
and whether the AOD in cloud-free regions is an adequate proxy
for CCN at cloud base21, are still under debate. If aerosol infor-
mation is available at cloud base altitude, an even stronger
aerosol–cloud relationship would be expected22. All of these tend
to underestimate the RFaci19,23.

Our focus here is on another potential contributor to the
underestimates of satellite-based RFaci, i.e., sampling biases, which
were not explored in detail previously. Passive remote sensing
only allows us to retrieve aerosol properties in clear pixels. In
order to collect adjacent aerosol and cloud retrievals for statistical
analysis, many studies used AOD on a coarse-resolved grid (such
as 1° × 1° on a latitude–longitude grid) to match cloud pixels,
assuming that aerosols properties in adjacent clear areas are
representative of those under cloudy conditions5,7,24. Never-
theless, in the case that the clouds fully cover this larger grid box,
hampering any AOD retrievals, these clouds were not sampled for
the analysis on a daily basis. It is thus expected that stratiform
clouds with high cloud fraction (f) at the aggregate scale would be
artificially and systematically excluded in current satellite-based
investigations that link daily aerosol and cloud properties. This is
problematic especially because stratiform clouds have been
reported to exert much stronger aerosol indirect effects (AIE)
than cumulus clouds25,26.

Typically, the sampling biases can affect derived RFaci values
through two pathways. First, it changes the regressions between
cloud quantities and AOD (i.e., dlnNd

dlnAOD). All satellite-related esti-
mates would suffer from this, including the studies that utilize
pure satellite measurements5,27,28, that involve satellite mea-
surements but with a radiative transfer model29, as well as that
constrain models with satellite observations12,13. The second
pathway is by altering f directly, key parameters in the calculation
of RFaci (see Eq. (3) in “Methods”). This pathway is only relevant
to the abovementioned pure satellite-based investigations that
require the coexistence of retrievals of cloud and aerosol when
computing RFaci value.

In this study, we employ the satellite-based approach proposed
by Quaas et al.5 to reassess RFaci by accounting for the impacts of
sampling biases. The key idea is to make use of an aerosol rea-
nalysis product that is tied to the satellite-retrieved AOD wher-
ever it is available and also makes use of model information and
thus allows for a consistent AOD estimate everywhere in space
and time, including in regions that are cloud-covered. The RFaci is
also estimated by adopting fine-mode AOD (AODf) in addition
to AOD that was commonly used in previous satellite-based
investigations, as well as different anthropogenic fractions, to
assess the sensitivity of the results to choices of CCN proxy and
anthropogenic fraction. We find that after fixing the sampling
biases the RFaci is substantially more negative (particularly over
land), along with a surprisingly similar spatial distribution to the
modeled result. Also, the magnitude of RFaci almost doubles when
switching AOD to AODf which is a better proxy for CCN.

Results
Most satellite-based studies on RFaci estimates and/or aerosol–cloud
correlations require the coincidence of aerosol and cloud retrievals
and thus miss cloud samples in grid boxes in which no aerosol is
successfully retrieved. To explore the influences of sampling biases
quantitatively, analyses under different scenarios are conducted by
combining cloud retrievals from the Clouds and the Earth’s Radiant
Energy System (CERES)30 with the MODerate Resolution Imaging
Spectroradiometer (MODIS) aerosol retrievals31 and the Modern-Era
Retrospective analysis for Research and Applications, version 2
(MERRA-2) aerosol reanalysis32. The coarse-resolution aerosol data
(1° × 1° resolution for MODIS retrieval and 0.5° × 0.625° resolution
for MERRA-2 reanalysis) are projected to the higher resolution of
pixel-scale cloud observations, generating 20 × 20 km2 resolution
aerosol–cloud data pairs for analysis. The key idea is that the rea-
nalysis is tied to the satellite retrievals of AOD wherever they are
available (in cloud-free conditions) but also provides AOD in cloud-
covered regions. Figure 1 illustrates four basic scenarios. Aero_Cld
includes the samples for which both aerosol (according to the satellite
sampling) and cloud retrievals are available, while Cld includes ones
that only cloud retrievals are available (filling in AOD from the
model information in the reanalysis). All_Cld employs the combined
datasets in Aero_Cld and Cld, i.e., all available ambient clouds.
Aero_Cld_Modis is the same as Aero_Cld but using MODIS AOD,
which is the most common configuration in satellite-based investi-
gations. Aero_Cld should be largely consistent with Aero_Cld_Modis
as MERRA-2 assimilates MODIS AOD, but avoids retrieval artifacts
at least to some extent. On the basis of Aero_Cld and All_Cld, two
additional scenarios (Aero_Cld_R and Aero_Cld_C) are designed to
quantify the individual contributions of changed f and regression
slopes ( dlnNd

dlnAOD) to RFaci estimate (see the section “RFaci estimates”).

