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Protein-protein interactions (PPIs) are involved in most cellular processes. Unfortunately, current knowl-
edge of host-pathogen interactomes is still very limited. Experimental methods used to detect PPIs have
several limitations, including increasing complexity and economic cost in large-scale screenings. Hence,
computational methods are commonly used to support experimental data, although they generally suffer
from high false-positive rates. To address this issue, we have created HPIPred, a host-pathogen PPI pre-
diction tool based on numerical encoding of physicochemical properties. Unlike other available methods,
HPIPred integrates phenotypic data to prioritize biologically meaningful results. We used HPIPred to
screen the entire Homo sapiens and Pseudomonas aeruginosa PAO1 proteomes to generate a host-
pathogen interactome with 763 interactions displaying a highly connected network topology. Our predic-
tive model can be used to prioritize protein–protein interactions as potential targets for antibacterial
drug development. Available at: https://github.com/SysBioUAB/hpi_predictor.
� 2022 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
1. Introduction

During infection, pathogen proteins play a crucial role in re-
wiring multiple biochemical processes in the host, ultimately
allowing the pathogen to attach to and invade host cells [1–3]. In
return, the host uses sophisticated defense mechanisms against
pathogens. Most of these processes are mediated by protein–pro-
tein interactions (PPIs) [4]. Several detection methods, such as
yeast two-hybrid, pull-down assays, or coimmunoprecipitation,
are commonly used to identify novel PPIs [5–7], although only a
small fraction of the PPI space has been characterized so far [8].
In order to address the shortage of validated PPIs, in silico methods
are commonly used.

There are many PPI predictors available, including homology-
based [9,10], annotation-based [11,12], structure-based [13], and
deep learning methods [14,15]. However, the potential of algo-
rithms to predict host-pathogen PPIs is still far from optimal due
to the lack of validated experimental datasets [8]. As a result, many
of these algorithms display high false-positive rates [16], making
them unusable for PPI discovery in the laboratory. To address these
limitations, we have developed an algorithm to predict host-
pathogen PPIs that uses numerical representations of proteins
based on the physicochemical properties of their amino acids. To
improve robustness, individual model predictions are then com-
bined into a consensus interactome, which is finally integrated
with phenotypic data collected from infection-related databases,
allowing us to provide a ranked score for each interaction.
2. Methods

2.1. Data collection and dataset construction

Positive dataset: Host-pathogen PPIs were obtained from
PHISTO [17], a database of experimentally validated interactions.
A total of 9.237 inter-species PPIs between 95 different bacterial
strains and Homo sapiens were used as a positive dataset. It is
worth noting that 90 % of these entries belong to Homo sapiens –
Yersinia pestis (4.069), Homo sapiens – Bacillus anthracis (3.053),
and Homo sapiens – Francisella tularensis (1.348). Then, we applied
a length cut-off to remove PPIs containing any protein shorter than
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100 amino acids or longer than 2.000 amino acids, obtaining a final
dataset of 7.423 PPIs. Small proteins and peptides can easily corre-
late to small regions in other unrelated proteins, increasing the
probability of false positive outcomes. By filtering entries shorter
than 100 amino acids (�400 proteins for the pathogen proteome
and �700 for the host interactome) we avoid false positives while
losing <0.5 % of potential interactions, on average. At the end, this
dataset represents the interactome of 3.327 human proteins
against 2.496 bacterial proteins.

Synthetic negative dataset: Protein libraries containing random
sequences based on the 20-amino acid alphabet were created using
a gamma distribution to fit the observed protein-length distribu-
tion in eukaryotic and bacterial organisms. The average protein
lengths used were 472 for the eukaryotic proteome and 319 for
the prokaryotic proteome [18]. The synthetic proteomes contained
20.000 and 3.000 proteins, similar in size to human and bacterial
proteomes, respectively. Subsequently, the same length filtering
criterion was used to remove proteins shorter than 100 or longer
than 2.000 amino acids, giving a total set of 18.669 and 2.598 pro-
teins for the host and bacteria, respectively.

