
Oxidative Stress Regulates Adipocyte Apolipoprotein
E and Suppresses Its Expression in Obesity
Doris Joy Espiritu

1
and Theodore Mazzone

1,2,3

OBJECTIVE—Endogenous expression of apolipoprotein E
(apoE) has a significant impact on adipocyte lipid metabolism
and is markedly suppressed in obesity. Adipose tissue oxidant
stress is emerging as an important mediator of adipocyte dys-
function. These studies were undertaken to evaluate the role of
oxidant stress for regulation of adipocyte apoE.

RESEARCH DESIGN AND METHODS—ApoE gene and pro-
tein expression in 3T3-L1 adipocytes or mature adipocytes and
adipose tissue from C57/BL6 mice was evaluated after induction
of oxidant stress. The response of adipose tissue and adipocytes
from obese compared with lean mice to antioxidants was also
assessed.

RESULTS—Oxidant stress in 3T3-L1 cells or adipocytes and
adipose tissue from lean mice significantly reduced apoE mRNA
and protein level. Inclusion of an antioxidant eliminated this
reduction. Oxidant stress was accompanied by activation of the
nuclear factor-�B (NF-�B) transcription complex, and its effect
on apoE was eliminated by an NF-�B activation inhibitor. Treat-
ment of freshly isolated adipose tissue or mature adipocytes
from obese mice with antioxidant increased apoE expression but
had no effect on cells or tissue from lean mice. Incubation of
freshly isolated adipocytes from lean mice with stromovascular
cells from obese mice significantly suppressed adipocyte apoE
compared with incubation with stromovascular cells from lean
mice, but this suppression was reversed by inclusion of antiox-
idant or a neutralizing antibody to tumor necrosis factor-�.

CONCLUSIONS—Oxidant stress significantly modulates adi-
pose tissue and adipocyte apoE expression. Furthermore, oxi-
dant stress contributes to suppression of adipocyte apoE in
obesity. This suppression depends on interaction between adi-
pose tissue stromovascular cells and adipocytes. Diabetes 57:
2992–2998, 2008

O
besity is widely recognized as an increasingly
prevalent cause of metabolic and cardiovascu-
lar disease (1,2). It has also been recently
appreciated that obesity is associated with a

chronic inflammatory reaction in adipose tissue and that
this inflammation is closely associated with metabolic and
cardiovascular risk (1,3,4). Adipose tissue from obese
animals or humans is characterized by the influx of
inflammatory cells, primarily macrophages, into its stro-

movascular compartment with increased local production
of proinflammatory cytokines (5–8). There is also a con-
comitant increase in the production of reactive oxygen
species (ROS) in adipose tissue (9). The localized inflam-
mation with oxidative stress in adipose tissue leads to
important changes in adipocyte gene expression with
downstream effects on adipocyte lipid metabolism and
triglyceride content. Adipose tissue inflammation and ox-
idant stress also produce a systemic increase in circulating
inflammatory cytokines and ROS with adverse effects on
systemic insulin action and substrate metabolism (1,9,10).

Mature adipocytes and macrophages express a number
of proteins in common, and one of these is apolipoprotein
E (apoE). In macrophages, the endogenous expression of
apoE functions primarily to facilitate lipid flux (11,12).
However, macrophage-derived apoE in the arterial wall
has also been associated with local anti-inflammatory and
antioxidant effects (13–15). ApoE is also highly expressed
in hepatocytes and steroidogenic cells (16–18). Like mac-
rophages, these two cell types experience high lipid flux
related to their differentiated functions of lipoprotein
metabolism and steroid hormone secretion, respectively.
Adipocytes also experience high lipid flux as part of their
differentiated function, and high-level expression of apoE
was first noted by Zechner et al. (19). More recently, an
important role for endogenously expressed adipocyte
apoE for modulating adipocyte lipid and lipoprotein me-
tabolism has been established (20).