Missed cloud samples. Although the sampling biases have been
initially noticed6,33,34, it remains unclear what amount of data
could be missed and its potential consequences, which is essential
to correct the results from previous satellite-based studies. Table 1
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summarizes the number of samples (N; i.e., daily 20 × 20 km2

resolution aerosol–cloud data pairs) and averaged f for Aero_Cld
and Cld for fourteen different oceanic and continental regions
(see Supplementary Fig. 1 for the geographical distribution),
respectively, over the period 2002–2018. It is noteworthy that N
for Cld is comparable to that for Aero_Cld, and even doubled in
some regions over land (e.g., NAM, EUR, ASI, and SAM), indi-
cating that more than half of the cloud samples were artificially
discarded in previous satellite-based researches. Meanwhile, f for
Cld in each region is substantially larger than that for Aero_Cld,

implying those missed clouds also have a stronger radiative
effect. After including all cloud samples, globally averaged
f increases relatively by 13%, compared to Aero_Cld. Spatially,
significant increases of f occur over land (Fig. 2), especially for the
regions with strong anthropogenic emissions (e.g., NAM, ERU,
ASI, and SAM). According to Eq. (3) in “Methods”, such a
spatial pattern would further amplify the effect of sampling biases
on RFaci.

In addition to altering average cloud properties, the sampling
bias is also likely to influence the regressions between cloud

Cloud MODIS AOD coverage area

MERRA-2 AOD coverage area+Cloud projection area

1°×1° atmospheric column

1 lon 1 lon 1 lon

Aero_Cld_Modis Aero_Cld Cld

All_Cld

Fig. 1 Schematic diagram of four basic scenarios in this study. The schematic shows the combinations of clouds and its associated aerosol retrieval
(green; MODIS aerosol optical depth (AOD))/reanalysis (yellow; MERRA-2 AOD) within 1° × 1° atmospheric column (cuboid) for different scenarios.
Aero_Cld_Modis represents the combination of the clouds not fully covering 1° × 1° area and its adjacent MODIS aerosol retrieval. Aero_Cld includes the
same cloud samples as Aero_Cld_Modis but utilizing MERRA-2 AOD. Cld scenario involves the clouds fully covering 1° × 1° area, i.e., no successful AOD
retrieval so that one has to fill with re-analyzed AOD. All_Cld employs the combined datasets in Aero_Cld and Cld, including all available ambient clouds.

Table 1 The total number of samples in All_Cld (Ntotal), and the number of samples (N), averaged cloud fraction (f) in Aero_Cld
and Cld, respectively, for the fourteen regions over the period 2002–2018.

Region Ntotal (#) N (#) in Aero_Cld f (%) in Aero_Cld N (#) in Cld f (%) in Cld

NAM 23,920,376 8,483,378 37.6 15,436,998 88.1
EUR 16,880,708 5,111,997 41.3 11,768,711 90.4
ASI 31,432,972 12,154,722 41.7 19,278,250 89.2
AFR 26,144,924 10,827,397 48.6 15,317,527 83.1
SAM 29,635,448 9,827,060 49.1 19,808,388 82
OCE 10,451,012 5,247,169 38.7 5,203,843 75.6
NPO 133,923,104 54,758,744 71.5 79,164,360 87.3
NAO 85,026,928 41,927,792 65.6 43,099,136 80.6
TPO 174,596,224 84,245,712 59.9 90,350,512 63.9
TAO 84,316,880 39,570,820 60.7 44,746,060 68.1
TIO 51,639,812 28,545,216 51.1 23,094,596 51.3
SPO 170,840,160 79,262,384 75.4 91,577,776 89.1
SAO 91,109,944 37,466,440 77.4 53,643,504 92
SIO 126,288,636 56,619,836 76.8 69,668,800 91.1
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quantities and AOD. As shown in Fig. 3a, b, the slopes of ln Nd

versus ln AOD are overall larger for Cld and All_Cld than that for
Aero_Cld, with the exception of EUR and three regions over the
Southern Ocean (SPO, SAO, and SIO). Note that the Southern
Oceans only has a limited impact on the global-averaged RFaci
due to its low anthropogenic fraction35. In situ observations have
demonstrated that the response of Nd to aerosols is more sensitive
for stratiform clouds than cumuliform clouds26. Also, stratiform
ones have smaller retrieval biases for the Nd retrieval than
cumulus ones16, thus suffer less AIE underestimation caused by
partly cloudy retrievals17,25. Thus, the larger slopes for Cld and
All_Cld may be due to the inclusion of more samples with large f,
which corresponds predominantly to stratiform clouds. Further-
more, to check if using different CCN proxies can change the
above conclusion, we conduct the regression analyses based on
re-analyzed aerosol index (AI) containing the information of
aerosol size, and sulfate mass concentration (SO4) that eliminate
the influence of aerosol swelling, which have been reported to
greatly modulate the correlations between AOD and cloud
quantities (Nd

36, f37, and CER38) via relative humidity. Supple-
mentary Fig. 2 shows that the results are rather similar with the
AOD-based analysis, i.e., generally larger slopes for Cld and
All_Cld than Aero_Cld.