Negative dataset: The Homo sapiens proteome was downloaded
from UniProt (UP000005640) and used as host proteins. The com-
bined proteomes of Yersinia pestis (UP000000815), Francisella
tularensis (UP000001174), and Bacillus anthracis (UP000000594)
were also downloaded from UniProt and used as pathogen pro-
teins. Non-interacting pairs of proteins were generated by ran-
domly pairing proteins from the host and the pathogen fractions,
discarding pairs that belonged to the positive PPI dataset. The
length filtering criterion was applied as previously described, to
obtain a dataset of 7.421 entries, containing 2.734 and 2.102 differ-
ent proteins from host and pathogen, respectively.

Query proteome datasets: Homo sapiens (UP000005640) and
Pseudomonas aeruginosa PAO1 (UP000002438) proteomes were
used to build the Homo sapiens – Pseudomonas aeruginosa interac-
tome. After applying the length filtering criteria, host and bacteria
proteomes were composed of 19.192 and 1.314 proteins,
respectively.

2.2. Prediction of protein–protein interactions

The main steps involved in our prediction algorithm are: (1) the
encoding of amino acid sequences to numerical strings, (2) the cal-
culation of similarity scores between the query and positive data-
sets, (3) filtering entries by synthetic negatives, and (4) the
prediction of putative PPIs based on their similarity scores (Fig. 1).

1. Numerical encoding of protein sequences: Each protein
sequence in all datasets (positive, negative, synthetic, and query)
was transformed into a numerical string by using physicochemical
properties of amino acids, transforming the amino acid sequences
into a numerical signal (Fig. 1A). The physicochemical properties
are experimentally determined values for each amino acid as
included in the AAindex database [19]. To represent the main prop-
erties that contribute to protein binding, we used five different
physicochemical indices: alpha-helix propensity (GEIM800101)
and beta-strand propensity (GEIM800105), to represent structure
and ultimately hydrogen bonding; hydrophobicity index
(ZIMJ680101) to represent hydrophobic effect; isoelectric point
(ZIMJ680104) and electron–ion interaction potential values
(COSI940101) to account for the electrostatic potential. All descrip-
tors were normalized from 0 to 1 to avoid biases. After numerical
encoding, a moving average algorithm with a sliding window of
9 positions was used to smooth the data and represent each amino
acid’s numerical value as a measure of itself and its near environ-
ment. Structural elements are, on average, between 5 and 10 (beta
sheet) and 3–11 (alpha helix) residues long. Hence, using larger
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windows may result in information loss, while smaller windows
would be less effective to capture the environment.

2. Calculation of similarity scores by cross-correlation: To
determine similarity in the physicochemical profiles of proteins,
we calculated the cross-correlation coefficients (CCCs) between
the query dataset and the positive dataset by performing one-vs-
all pairwise comparisons, i.e., each query protein was individually
tested against all proteins in the positive dataset, for both host and
pathogen proteins (Fig. 1B). To remove low-scored pairs, all com-
parisons with CCC < 0.4 were removed (Fig. 1C). Since CCCs depend
on the lag parameter, we tested howmany pairs were recovered by
increasing the lag interval. For intervals higher than 200, no gain
was observed (Fig. 2) so all CCCs were calculated with a lag interval
of [-200, 200]. The highest CCC, i.e., {max (CCC), lag 2 [-200,200]},
obtained for each pairwise comparison was assigned as a measure
of similarity between the two proteins being compared, creating a
database of similar proteins. Each entry in the database represents
a pairwise comparison and includes information on the highest
CCC and the length of the query protein.

3. Filtering the database using a synthetic negative dataset: To
reduce the number of false positive predictions, we introduced a
filtering criterion using the synthetic dataset. We evaluated the
CCCs for all proteins in the synthetic set against host and pathogen
proteins in the positive set. As the synthetic set contains only
random-sequence proteins, none of them should be considered
an interacting pair. The CCCs of the synthetic dataset were then
plotted against their corresponding protein lengths. As the length
of the proteins increased, their associated CCCs decreased linearly,
a correlation that was also observed with the query datasets
(Fig. 1C). Hence, we determined the slope and intercept points of
parallel linear equations of the type y = ax + b that represented
such a negative linear correlation between protein length and
CCC for the synthetic dataset, so that only 1 %, 0.1 %, 0.01 %,
0.001 %, 0.0001 or 0.00001 % of the data points fell above the equa-
tions. These linear equations were calculated and averaged over
the five different physicochemical parameters previously
described (Fig. 1C). Afterward, entries with CCC lower than or
equal to the synthetic counterpart were discarded, to obtain a fil-
tered database of similar proteins (Fig. 1C).