Comparing freshly isolated or cultured adipocytes from
apoE�/� mice with those from wild-type mice demon-
strated that adipocytes from the former were smaller,
contained less lipid, synthesized less triglyceride, and had
increased rates of triglyceride hydrolysis (20). Further-
more, these differences were maintained after differentia-
tion of preadipocytes to adipocytes followed by long-term
culture in apoE-containing serum. Adipose tissue from
apoE�/� mice also accumulated less triglyceride after
incubation with apoE-rich VLDL compared with that from
wild-type mice and expressed higher levels of genes
involved in fatty acid oxidation. These observations sup-
port a role for endogenously expressed apoE in overall
adipocyte lipid metabolism. This notion is further sup-
ported by physiologically relevant regulation of adipocyte
apoE. Adipocyte apoE is increased by the systemic admin-
istration of peroxisome proliferator–activated receptor-�
(PPAR�) agonists and decreased by the systemic admin-
istration of the proinflammatory peptide angiotensin II
(21,22). Furthermore, diet-induced or leptin-deficient obe-
sity leads to marked suppression of adipocyte apoE (23).
In addressing potential mechanisms for this suppression in
obesity, we have previously shown that tumor necrosis
factor-� (TNF-�), a proinflammatory cytokine produced
by inflammatory adipose tissue macrophages in obesity,
suppresses adipocyte apoE expression (21). Emerging
evidence has identified adipose tissue ROS as important
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effectors producing adipocyte dysfunction in obesity (9).
The current studies were undertaken to evaluate a role for
oxidative stress in regulating adipocyte apoE expression
and its role in mediating the reduced adipocyte apoE
expression observed in obesity.

RESEARCH DESIGN AND METHODS

Cell culture media, fetal bovine serum (FBS), and antibiotics were purchased
from Invitrogen (Carlsbad, CA). Goat-derived apoE antiserum was from
International Immunology (Murrieta, CA). Phospho-inhibitor of �B� (phos-
pho-I�B�) and I�B� antibodies were from Cell Signaling Technology (Dan-
vers, MA). TNF-� neutralizing antibody was from Biovision (Mountain View,
CA). The nuclear factor-�B (NF-�B) activation inhibitor, 6-amino-4-(4a-phe-
noxyphenylethylamino) quinazoline (QNZ), was purchased from Calbiochem.
Liberase blendzyme 3 was from Roche. Insulin, dexamethasone, 3-isobutyl-1-
methylxanthine (IBMX), hydrogen peroxide, N-acetyl-L-cysteine (NAC), xan-
thine oxidase, hypoxanthine, glucose oxidase, and BSA were obtained from
Sigma (St. Louis, MO).
Cell culture and isolation of primary adipocytes. 3T3-L1 cells were
obtained from American Type Culture Collection (Rockville, MD). Cells were
maintained in 10% FBS-supplemented Dulbecco’s modified Eagle’s medium
(DMEM) with penicillin and streptomycin in a 5% CO2 incubator at 37°C. Two
days after confluence, cells were differentiated by incubating in differentiation
medium containing 0.5 mmol/l IBMX, 0.2 �mol/l dexamethasone, and 10 �g/ml
insulin. Three days after addition of this differentiation cocktail, cells were
placed in DMEM containing 10 �g/ml insulin and 10% FBS. All experiments
were performed 10 days after differentiation.