For a better comparison with previous satellite-based results, it
is critical to know the change of slopes induced by utilizing
different AOD products (e.g., satellite versus reanalysis data). As
shown in Fig. 3a, b, the slopes for Aero_Cld are ~65% higher than
those for Aero_Cld_Modis over land on average, whereas no
systematic difference is found over the ocean. The difference
between the two tests is likely due to the retrieval biases of AOD
in Aero_Cld_Modis, which have been reported to result in a
serious underestimation of AIE due to the covariation of retrieval
biases in AOD and CER17. When retrieving aerosol in cloudy
pixels, AOD can be artificially overestimated due to either cloud
contaminations14 or cloud adjacency effects15, and the over-
estimation has been found to increase with f14. However,
MERRA-2 AOD implements an online aerosol chemistry,
radiation, and transport model and restricts the assimilation of
MODIS to the pixels of f <70% to ensure a less biased source32, so
that it can provide more physically reasonable aerosol distribu-
tions to avoid the spuriously high AOD near clouds, thereby
largely reducing the retrieval artifacts as seen in MODIS AOD. As

expected, MODIS AOD agrees well with MERRA-2 for the clear
sky, but the former is indeed systematically higher than the later
in the presence of clouds (Supplementary Fig. 3), along with an
increasing difference as f increases (Supplementary Fig. 4). Also,
the response of the difference to f over land is overall more
sensitive than that over the ocean, implying that more serious
retrieval artifacts occur over land, which might explain the larger
discrepancy of slopes between Aero_Cld and Aero_Cld_Modis
over land (Fig. 3a, b). Given all that, the re-analyzed AOD may be
a better option for correlating with cloud quantities.

For Aero_Cld_Modis, the slopes of ln Nd versus ln AOD over
land (0.08–0.33) are significantly lower than those over the ocean
(0.14–0.51), which is consistent with previous satellite observa-
tions analyses5,7. The other three tests using MERRA-2 AOD,
however, show weaker land–sea contrast. Also, the modeled
land–sea contrast was reported to be much weaker than the
satellite-observed one39,40. It is thus likely that the land–sea
contrast of slopes might have been overestimated by previous
studies relying purely on satellite observations.

AI and AODf are believed as better proxies for the CCN than
total AOD, as they are representative of fine-mode aerosol
particles, which contribute the most to CCN number
concentration19. However, the analysis based on MODIS AI or
AODf is not conducted in this study due to the poor skill in
retrieving aerosol size parameters over land31. As an alternative,
the sparser but more reliable POLarization and Directionality of
Earth’s Reflectance-3 (POLDER-3) AODf

41 is used here, which
has been extensively validated with ground-based observations
over land42,43. Since the sparseness of POLDER-3 AODf would
result in a serious lack of data, we also employ MERRA-2 AODf

with full spatial and temporal coverage, which is calculated as the
sum of AODs of sulfate, black carbon, organic aerosols, and 30%
sea salt aerosols6. Figure 3c, d compares the slopes of ln Nd -ln
AOD and ln Nd -ln AODf based on both POLDER-3 retrievals
and MERRA-2 reanalysis, respectively. The results show that
there is no systematic difference between AOD- and AODf-based
slopes over lands. An exception is the dust source region (AFR),
where the slope of ln Nd -ln AODf is higher presumably due to
eliminating the influence of dust events. Over most ocean regions,
in turn, the slopes with respect to AODf are systematically larger
than the ones with respect to AOD with only a few exceptions.
This can be found in both MERRA-2- and POLDER-3-based

Fig. 2 Geographical distribution of relative changes (%) in cloud fraction (f). Changes in f from the scenario only including the cloud samples with
successful aerosol retrievals (Aero_Cld) to the scenario including all ambient clouds (All_Cld), which are computed for each 10° × 10° grid box over the
period 2002–2018.
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results. It is noted that POLDER-3-based slopes are generally
smaller than MERRA-2-based ones, possibly due to the serious
sampling bias in the former. Therefore, to account for both
sampling biases and contribution of fine-mode aerosols, RFaci
based on MERRA-2 AODf (i.e., same as All_Cld but using AODf)
will be estimated in the next section.

RFaci estimates. To compute RFaci, a change of AOD (AODf)
from PI to PD is necessary, which is obtained from GEOS-Chem-
APM44 simulations basically (see “Methods”). Figure 4a–d shows
the spatial distributions of RFaci for Aero_Cld_Modis, Aero_Cld,
Cld, and All_Cld, respectively. The corresponding values for
different regions are summarized in Supplementary Table 1. For
ease of comparison, the modeled one from Yu et al.45 is shown
here as a reference (Fig. 4e). For Aero_Cld_Modis (Fig. 4a), which
derives RFaci in the same manner as previous satellite-based
studies5,7 but with the updated dataset, the global annual average
RFaci is estimated as −0.36Wm−2 (−0.24Wm−2 over land and
−0.4Wm−2 over ocean). The slightly higher value than earlier
estimates, −0.2Wm−2 by Quaas et al.5 and −0.34Wm−2 by Ma
et al.7, is likely caused by the improvement of retrieval algorithms
in the updated dataset. Despite a slight increase, RFaci is still
considerably lower than that from models (the best estimate of
−0.7Wm−2 (see ref. 3)), and shows a different spatial pattern
compared to models (Fig. 4e, and also see Boucher and Pham46;
Chen et al.47; Déandreis et al.48), i.e., much smaller RFaci over
land with strong anthropogenic emissions (e.g., NAM, EUR, and
ASI; Fig. 4a). By instead using MERRA-2 AOD (Aero_Cld),