4. Prediction of protein–protein interactions: To predict new
interactions, each PPI from the query dataset was inspected the fol-
lowing way: the host protein in the query PPI was searched against
all the pairwise comparisons in the positive database of similar
proteins and whenever a match was found, the query interaction
was kept.

The same procedure was repeated for the pathogen protein in
the subset of positive PPIs that contain the host match. If the query
pathogen had a match in the subset, the interaction was consid-
ered a putative PPI (Fig. 1D). We performed this search sequen-
tially with all the PPIs in the query dataset to obtain the
predicted interactome (Fig. 1D). To generate consensus interac-
tomes, individual host-pathogen interactomes were predicted for
the five different physicochemical properties previously described
and then combined to include any PPI that had been predicted by
at least three individual models (Fig. 3A).

2.3. Phenotypic scoring of predicted PPIs

To add additional layers of information to the predicted interac-
tions, we compared the proteins involved against several databases
that contain information about the infection phenotype, namely
BacFITbase [20], DualSeqDB [21], and PHI-base [22] (Fig. 3B).

1. Sequence alignment against BacFITbase: We downloaded
BacFITBase v1.0 (accessed 2 September 2021), a database that con-
tains information on bacterial fitness, as measured by transposon



Fig. 1. PPI prediction algorithm using a single model. A) Protein sequences are numerically encoded using physicochemical descriptors and then smoothed using a sliding
window approach. B) Protein profiles are then compared using cross-correlation and the calculated values are plotted against protein length. C) The dataset generated is first
filtered by a coefficient cut-off (Filter 1) and later by a selected filter to control for false positive tolerance (Filter 2). D) At the end, the predicted protein pairs that survived the
filtering steps are created and organized in a single interactome.
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Fig. 2. Optimal maximum lag value for CCC calculation. To find the optimal maximum lag value, the CCCs between the Homo sapiens query proteins and the positive dataset
were calculated for different lag intervals. The plot shows the number of protein pairs with a CCC > 0.4 for each maximum lag value tested for the hydrophobicity descriptor.
The number of surviving protein pairs did not increase substantially after a maximum lag of 200.

Fig. 3. Model combination and calculation of ranked scores. A) Model combination. B) Determination of ranked scores for the PPIs in the consensus interactome.
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mutagenesis. To determine the similarity between pathogen pro-
teins in the predicted interactome and entries in BacFITBase,
HPIPred performs a BLAST sequence alignment between the query
pathogen protein and the entire database, keeping all hits with a
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percentage of identity � 40 % and an E-value < 10 that have a sig-
nificant fitness score in BacFITBase (adjusted p-value � 0.05). If
multiple entries are retrieved, HPIPred assigns the average fitness
score, and stores the mean standard deviation. Queries with no hits
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are labeled as ‘‘NA”. Finally, as BacFITbase assigns the lowest fit-
ness scores to the most relevant proteins, the values are normal-
ized from 0 to 1, assigning a value of 1 to the lowest fitness
score reported, and a value of 0 to the highest.

2. Sequence alignment against DualSeqDB: We downloaded
DualSeqDB 1.0 (accessed 2 September 2021), a database that con-
tains information on gene expression changes in bacterial infection
models. Changes in gene expression are represented as the log2
fold change, as measured by dual RNA-Seq experiments. HPIPred
performs a protein sequence alignment between each query pro-
tein and DualSeqDB, for both the bacterial and host fractions, keep-
ing those hits with a percentage of identity � 40 % and an E-
value < 10 that have a significant expression change score in Dual-
SeqDB (adjusted p-value � 0.05). The average log2 fold change is
assigned to the query protein and the standard deviation is stored.
Queries with no remaining hits are labeled as ‘‘NA”. The standard
0–1 normalization is performed at the end, assigning a value of 1
to the highest reported fold change score, and a value of 0 to the
lowest.