Male C57BL/6J (10- to 12-week-old) mice, male ob/ob (10- to 12-week-old)
mice, or their lean littermates were from The Jackson Laboratories (Bar
Harbor, ME). All animal protocols were approved by the Institutional Animal
Care and Use Committee of the University of Illinois, Chicago. Intra-abdom-
inal fat pads were harvested, washed with sterile PBS, and separated into two
parts. One part was used for tissue incubation, and the other part was used for
isolation of mature adipocytes and the stromovascular fraction. For tissue
incubation, fat pads were minced into 1- to 2-mm pieces under sterile
conditions and incubated in DMEM containing 0.5% BSA and treated as
described in the figure legends. For isolation of mature adipocytes and the
stromovascular fraction, fat pads were cut into 1- to 2-mm pieces and digested
using 0.5 mg/ml Liberase Blendzyme 3 in DMEM for 1 h at 37°C in a shaking
water bath. After digestion, cells were centrifuged at 300 � g for 5 min, and the
suspended mature adipocytes were separated from the pelleted stromovascu-
lar fraction for experiments. For some experiments, mature adipocytes from
lean mice were incubated in serum-free DMEM containing 0.5% BSA with
1.0 � 106 stromovascular cells from either lean or ob/ob mice. After 4 h,
stromovascular cells were pelleted, and floating adipocytes were collected for
measurement of apoE mRNA. NAC (20 mmol/l), 4 �g/ml anti-TNF antibody, or
both were added during some incubations as indicated in the figure legends.
For some experiments, the stromovascular fraction from adipose tissue
harvested from the subcutaneous space of ob/ob mice was isolated as
described above.
ApoE mRNA quantitation. Total RNA was isolated from adipose tissue,
floating adipocytes, stromovascular cells, or 3T3-L1 adipocytes using RNeasy
mini kit (Qiagen, Valencia, CA). First-strand cDNA was synthesized from 1 �g
total RNA using Thermoscript RT-PCR System (Invitrogen) according to the
manufacturer’s instructions. Real-time PCR was performed on each sample
using the Mx3000p Quantitative PCR system (Stratagene, La Jolla, CA) using
iTaq SYBR Green Supermix with ROX. The relative quantity of apoE mRNA
was calculated after correction for �-actin mRNA abundance and was
expressed for each experiment as fold change compared with the experimen-
tal control (20). The primer pairs used for amplification of apoE and �-actin
genes were 5�-AGGATCTACGCAACCGACTC-3�, 5�-GGCGATGCATGTTC
CACTA-3� and 5�-GGCCCAGAGCAAGAGAGGTA-3�, 5�-GGACTCATCG
TACTCCTGCT-3�, respectively. Reaction product purity was confirmed by
examination of melting curves for a singe peak.
Western blotting. Total protein was extracted from cells or tissue using
radioimmunoprecipitation assay buffer (0.5% sodium deoxycholate, 0.1% SDS,
1% Triton X, 20 mmol/l Trisma base, 150 mmol/l NaCl, and 5 mmol/l EDTA),
supplemented with protease inhibitor cocktail. Samples were centrifuged for
5 min, the top fat layer was discarded, and the middle clear layer of solubilized
protein was collected. Total protein concentration was analyzed using Bio-
Rad DC protein assay. Fifty micrograms of protein for each sample was
subjected to SDS-PAGE analysis, transferred to nitrocellulose, and probed
with antibodies for apoE, I�B� phosphorylated I�B�, or �-actin. Western blot
images were quantitated using ImageQuant TL software (GE Healthcare,
Piscataway, NJ) using �-actin as an internal loading control.

NF-�B pathway involvement. NF-�B pathway activation was first assessed
by detecting the level of I�B� phosphorylation. After treatment of 3T3-L1
adipocytes with 1 mmol/l H2O2 for 0, 1, 5, or 10 min, cells were lysed in the
presence of phosphatase inhibitor cocktail. Fifty micrograms of total cell
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FIG. 1. Oxidative stress reduces apoE mRNA level in adipocytes. A:
3T3-L1 adipocytes were preincubated for 6 h in serum-free medium and
then treated with 0, 0.5, or 1 mmol/l H2O2 for 10 min. Cells were then
incubated in serum-free medium for an additional 4 or 18 h before
being harvested for measurement of apoE mRNA. �, 0.0 mmol/l; p, 0.5
mmol/l; f, 1.0 mmol/l. Adipocytes were treated with or without 25
mU/ml glucose oxidase (B) or 10 mU/ml xanthine oxidase (C) with 0.6
mmol/l hypoxanthine for 18 h in serum-free medium. Total RNA was
extracted and apoE mRNA level was measured using RT-PCR. Each
experiment was performed using triplicate samples and was repeated
three times with similar results. Results shown are from a representa-
tive experiment as means � SD. *P < 0.001 for the difference compared
with untreated control.
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extract was subjected to Western blot analysis using an antibody specific for
I�B� phosphorylated at serine 32/36. Blots were stripped and reprobed with
an antibody to total I�B� protein. The involvement of the NF-�B pathway was
also assessed by adding QNZ (an inhibitor of NF-�B complex activation) to
cells in the presence or absence of 1 mmol/l H2O2.

Measurement of cellular H2O2. Cellular ROS was measured using fluores-
cent dye 5(-and-6)-chloromethyl-2�7�-dichlorohydroflorescein deacetate acetyl
ester (CM-H2DCFDA; Molecular Probes) as previously described with minor
modifications (24). After treatment with glucose oxidase or xanthine oxidase,
differentiated adipocytes were washed with phenol-free DMEM and incubated
with 2 �mol/l CM-H2DCFDA for 45 min at 37o. Fluorescence was analyzed
using BIOTEK Synergy H Fluorescent plate reader at an excitation wavelength
of 485 nm and emission at 530 nm. Cellular ROS concentration was quanti-
tated using a H2O2 standard curve.
Statistical analysis. Statistical differences between experimental groups
were evaluated using Student’s two-sample t test. P values 	0.05 were
considered significant. All data are expressed as means 
 SD of the sample
replicate number indicated in the figure legends.