which enhances the slopes of ln Nd versus ln AOD over land
compared to Aero_Cld_Modis (Fig. 3), the estimated global RFaci
correspondingly increases to −0.38Wm−2 (−0.33Wm−2 over
land and −0.4Wm−2 over ocean).

As discussed in the last section, the sampling biases can induce
remarkable impacts on both cloud properties and susceptibility of
Nd to AOD, which are the key terms to calculate RFaci (Eq. (3) in
“Methods”). Figure 4c illustrates that the clouds missed by the
satellite-based method have a much stronger RFaci than those that
actually have been analyzed (−0.75Wm−2 versus −0.38Wm−2),
particularly over land (−1.22Wm−2 versus −0.33Wm−2), which
is attributable to the joint impact of the increased f (Fig. 2) and
slopes of ln Nd versus ln AOD (Fig. 3a, b). After including all cloud
samples into the calculation, which is consistent with what models
do, the estimated RFaci increases to −0.59Wm−2 (−0.77Wm−2

over land and −0.53Wm−2 over ocean), along with a surprisingly
similar spatial distribution to the modeled result (Fig. 4d, e), i.e.,
the maximum values over major continents and followed by
immediate outflow regions. There also exists a significant contrast
in RFaci between hemispheres, i.e., much stronger in the Northern
(−0.98Wm−2) than in the Southern hemisphere (−0.19Wm−2),
where anthropogenic emissions are weaker.

By accounting for the effect of sampling biases, the estimated RFaci
has increased by 55% (from Aero_Cld to All_Cld) on a global
average (133% over land and 33% over ocean). The most evident
enhancements are over the land areas with strong anthropogenic
aerosol emissions, e.g., NAM (−0.91Wm−2), EUR (−0.41Wm−2),
and ASI (−0.72Wm−2). As mentioned in the last section, both
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Fig. 3 Annual averaged slopes of the linear regressions between the logarithm of cloud droplet number concentration (Nd) and those of aerosol optical
depth (AOD) and fine-mode AOD, i.e., ln Nd versus ln AOD (AODf), for different scenarios. a, b The slopes calculated from retrieved AOD-Nd data pairs
(Aero_Cld_Modis), and from MERRA-2 re-analyzed AOD and CERES-retrieved Nd data pairs for the scenario that aerosol and cloud retrievals are
simultaneously successful (Aero_Cld), the scenario that only cloud retrievals are successful (Cld), and the scenario including all ambient clouds (All_Cld).
The slopes calculated by POLDER-3 AOD, POLDER-3 fine-mode AOD (AODf), MERRA-2 AOD (same as All_Cld), and MERRA-2 AODf are also shown
(c, d). The annual averaged slope here is the average of the monthly slopes. The standard deviation of the inter-monthly variability of the regression slopes
is shown as an error bar. A total of 12 × 14 × 7= 1176 linear regressions (for twelve months, fourteen regions and seven scenarios) were conducted, among
which the slopes for 95% cases are at a statistically significant level (according to a Student’s t test, α= 0.01).
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changes of f (Fig. 2) and regression slopes (Fig. 3a, b) contribute to
the increase of RFaci. To gain insight into their individual effects, we
conduct two additional tests on the basis of Aero_Cld. One is referred
to as Aero_Cld_R that uses the regression coefficients acquired from
All_Cld but keeps other quantities the same as Aero_Cld, in order to
evaluate the effect of changed regression coefficients, and the other is
denoted as Aero_Cld_C that is the same as Aero_Cld but uses cloud
quantities from All_Cld, for the purpose of quantifying the impact of
changed f. As demonstrated in Supplementary Fig. 5, the increased
slopes lead to a relative change of +21% in the magnitude of RFaci
(from −0.38Wm−2 in Aero_Cld to −0.46Wm−2 in Aero_Cld_R).
The increased f, in turn, amplify RFaci by 34% (from−0.38Wm−2 in
Aero_Cld to−0.51Wm−2 in Aero_Cld_C) with the largest increases

over NAM (−0.55Wm−2), EUR (−0.66Wm-2), and ASI (−0.42
Wm−2), where high anthropogenic fractions of AOD (0.57, 0.59,
and 0.59, respectively) and significant enhancements of f (86%, 83%,
and 70%, respectively) occur simultaneously.