3. Sequence alignment against PHI-base: We downloaded PHI-
base (accessed 2 September 2021), a dataset containing informa-
tion on the role of pathogenic genes in bacteria. PHI-base assigns
to each entry a ‘‘mutant phenotype”, depending on how the gene
deletion or mutation affects the pathogenicity of the organism. In
some cases, the same gene can have more than one entry, since
it may have been measured in different experiments. We filtered
out those entries referring to pathogens that do not belong to the
bacterial kingdom. Then, we only kept entries with mutant pheno-
type tags that matched ‘‘unaffected pathogenicity”, ‘‘loss of
pathogenicity”, ‘‘reduced virulence”, ‘‘lethal” or ‘‘increased viru-
lence (hypervirulence)”, and transformed them into numerical val-
ues, 0, 0.5 or 1 as follows: ‘‘lethal” = 1, ‘‘loss of pathogenicity” = 1,
‘‘reduced virulence” = 0.5, ‘‘increased virulence (hypervirulence)” =
0.5, ‘‘unaffected pathogenicity” = 0.

In the event that discrepant phenotypes were reported for the
same database entry, the most abundant tag is assigned. HPIPred
then performs a protein sequence alignment between each query
protein and PHI-base. Hits with a percentage of identity � 40 %
and an E-value < 10 are retained. Surviving queries are assigned
an average PHI-base score and the mean standard deviation is
stored. ‘‘NA” labels are assigned to queries with no hits.

4. Betweenness centrality of host proteins: As suggested by the
centrality-lethality rule [23,24], proteins that are central in the
interactome are more likely to be essential for the organism. In this
sense, betweenness centrality (BC) is a relevant centrality measure,
as nodes with high betweenness are located on key communica-
tion routes and control network integrity [25]. Hence, we used
BC as a proxy for protein relevance in the host. To measure protein
essentiality in the Homo sapiens proteome, we calculated the BC
score for all proteins. The Homo sapiens interactome was down-
loaded from the STRING database [26] (accessed 2 September
2021. We filtered out all PPIs with a confidence score lower than
0.9. We then used the R-package igraph [27] to build an undirected
network, calculated the node BC score for all nodes in the graph,
each representing a human protein, and performed a standard 0–
1 normalization, being 0 the protein with the lowest BC score
and 1 with the protein with the highest score (Fig. 3B).

5. Calculation of the ranked score: For each predicted PPI in the
combined interactome we compiled all the normalized scores
obtained in the previous steps (BacFITBase, DualSeqDB, PHI-base
scores for the pathogen proteins, and betweenness centrality and
DualSeqDB scores for the host proteins) and calculated an average
score with a value ranging from 0 to 1 using the following
equation:
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AvS ¼ F þ Eh þ Ep þ P þ BC
NM

ð1Þ

where AvS is the average score, F is the fitness value, Eh and Ep
are the log2 fold change in expression for host and pathogen,
respectively, P is the infection phenotype, BC is the host between-
ness centrality, and NM is the number of non-missing values. Then,
a phenotypic weight (PW) weight was calculated to consider the
number of missing values (NA) in the previous formula. Hence, a
PW of 5 means no missing values, and 0 that no values were
reported for that specific PPI. To account for both the average score
and the confidence weight, we calculate a normalized ranked score
(RS) (Fig. 3B):

RS ¼ AvS � PW
max AvS � PWð Þ ð2Þ
2.4. Model validation

To validate the performance of our algorithm, each individual
PPI from the positive dataset was taken out of the predictive mod-
els and used as query input (leave-one-out cross-validation). All
the PPIs recovered in the combined interactome generated were
considered True Positives (TP), while the rest were considered
False Negatives (FN). Subsequently, we passed each of the non-
interacting pairs of proteins as input to our predictive algorithm.
In this case, any non-interacting pair recovered in the combined
interactome was treated as a False Positive (FP), whereas the
remaining ones were treated as True Positives (TP). Evaluation
metrics were calculated as:

Precision ¼ TP
TP þ FP

ð3aÞ

Recall ¼ TP
TP þ FN

ð3bÞ

Specificity ¼ TN
TN þ FP

ð3cÞ

Sensitivity ¼ FP
FP þ TN

ð3dÞ

Accuracy ¼ TP þ TN
TP þ FP þ TN þ FN

ð3eÞ

MCC ¼ TP � TN � FP � FN
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TP þ FPð Þ � TP þ FNð Þ � TN þ FPð Þ � ðTN þ FNÞp ð3fÞ
2.5. Software implementation