RESULTS

In the first series of experiments, we evaluated the impact
of oxidative stress on adipocyte apoE gene expression in
3T3-L1 cells. Oxidative stress was first modeled by the
exogenous addition of hydrogen peroxide (9,25). Incuba-
tion of 3T3-L1 cells with this agent for only 10 min reduced
apoE mRNA level by �50% in cells harvested 4 and 18 h
after treatment (Fig. 1A). Endogenous cellular production
of ROS was induced by incubating cells for 18 h with
glucose oxidase or xanthine oxidase (26,27). These incu-
bations increased the production of endogenous cellular
ROS to 21.5 
 1.9 and 14.9 
 1.5 �mol/l/well, respectively,
compared with 6.0 
 0.8 �mol/l/well in control cells (P 	
0.05 for control compared with glucose oxidase or xan-
thine oxidase). Incubation with either agent also signifi-
cantly reduced apoE mRNA level in adipocytes (Fig. 1B
and C). NAC is an antioxidant compound previously
shown to mitigate the effect of ROS on adipocyte gene

expression in vitro and in vivo (9,28). Treatment of cells
with NAC alone had no effect on apoE mRNA or protein
level in 3T3-L1 cells (Fig. 2A–C). However, inclusion of
NAC with either hydrogen peroxide or glucose oxidase
eliminated significant downregulation of apoE expression.

The NF-�B pathway has been identified as an important
mediator of oxidant stress on adipocyte gene expression.
We next evaluated the participation of this pathway for the
effect of oxidant stress on the adipocyte apoE gene using
two complementary approaches. Activation of the NF-�B
transcription complex requires phosphorylation of the
inhibitory I�B� subunit at Ser 32/36. This phosphorylation
triggers I�B� proteosomal degradation with subsequent
activation of the NF-�B transcription complex. Treatment
of 3T3-L1 cells with hydrogen peroxide for 5 min increased
the cellular level of phosphorylated I�B� (designated
I�B�-P in Fig. 3A, top panel). After 10 min, there was a
significant decrease in total cellular I�B� consistent with
its increased degradation. These results indicate that treat-
ment of 3T3-L1 adipocytes with hydrogen peroxide at the
dose and time used for our experiments was sufficient for
activation of the NF-�B transcription complex. To further
evaluate the importance of the NF-�B pathway for the
apoE gene response, we evaluated the effect of QNZ, an
inhibitor of NF-�B activation (29). Addition of QNZ alone
had no effect on apoE mRNA level in 3T3-L1 adipocytes
(Fig. 3B). Inclusion of QNZ with hydrogen peroxide,
however, completely eliminated the suppression of apoE
gene expression produced by the latter agent.

We next extended our observations to examine the
impact of oxidative stress on apoE expression in freshly
isolated adipose tissue and mature adipocytes from
C57BL/6J mice (Fig. 4A). Measurement of apoE mRNA
level in whole-murine adipose tissue, mature adipocytes,
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and the stromovascular fraction showed that mature adi-
pocytes accounted for the preponderance of apoE mes-
sage level in adipose tissue, as we have previously
reported (20). Treatment of these fractions with hydrogen
peroxide for 10 min produced significant reduction of
apoE mRNA level in whole adipose tissue and mature
adipocytes, completely consistent with results obtained in
3T3-L1 cells. ApoE expression in the stromovascular cell
fraction was also reduced by treatment with hydrogen
peroxide; however, its overall contribution to adipose
tissue apoE mRNA level and its level of expression com-
pared with mature adipocyte expression was small. We
next evaluated the effect of oxidant stress on apoE protein
expression in freshly isolated adipose tissue. Adipose
tissue was incubated with or without H2O2 for 10 min and
then harvested 18 h later for Western blot. H2O2 treatment
reduced apoE protein level by �70% (Fig. 4B).

Obesity leads to increased production of ROS in adipose
tissue, and we have previously shown that adipose tissue
and mature adipocyte apoE expression are reduced in
obese mice compared with lean mice. Therefore, we next
evaluated a potential role for ROS in contributing to
reduced adipose tissue and adipocyte apoE expression in
obesity. We approached this question by comparing the
impact of treating freshly isolated adipose tissue or mature

adipocytes from obese and lean mice with the antioxidant
NAC (Fig. 5). As we have previously reported, apoE
expression is lower in adipose tissue and adipocytes
isolated from ob/ob mice compared with lean littermate
controls (23). Treatment of adipose tissue or adipocytes
isolated from lean mice with NAC did not significantly
impact apoE expression level. However, treatment of
adipose tissue or mature adipocytes isolated from obese
mice with NAC increased adipose tissue mRNA level by
five- and fourfold, respectively. These results indicate that
adipose tissue oxidative stress is an important factor
contributing to the suppression of adipose tissue and
adipocyte apoE in obesity.