A recent study relying on the combinations of ln Nd-AODf

relationship and radiative transfer modeling reported the
best estimate of RFaci near −0.7Wm−2 with the associated
uncertainty range between −0.5 to −1.2Wm−2 (see ref. 9), which
is more negative than previous satellite analyses as well as our
optimized AOD-based estimate (−0.59Wm−2 in All_Cld). Here,
RFaci for the All_Cld scenario but replacing AOD by fine-mode AOD
is thus computed for comparison with the original All_Cld result
(Fig. 5c). Anthropogenic fraction is correspondingly defined via the

Satellite-based RFaci

(a) (b)

(c) (d)

(e)

Modeled RFaci

Fig. 4 Annual mean first indirect forcing (RFaci) at a global scale (60°S to 60°N) for different scenarios. The RFaci calculated from a MODIS-retrieved
aerosol optical depth (AOD) and CERES-retrieved cloud droplet number concentration (Nd) data pairs (Aero_Cld_Modis), and from MERRA-2 re-analyzed
AOD and CERES-retrieved Nd data pairs for b the scenario that aerosol and cloud retrievals are simultaneously successful (Aero_Cld, including same cloud
samples with Aero_Cld_Modis), c the scenario that only cloud retrievals are successful (Cld), and d the scenario including all ambient clouds (All_Cld). e
Modeled RFaci from Yu et al.44. The respective RFaci values for different regions are also listed in Supplementary Table 1.
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modeled fine-mode AOD with the same definition as MERRA-2
AODf (see “Methods”). Since the fine-mode aerosols dominate the
anthropogenic contributions, with almost the same absolute increases
of AOD and AODf from PI to PD (Supplementary Fig. 6c, d), one
obtains a much larger anthropogenic fraction if AODf rather than
total AOD is applied. Figure 5a, b shows the maps of anthropogenic
fractions of AOD (fant) and AODf (fant-fine). It is clear that the most
significant difference between fant and fant-fine occurs over dust source
regions and oceans in the northern hemisphere, where coarse
particles (sea salt and dust aerosols) account for a large part of total
extinction so that using total AOD rather than AODf will
underestimate the anthropogenic contributions from PI to PD.
When switching AOD to AODf, the estimated RFaci increases by 85%
(from −0.59 to −1.09Wm−2; Figs. 4d and 5c), in which the
increased slope and anthropogenic fraction contribute 17% and 68%,
respectively. Since a part of sea salt and dust aerosols can also serve as
CCN, the actual RFaci should be between −0.59Wm−2 and −1.09
Wm−2.

In addition to relying on the reanalysis product, another
potential way to sidestep the sampling biases would be the use of
monthly aerosol/cloud statistics from satellite observations.
Figure 5d shows the RFaci estimated by employing monthly
POLDER-3 AODf and monthly cloud properties. The global-
averaged RFaci (−1.02Wm−2) is close to the MERRA-2 daily-
based one (−1.09Wm−2; Fig. 5c) but with different spatial
distributions, i.e., much smaller RFaci over land, which is also in
contrast to models (Fig. 4e). A comparison of the slopes of ln Nd

versus ln AODf between the two cases shows that POLDER
monthly-based slopes are significantly lower than MERRA-2
daily-based ones over land (Supplementary Fig. 7). One reason
would be covariation of retrieval biases in aerosol and cloud
properties, tending to underestimate aerosol–cloud correlations17.
It should also be noted that the use of monthly statistics can only
avoid the sampling bias of clouds, while aerosol information

associated with the clouds that fully cover 1° × 1° grid box are
impossible to be sampled. That is, this monthly AODf would be
not well representative of the number of aerosols actually linking
with monthly Nd. Our analysis demonstrates that even though all
clouds have been sampled, missing the collocated aerosols in
monthly statistics can still lead to an underestimation of
aerosol–cloud correlations (Supplementary Fig. 8). Comparing
monthly (Supplementary Fig. 8) and daily (Fig. 3) slopes for
All_Cld case, it is interesting that the former are generally larger
than the latter, which might be partly due to the inclusion of
short-term feedbacks or delayed responses of clouds in monthly
aerosol–cloud associations.

Important implications for a satellite-based estimate of RFaci.
To confidently interpret past and predict future climate change,
the current significant discrepancy between satellite- and model-
based RFaci has to be reconciled. Among possible directions to fill
this gap (detail in the following section), analyzing satellite results
in an apples-to-apples way to model simulations is essential.
Although many efforts have been made to do rigorous
comparisons39,49, e.g., selecting model outputs at satellite equa-
torial crossing time, and sampling cloud-top quantities in the
uppermost liquid water cloud layer, etc., sampling biases dis-
cussed in this study have been largely ignored earlier.