HPIPred was designed in R and wrapped up in a command-line
tool that allows the user to choose the host and pathogen organ-
isms. The software can be used in Linux and MacOS operating sys-

tems and is available at: https://github.com/SysBioUAB/hpi_

predictor. Users can select a Uniprot proteome ID or upload the
proteomes as custom files. They can also choose among more than
400 different physicochemical descriptors, select the preferred
false positive rate and decide the number of models to build the
consensus interactome. We also provide pre-calculated protein
similarity values for five model organisms that can be used as
hosts, namely Homo sapiens, Mus musculus, Dario rerio, Caenorhab-
ditis elegans, Drosophila melanogaster, for the five default physico-
chemical descriptors. This option speeds up calculations when
the model organisms are used. The calculation of an interactome
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can take one day to compute in an average computer, while the
pre-calculated proteomes can decrease the time to a few hours.
Fig. 4. Model evaluation of different PPI prediction methods. Sequence-based
methods are based on numerical descriptors, annotation-based methods are based
on domain and GO annotations, and HPIPred is the method described here. Control
results were obtained based on equivalent sequence-based methods but using
random numerical vectors instead of meaningful descriptors. Measurements for
control, sequence- and annotation-based methods, were obtained from B. Dunham
et al.[16].
3. Results

3.1. Model prediction scores

One of the main goals in PPI prediction is keeping the number of
false positives low. Hence, for algorithms built to predict inter-
species interactomes, it is essential to control the false positive rate
(FPR). Otherwise, the number of wrongly predicted interactions
would bias the interpretation of the data and undermine the efforts
to validate the results in the laboratory. When predicting bacteria-
human interactomes, the number of potential interactions to test is
around 80 million, assuming a bacteria proteome size of 4.000 pro-
teins (20.000 human � 4.000 bacteria proteins). In this scenario,
even with a small FPR of 0.1 %, the number of wrong predictions
would be in the range of 80.000 interactions. In our method, we
used synthetic proteomes, to keep these numbers low. These
non-biological proteomes allowed us to make a coarse estimate
of the FPR in large-scale predictions and control for low FPRs.
Specifically, we set the maximum FPR to 0.0001 %, giving a theoret-
ical estimate of 80 false positive interactions in a standard
interactome.

To validate our predictions, we used the leave-one-out strategy.
Hence, all entries in the positive dataset were used as templates to
evaluate every interaction, except the one being tested. Using
default settings, our method virtually achieves a precision of
100 % when combining all five models (Supplementary Informa-
tion, Table S1). However, this comes at the cost of a low recall,
i.e., only 2 % of the true interactions are recovered, as observed
in the ROC and PR curves (Supplementary Information, Fig. S1).
Although we achieved a low recall, the predictive power of our
method is similar when compared with other protein–protein pre-
diction algorithms [16], but with the advantage of controlling the
FPR to very low levels (Fig. 4). In most sequence-based prediction
algorithms, precision can drop to 10 % at 3 % recall and 20 % in
annotation-based methods. All prediction methods, including our
own, suffer mainly from using incomplete datasets of PPIs: since
only a small fraction of the search space of PPIs has been experi-
mentally validated, the models do not perform well for generaliza-
tion, because the penalty of removing a known PPI from the
positive dataset is very costly. Furthermore, for host-pathogen
interactomes, only a few species of bacteria have been studied,
which also limits the available information on which these predic-
tors are based.
3.2. Prediction of the complete host-pathogen interactome Homo
sapiens – Pseudomonas aeruginosa PAO1

To test how our model performs in a real case scenario, we pre-
dicted the Homo sapiens – Pseudomonas aeruginosa PAO1 interac-
tome. The H. sapiens and P. aeruginosa proteomes contain 19.192
and 1.314 proteins, respectively, after length filtering, resulting
in �25 million putative interactions. We calculated the CCCs for
all these interactions and generated the interactomes at 5 different
FPRs (0.1 %, 0.01 %, 0.001 %, 0.0001 %, and 0.00001 %) with five
physicochemical descriptors (GEIM800101, GEIM800105,
ZIMJ680101, ZIMJ680104, COSI940101), as well as their combined
model (Table 1). As noted before, in the case of single models, the
allowed FPR can restrict the number of interactions from a hun-
dred thousand PPIs when using the most permissive filter (0.1 %)
to only several hundred PPIs with the most restrictive filter
(0.00001 %). Also, the combination of different models can decrease
the number of predicted PPIs but increase the confidence in the
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predicted interactions. The prediction of interactomes of relatively
small sizes but with high confidence can be seen as an advantage
for downstream analysis, including network visualization or gene
ontology enrichment, but also for further experimental validation.