Obesity is characterized by an influx of inflammatory
cells into the stromovascular compartment of adipose
tissue. Signaling between inflammatory cells in the stro-
movascular compartment and adipocytes has been identi-
fied as an important contributor to adipocyte dysfunction
in obesity (5–7,30). We next addressed the question of
whether the adipose tissue stromovascular fraction from
obese mice could modulate the expression of apoE in
adipocytes obtained from lean mice (Fig. 6A). Freshly
isolated mature adipocytes from lean mice were incubated
alone or with the stromovascular cell fraction from lean
mice or from obese mice. After 4 h of incubation, apoE
mRNA levels were suppressed in the adipocytes incubated
with the stromovascular cell fraction from obese mice by
�80%. We next evaluated whether the suppressive effect
of the stromovascular fraction was different for stromo-
vascular fractions isolated from visceral or subcutaneous
adipose depot of obese mice (Fig. 6B). Addition of the
obese stromovascular fraction from either fat depot sig-
nificantly suppressed adipocyte apoE mRNA level, but the
suppression produced by the visceral stromovascular frac-
tion was significantly greater than that produced by the
subcutaneous stromovascular fraction.
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We performed experiments to determine whether the
effect of the stromovascular fraction from obese mice was
related to the induction of oxidant stress in adipocytes
(Fig. 7). Adipocytes from lean mice were incubated alone
or with the visceral stromovascular fraction from obese
mice plus the additions indicated in Fig. 7. Consistent with
the results in Fig. 6A, the obese stromovascular fraction
alone produced a �80% suppression of apoE mRNA level.
Inclusion of antioxidant NAC during the incubation signif-
icantly attenuated the effect of the obese stromovascular
fraction on adipocyte apoE expression. Because we have
previously demonstrated an important role for TNF-� in
regulating adipocyte apoE (21,31), we also evaluated the
effect of including a neutralizing antibody to TNF-� during
these incubations. The inclusion of this antibody also
opposed the suppression of adipocyte apoE by the obese
stromovascular fraction. The inclusion of both the antiox-
idant and neutralizing antibody restored adipocyte apoE to
control level. In separate experiments, we evaluated the

effect of the NF-�B inhibitor QNZ on suppression of
adipocyte apoE by the obese stromovascular fraction.
QNZ alone had no effect on adipocyte apoE mRNA level
(1.1 
 0.2 compared with control). Addition of the obese
stromovascular fraction reduced apoE mRNA level to
0.4 
 0.1 compared with control (P 	 0.01). Addition of
QNZ with the obese stromovascular fraction prevented
downregulation of apoE mRNA level (1.01 
 0.1). The
above results indicate that cross talk between adipocytes
and stromovascular cells enhances oxidant stress-related
reduction of adipocyte apoE in obesity.

DISCUSSION

The current studies were undertaken to evaluate the
importance of oxidative stress for modulating adipocyte
apoE expression. Using 3T3-L1 cells, we show that ROS
reduce apoE mRNA and protein expression and that this
reduction can be prevented by the general antioxidant
NAC (Figs. 1 and 2). Analogous to other adipocyte genes
regulated by oxidative stress, these effects on the apoE
adipocyte gene are mediated by the NF-�B pathway (Fig.
3). We extend our observations from 3T3-L1 cells to
primary cells by showing that ROS also suppress apoE
mRNA and protein level in freshly isolated murine adipose
tissue and adipocytes (Fig. 4). Using freshly isolated
adipose tissue and adipocytes from ob/ob mice and lean
littermate controls, we show that the suppression of apoE
level that we have previously reported in ob/ob mice could
be partially reversed by NAC (Fig. 5). We further show that
interaction between the ob/ob stromovascular fraction and
adipocytes is important for producing the suppression of
adipocyte apoE and that this suppression is reversed by
incubation with NAC and a neutralizing antibody to TNF-�
(Fig. 6). In aggregate, our results establish that oxidant
stress regulates adipocyte apoE gene expression, that
oxidative stress contributes to the suppression of adipo-
cyte apoE in obesity, and that this suppression in obesity
depends on interaction between the adipose tissue stro-
movascular fraction and adipocytes. Both ROS and TNF-�
play an important role in mediating the impact of the
obese stromovascular fraction on adipocyte apoE, and
both appear to use NF-�B activation as a final common
pathway for suppressing its expression. Both ROS and
TNF-� (21,31) act directly on adipocytes to regulate apoE
gene expression. This is consistent with the interpretation
that NAC and TNF-� neutralizing antibodies also act
directly on adipocytes during coincubation with the obese
stromovascular fraction to prevent reduction of apoE
expression (Fig. 7). However, our experiments do not rule
out an additional effect of NAC or TNF-� neutralizing
antibodies on stromovascular fraction cells during the
coincubation. Our observations also establish that the
stromovascular fraction from the visceral fat depot of
obese mice more effectively reduces adipocyte apoE ex-
pression compared with that from the subcutaneous de-
pot. This is consistent with observations that in obesity,
visceral fat may be the primary contributor to metabolic
derangements (1,3).