Previous studies that deducted either aerosol–cloud correla-
tions or radiative forcing relied on the assumptions that the
clouds collected when adjacent aerosol retrievals are available are
representative of all ambient clouds. Our findings here, however,
demonstrated that sampling biases introduced by the inherent
satellite retrieval limitation of aerosol-only cloud-free conditions
systematically exclude liquid clouds with high f, which are
predominantly thick stratiform cloud decks. These clouds, on the
one hand, exert a stronger cooling effect, and, on the other hand,

(c) (d)

(a) (b)

Fig. 5 Annual (2010) averaged anthropogenic fractions and first indirect forcing (RFaci). Anthropogenic fractions of a aerosol optical depth (AOD) and
b fine-mode AOD (AODf) from the GEOS-Chem-APM simulations. c RFaci based on MERRA-2 daily AODf for the scenario including all ambient clouds
(All_Cld). d RFaci based on monthly POLDER-3 AODf.
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were found to be more responsive to the perturbations of aerosols
compared to cumuliform clouds26. By fixing the sampling biases,
the estimated RFaci increases by 133% over land and 33% over the
ocean, which is closer to models not only in global-averaged RFaci
(−0.59Wm−2) but also in its spatial distribution or land–ocean
contrast. More importantly, the estimated magnitude of RFaci is
almost doubled (−1.09Wm−2) when replacing AOD by AODf to
derive the aerosol–cloud correlations and the anthropogenic
fraction. This finding implies that previous satellite-based
estimates5,7,27,28 have substantially underestimated the RFaci,
especially over land, and further highlights the necessity of
accounting for the sampling biases as well as utilizing fine-mode
AOD (or other adequate CCN proxies) instead of total AOD in
future satellite investigations.

Although the use of monthly aerosol/cloud retrievals can largely
sidestep the sampling bias on clouds and also include short-term
feedbacks or delayed responses of clouds, the problem of missing
aerosol information under cloudy sky remains. This will cause a
significant underestimation of RFaci, over land where aerosols have
large inter-daily variability. The result implies that the conclusion
regarding spatial distribution (land–sea contrast) of RFaci, should be
drawn carefully if monthly statistics are applied.

In this study, the enhanced RFaci, from AOD- to AODf-based
estimates is mainly induced by the increased anthropogenic
fraction. The anthropogenic fraction depends not only on the
increase in the anthropogenic aerosols but also on the
preindustrial background (Supplementary Fig. 6). To understand
the sensitivity of RFaci to the choice of anthropogenic fraction, the
RFaci, are also computed with anthropogenic fractions of AODf

from the simulations of (1) AeroCom phase1 models50 with the
preindustrial year 1750 as a reference and AeroCom phase2
models51 with the preindustrial year 1850 as a reference in
addition to GEOS-Chem-APM modeled ones (Supplementary
Table 3 and Supplementary Fig. 9). The result indicates that the
RFaci strongly scales with the anthropogenic fraction of AODf,
whereas there is no evident difference in global-averaged RFaci
between daily- and monthly-based estimates. With the adequate
CCN proxy (AODf here), and meanwhile, sidestepping the
sampling biases by relying on daily re-analyzed and monthly
retrieved AODf respectively, the RFaci are estimated to range from
−1.02 to −1.68Wm−2 when applying different anthropogenic
fractions (Supplementary Table 3), which highlights the need for
more meaningfully constrained anthropogenic fraction.

Discussion
This study focuses on the roles of sampling biases and choice of
the CCN proxy in the satellite-based estimate of RFaci, with a clear
demonstration of the potential magnitude of the impacts of both.
It should, however, be noted that the exact forcing value is also
affected by other potential sources of the uncertainties, which are
noteworthy for future explorations.

As mentioned above, the retrievals of AOD and cloud quan-
tities (CER/τc) exhibit large biases in scenarios involving broken
clouds, and importantly, the covariation of retrieval biases in
AOD and CER (thus Nd) appears to underestimate the cloud
albedo effect17. Here, we made an initial attempt to assess
“overcast” clouds by restricting retrievals to clouds with f > 80%.
This threshold was also adopted by previous studies16. It is found
that there is no systematic difference in aerosol–cloud correla-
tions between the analyses based on all cloud samples and
“overcast” clouds only (Supplementary Fig. 10). With the use of
CERES data here, which does not have any pixel-level flag
identifying overcast or partly cloudy conditions, we thus do not
distinguish between overcast and broken clouds. But it is believed
that using pixel-level cloud retrievals with the overcast flag (e.g.,

MODIS level-2 product) would be a useful exercise to focus on
homogeneous and overcast pixels for trusted high-quality
retrievals52. In addition, it has been demonstrated that co-
variability of aerosol and precipitation induced by wet removal
can confound the interpretation of aerosol–cloud–precipitation
interactions53. However, our analysis has been restricted to low
liquid clouds, with liquid water path overall lower than 100 g m−2

(Supplementary Fig. 11), thus generating very little precipitation.
Also, non-precipitating cloud pixels have been found to account
for ~90% of all footprints globally54. Therefore, the co-variability
of aerosol and precipitation is unlikely to significantly affect the
results presented here.