We chose to further explore the predicted interactome gener-
ated with the most restrictive filter (FPR = 0.00001 %) due to its
suitable proteome size (763 PPIs). After calculating the node
betweenness centrality of the proteins in the Homo sapiens pro-
teome and performing sequence alignment against DualSeqDB,
BacFITBase, and PHI-base, we generated a ranked score for each
PPI. This, in turn, allowed us to prioritize the interactions not only
according to protein similarity based on physicochemical proper-
ties but also on network topology and biological properties related
to the infection process. We visualized the predicted interactome
in Cytoscape [28] (Fig. 4) by representing it as a bipartite graph,
where host proteins (host nodes) are only connected to pathogen
proteins (pathogen nodes) and vice versa. The ranked score of each
predicted PPI was represented by the thickness and the color
intensity of the edges, that is, the closer a ranked score to 1, the
thicker its edge and the more intense its color, meaning that this
PPI scored well on average on the biological databases.

In addition, we colored the nodes to represent changes in
expression, derived from the BLAST search against DualSeqDB, in
a range from blue (downregulated) to red (upregulated). We high-
lighted some of the top scoring PPIs in the Cytoscape network to
show how highly ranked PPIs (Fig. 5), which represent protein
pairs with inferred biological relevance, also appear to be impor-
tant for network integrity and connectivity.

We then filtered out all PPIs with a ranked score lower or equal
to 0.6 and divided the proteins involved in these PPIs into a patho-
gen fraction (16 proteins) and a host fraction (128 proteins) of
unique proteins, which were then used to perform gene ontology
enrichment analysis with DAVID [29] (Fig. 6). The results showed
that the host fraction of proteins was enriched in biological pro-
cesses related to immune and inflammatory response, such as reg-
ulation of NF-KappaB activity, cellular iron homeostasis, and actin
filament bundle assembly. As for the pathogen fraction, we
observed an enrichment in biological terms related to amino acid



Table 1
PPI sizes of the predicted interactomes by individual and combined models, at different FPRs.

Predicted interactions
FPR Model

ZIM101 ZIM104 GEIM101 GEIM105 COSI940101 Combined

0.1 % 142.089 386.529 551.043 143.493 225.456 2.594
0.01 % 8.469 15.155 22.907 7.082 15.119 1.661
0.001 % 1.853 2.322 3.491 1.485 3.717 1.104
0.0001 % 1.035 1.085 1.439 968 1.779 894
0.00001 % 814 915 915 763 1.146 763

Fig. 5. Network representation of the Homo sapiens – Pseudomonas aeruginosa PAO1 interactome predicted by the combined models. Nodes represent proteins and edges
represent predicted interactions between proteins. Host and pathogen proteins are represented by circles and squares, respectively. Nodes are colored according to the
normalized expression changes (computationally derived from DualSeqDB) or black in case of missing information. Node sizes are proportional to normalized betweenness
centrality and fitness for the host and pathogen proteins, respectively. Edge size and width correspond to the PPI ranked score (0-1 scale). Some of the PPIs with the highest
final scores have been highlighted with colors to show how the highest-ranked PPIs from our predictive algorithm allow reconstructing of a highly connected subnetwork.
The network was designed with Cytoscape.

Fig. 6. Gene Ontology enrichment analysis of proteins involved in the highest scoring PPIs. Biological processes (BP) are depicted for (A) host and (B) pathogen proteins. Log
fold changes for individual proteins are assigned from sequence similarity to log2 fold changes from DualSeqDB. Gene ontology analysis was performed using David and
chord diagrams were drawn using the circlize package in R.
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and nucleotide biosynthesis, as well as folate biosynthesis, all of
them required for bacterial proliferation. These biosynthetic routes
have been used as molecular targets for the development of
antimicrobials, e.g., the antibiotic trimethoprim is a dihydrofolate
reductase inhibitor.