Although high-level expression of apoE in human and
murine adipose tissue has been known for some time, its
physiological function has only recently been explored
(19,20). Freshly isolated adipocytes from apoE�/� mice
are smaller and contain less triglyceride compared with
those from wild-type mice despite in vivo exposure to a
hyperlipidemic environment. In the apoE�/� mouse
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model, reduced triglyceride in freshly isolated adipocytes
could be due to the absent expression of apoE in adipo-
cytes or, alternatively, to lack of apoE on the surface of
circulating lipoproteins. An important role for endogenous
adipocyte apoE for modulating adipocyte triglyceride con-
tent and adipocyte lipoprotein metabolism is supported by
the following observations: 1) The difference in lipid
content between apoE�/� adipocytes and wild-type adipo-
cytes is maintained after long-term culture in apoE-con-
taining serum; 2) in apoE�/� adipocytes incubated with
apoE-containing serum, the adenoviral-mediated expres-
sion of apoE significantly increases adipocyte triglyceride
mass; and 3) freshly isolated adipose tissue from apoE�/�

mice accumulates significantly less triglyceride after incu-
bation with apoE-rich VLDL compared with that from
wild-type mice (20).

The above observations indicate that endogenous apoE
expression is important for adipocyte acquisition of tri-
glyceride from extracellular triglyceride-rich lipoproteins
(TGRLs). In this way, the level of apoE expression in
adipocytes could influence the partitioning of lipid in
circulating TGRLs between adipocytes and other tissues.
For example, reduced TGRL lipid deposition in adipose
tissue resulting from reduced adipocyte apoE expression
(such as that observed in obesity) could favor lipid deliv-
ery to liver and muscle, where deposition of this lipid
has been implicated in producing tissue-specific insulin
resistance (32–35). We have previously shown that the
lipogenic response to PPAR� agonists is defective in
apoE�/� adipocytes even when incubated in the presence
of apoE-containing serum. Increased adipocyte apoE ex-
pression could also, therefore, participate in the expansion
of adipose tissue that is observed with administration of
PPAR� agonists (36–38). These issues will require further
study.

The above considerations underline the importance of
integrating adipocyte apoE into an overall model of adi-
pocyte lipid metabolism. As noted above, systemic admin-
istration or treatment of isolated cells with PPAR�
agonists increases adipocyte apoE expression (21). Con-
versely, treatment with the proinflammatory peptide an-
giotensin II reduces adipocyte apoE (22). Diet-induced or
leptin-deficient obesity leads to reduced apoE expression,
and we have previously demonstrated that TNF-� reduces
adipocyte apoE expression (21,23). The observations in
the current manuscript indicate that ROS and oxidant
stress present in obesity are an important pathway for
suppressing adipocyte apoE expression. This pathway has
high pathophysiological importance given the emerging
evidence that oxidative stress in adipose tissue is in-
creased in both obesity and diabetes (9,28), two diseases
becoming increasingly prevalent worldwide.
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Our observations also provide evidence for an important
interaction between adipocytes and adipose tissue stromo-
vascular cells for inducing oxidative stress with reduced
apoE expression in adipocytes. This pro-oxidant and
proinflammatory interaction suggests that interventions
that reduce adipose tissue inflammation and oxidant stress
will increase adipocyte apoE expression. PPAR� agonists
suppress a proinflammatory phenotype in macrophages
and produce apoptosis of adipose tissue macrophages
(39). In addition, a specific anti-inflammatory effect of
PPAR� agonists in adipose tissue has been demonstrated
(40,41). PPAR� agonists could therefore increase adipo-
cyte apoE both by a direct effect on the adipocyte apoE
gene (21) and by suppressing adipose tissue inflammation.
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