A single slope of ln Nd versus ln AOD is clearly not repre-
sentative of a variety of cloud types. In situ-26 and satellite-
based25,55 investigations have revealed that both cloud micro-
physical properties and vertical cloud structure have distinct
responses to aerosol perturbations for stratocumulus and cumu-
lus clouds, which highlights the importance of conducting
regression analysis for each individual cloud type. Recently,
Unglaub et al.56 developed a new approach to classify cloud types
at cloud scale by using a newly developed cloud-based height
retrieval57 in conjunction with cloud-top height variability, which
makes it possible to obtain a cloud-type-based estimate of RFaci
globally in future studies.

Methodological biases are partially responsible for the uncer-
tainties of RFaci estimate as well. Given the large spatial variations
in aerosol loading, aerosol type, cloud type, and meteorological
conditions, spurious correlations between aerosol and cloud
quantities would occur when analyzing satellite datasets over
large regions. Grandey and Stier58 pointed out that for regions of
60° × 60°, close to the scale used in our study, this methodological
error might overestimate the RFaci by ~80% relative to that
derived from temporal variability only within 1° × 1° region. They
also suggested that conducting statistical analysis over regions
smaller than 4° × 4° can greatly avoid this error. Unfortunately,
the insufficient data samples prevent us from doing such analysis
at this time. However, the attempts of combining satellite datasets
from multiple platforms, or employing pixel-level retrievals (e.g.,
1 × 1 km2 cloud retrievals in MODIS level-2 dataset) in future
studies, might be useful to minimize this error. In addition, Patel
et al.28 found that for the derivation of regression coefficients of
the relationship between planetary albedo and cloud properties
(see Eq. (2) in “Methods”), the nonlinear least square statistical
approach can increase the correlation by 21–23% and reduces the
error compared to the multilinear regression approach5, thus
reducing the uncertainty of RFaci. This finding implies the need to
re-estimate RFaci by employing the updated approach. For the
sake of comparison with previous studies5,7, however, the mul-
tilinear regression is still used here. Finally, it has been demon-
strated that more directly retrieved CCN leads to increases in the
Nd–aerosol slope23. Hasekamp et al.23 found a strong increase in
RFaci when using a polarimetric retrieval of column-CCN over
oceans, which, in combination with the results presented here,
implies a still stronger RFaci. Beyond RFaci, also rapid adjustments
such as changes in cloud liquid water path and in f add to the
total radiative effect of aerosol–cloud interactions, the effective
radiative forcing (ERFaci). These adjustments approximately scale
with RFaci10,59, and thus our result is relevant for ERFaci, too.

Methods
Satellite and reanalysis data. The satellite data used here are similar to that in
previous studies using the same approach5,7 but with an updated version, including
cloud and radiative products from the CERES Single Scanner Footprint (SSF)
Edition-4 dataset at a 20 × 20-km2 resolution and Dark Target and Deep Blue
combined aerosol products from the MODIS Collection 6.1 dataset at 1° × 1° level-
3 resolution. Both instruments are on board the Terra platform with an equatorial
crossing local time at ~10.30 a.m. To determine RFaci induced by fine-mode
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aerosols, AODf is also required. However, aerosol size information (such as Ang-
ström exponent and fine-mode fraction) retrieved from MODIS over land may be
problematic31, hampering the derivation of AODf. For this reason, we also employ
the daily 1° × 1° POLDER-3 AODf product retrieved by the GRASP algorithm,
which was found to have good quantitative skill over land41,43.

To fill the data gap caused by satellite sampling, the re-analyzed AOD and
AODf from the MERRA-2 dataset at a 0.5° × 0.625° resolution, are also utilized in
this study, which has been found to compare well with other independent
observations from the ground, aircraft, and shipborne instruments32,60. Our
comparison also shows a good agreement between POLDER-3 and MERRA-2
AODf (Supplementary Fig. 12). Here, AODf is defined as the sum of AODs of
sulfate, black carbon and organic aerosol, and 30% sea salt aerosol. MERRA-2
assimilates AOD retrieved by multiple satellite sensors (AVHRR, MODIS, MISR)
and the ground-based remote sensing network (AERONET) to correct for model
departures from observations32. The re-analyzed AOD thus combines the
advantages of both satellites and models, providing full spatial and temporal
coverage while keeping a strong connection to observed aerosols. Hourly re-
analyzed AOD/AODf at the equatorial crossing local time of satellite is used to
match to the satellite-observed parameters.

The MODIS, CERES, and reanalysis data span the time period January 2002
through December 2018, and POLDER-3 data are from March 2005 to October
2013, providing sufficient samples to obtain statistically significant results.
Supplementary Table 2 summarizes the surface type, aerosol, cloud, radiative
parameters required for the statistical analysis and/or the RFaci calculations. For the
AOD/AODf, data at the resolution of 1° × 1° (MODIS and POLDER-3) and 0.5° ×
0.625° (MERRA-2) are both projected to the higher resolution of 20 × 20 km2 to
match the SSF products.