3.3. Benchmarking with interolog prediction servers

We further compared HPIPred with two publicly available pre-
dictive software called BIPS (Biana Interolog Prediction Server) [9]
and PredHPI [10]. Both algorithms predict putative PPIs based on
interolog information. We used Homo sapiens and Pseudomonas
aeruginosa PAO1 proteomes as query inputs to compare the results
to our consensus interactome (Supplementary Information,
Table S2). In the case of PredHPI, we recovered 37.815 interactions
using default parameters (30 % similarity). Surprisingly, some pro-
teins had many interactions, such as immunoglobulin IGHV4-31,
efflux pump MacB and plasmin, with 8.730, 1.972, and 1.472 inter-
actions, respectively. In fact, 10 proteins account for 50 % of the
total number of interactions. These numbers are disproportionate
and may represent a bias towards overrepresented entries in the
positive databases used to train the predictor. Even increasing
the similarity score to 40 %, we recovered 13.941 interactions, with
3.388, 177, and 156 interactions for IGHV4-31, MacB, and plasmin,
respectively. Again, a single protein represents � 25 % of the total
number of interactions, suggesting a high bias in the predicted
interactome. Conversely, in BIPS, we obtained very few predictions
using default parameters (<20), probably because the sequence
similarity threshold was very restrictive (80 %). Hence, we relaxed
the filtering criteria involving identity similarity to 40 %. BIPS pre-
dictive tool generated an interactome consisting of 963 PPIs, a
more manageable set with a size similar to our predicted interac-
tome. The results from BIPS and our algorithm were then com-
pared by creating an intersection of the predicted interactomes,
which revealed that both methods shared a total of 262 common
PPIs. We represented these common PPIs as a network in Cytos-
Fig. 7. Network representation of the common PPIs by BIPS and HPIPred. Host and patho
according to the normalized expression changes (computationally derived from Dua
normalized betweenness centrality and fitness for the host and pathogen proteins, resp
network was designed with Cytoscape.
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cape (Fig. 7) and found that, in general, the shared PPIs maintained
a certain degree of network connectivity and the proteins involved
presented a high score in terms of betweenness centrality and fit-
ness for the host and the pathogen, respectively. These results sug-
gest that controlling for false positives is essential for useful
predictions. Otherwise, a lot of time and resources would be
wasted on experimental validation.
4. Discussion

Infectious diseases are a growing health concern worldwide,
specially due to the increase in multi-drug-resistant bacteria
[30]. These pathogenic bacteria cause prolonged hospitalizations,
higher costs for medical treatment, and increased mortality rates.
In this sense, protein interactions between pathogenic bacteria
and their natural hosts play a key role in the infection mechanism
and a thorough understanding of their complex interplay [31] is
required for the development of new antibiotics. Numerous exper-
imental techniques, such as yeast two-hybrid, pulldown assays, or
co-immunoprecipitation, are currently used for the detection of
these interactions, which are collected in databases through litera-
ture mining or manual curation. However, experimental tech-
niques are time-consuming, costly, and suffer from low
specificity [32], making it unfeasible to evaluate all possible pro-
tein–protein interactions.

Recently, computational approaches such as machine learning,
homology-based methods, or structure-based methods, have
allowed the prediction of putative PPIs, complementing experi-
mental techniques [33]. The main limitation of these prediction
methods lies in the high rate of false positives, mainly due to the
lack of robust databases of experimentally validated PPIs [16]. This
data shortage causes the prediction methods to perform poorly in
terms of generalization. HPIPred has been developed as a tool that
could help to reduce the false positive rate compared to other
methods. To this end, HPIPred predicts putative PPIs through the
gen proteins are represented by circles and squares, respectively. Nodes are colored
lSeqDB) or black in case of missing information. Node sizes are proportional to
ectively. Edge size and width correspond to the PPI ranked score (0-1 scale). The
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numerical encoding of proteins based on physicochemical proper-
ties of the amino acids and integrates these predictions with bio-
logically relevant data. Such data include information on the
in vivo relevance of bacterial genes to the infection process, gene
expression changes in vitro and in vivo, as well as topology infor-
mation that allows highlighting the importance of central hubs.
By using the Homo sapiens and the Pseudomonas aeruginosa PAO1
proteomes as input to our prediction tool, we generated 763
host-pathogen interactions displaying a highly connected network.
We expect that our prediction tool will provide a more realistic
picture of host-pathogen interactomes and help pave the way for
the prioritization of PPIs that can be explored as potential targets
for the development of new antibacterial drugs.
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