Methodology for calculating RFaci in the context of liquid water clouds. For the
calculation of RFaci, a critical procedure is to determine the change in Nd due to
anthropogenic aerosols based on the relationship between Nd and AOD (AODf).
However, Nd is not routinely retrieved in current satellite product, and needs to be
empirically computed from cloud effective radius (re) and cloud optical depth (τc)
for liquid water clouds assuming adiabaticity13 as follows:

Nd ¼ γτ1=2c r�5=2
e ð1Þ

where γ is an empirical constant with the value of 1.37 × 10−5 m−0.5 (see ref. 13). It
was suggested that the Nd retrieval performs better for relatively homogeneous,
optically thick and unobscured stratiform clouds under a high solar zenith angle
condition16,61–64.

Quaas et al.5 have extended Loeb’s65 approach by accounting for the
contribution of the clear part of a scene to estimate planetary albedo (α), where α
can be described by a sigmoidal fit as

α � 1� f
� �

a1 þ a2lnτ
� �þ f a3 þ a4 f τc

� �a5� �a6 ð2Þ
where τ is AOD (AODf), and fitting parameters (a1–a6) are obtained by a
multilinear regression (a5 is set as 17). The performance of the multilinear
regression fitting has been verified by previous studies. Their results showed that
the fitted albedo overall agrees very well with both CERES-retrieved albedo5 and
the albedo simulated by a radiative transfer model28. Quaas et al.5 suggested that
the RFaci for anthropogenic aerosols can be expressed as

RFaci ¼ f liqAðf ; τcÞ
1
3
d lnNd

d ln τ
½ln τ � lnðτ � τantÞ�S ð3Þ

with f the cloud fraction, fliq the fraction of liquid water clouds, τant the
anthropogenic AOD (AODf), and S the daily mean incoming solar radiation,

respectively. Here, A f ; τc
� � ¼ a4a5a6 a3 þ a4 f τc

� �a5� �a6�1
f τc

� �a5 .
Since the fitting parameters (a1–a6) and the slope of the linear regression fit

between ln Nd and ln τ can vary both temporally and spatially, we conduct the
regression analysis separately for fourteen regions (Supplementary Fig. 1) on a
monthly basis. To obtain more reliable fitting parameters, only a subset of the data
with smaller retrieval biases are used for statistical regressions, excluding the
retrievals involving bright surfaces, high solar zenith angle (>65°), thin clouds
(liquid water path, L < 20 g m−2), multilayered clouds. In addition, the lowest 15%
of data for AOD (AODf) are also excluded, since the slopes of ln Nd versus ln AOD
(AODf) are quite sensitive to small AOD (AODf) changes, which are not well-
characterized by satellites18. As for the calculation of RFaci, these data are re-
included in order to obtain an estimate in a more consistent manner with the
model, i.e., minimizing the sampling biases.

As a key parameter in estimating RFaci, τant can be derived either from column-
integrated aerosol properties involving size and absorption information from
satellite observations28,33,66,67 and/or reanalysis data6, or from model simulations7.
Total (fine-mode) τant in our study is obtained by multiplying AOD (AODf) from
MODIS/MERRA-2/POLDER-3 and anthropogenic AOD (AODf) fraction (fant; fant-
fine) simulated by Ma et al.7. AODf in the model is also defined in consistent with
the definition for MERRA-2 AODf. To derive fant (fant-fine), two simulations were
conducted with one for PD and the other for PI (with the preindustrial year 1750 as
reference) aerosol particle and aerosol precursor gas emissions by employing
GEOS-Chem-APM model44, in which an advanced multitype, multicomponent,
size-resolved microphysics model was coupled to a global 3-D model of

atmospheric chemical model GEOS-Chem. More detail of the model description
can be found in Ma et al.7. Using the same approach and fant as Ma et al.7 allows us
to qualify the impact of satellite product updates. The RFaci in this study is
calculated for the year 2010 in order to be consistent with the latest
Intergovernmental Panel on Climate Change (IPCC) report4 that used the
reference year 2010 for PD conditions. In addition to the “standard” simulation
mentioned above, the fant-fine from the simulations of AeroCom phase1 and phase2
models (obtained from the MACv2 aerosol climatology product68), as well as
GEOS-Chem-APM model but with AODf defined as the sum of AODs of sulfate,
black carbon and organic aerosol, are also adopted to understand the sensitivity of
RFaci, to the choice of the anthropogenic fraction.

Data availability
All data analyzed in this study are publicly available. The CERES SSF product is available
from https://opendap.larc.nasa.gov/opendap/CERES/SSF/. The MODIS Level 3
Collection 6.1 product is available at https://ladsweb.modaps.eosdis.nasa.gov/archive/
allData/61/MOD08_D3/. The POLDER-3 product is available from https://www.grasp-
open.com/products/polder-data-release/. The MERRA-2 reanalysis product is collected
from https://goldsmr4.gesdisc.eosdis.nasa.gov/data/MERRA2/. The MACv2 aerosol
climatology product is available at ftp://ftp-projects.mpimet.mpg.de/aerocom/
climatology/MACv2_2018/.

Code availability
The codes for calculations and data processing are available from the corresponding
authors upon request.
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