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Abstract: Bioluminescence resonance energy transfer (BRET) is the non-radiative transfer of energy
from a bioluminescent protein donor to a fluorophore acceptor. It shares all the formalism of Förster
resonance energy transfer (FRET) but differs in one key aspect: that the excited donor here is produced
by biochemical means and not by an external illumination. Often the choice of BRET source is the
bioluminescent protein Renilla luciferase, which catalyzes the oxidation of a substrate, typically
coelenterazine, producing an oxidized product in its electronic excited state that, in turn, couples with
a proximal fluorophore resulting in a fluorescence emission from the acceptor. The acceptors pertinent
to this discussion are semiconductor quantum dots (QDs), which offer some unrivalled photophysical
properties. Amongst other advantages, the QD’s large Stokes shift is particularly advantageous as it
allows easy and accurate deconstruction of acceptor signal, which is difficult to attain using organic
dyes or fluorescent proteins. QD-BRET systems are gaining popularity in non-invasive bioimaging
and as probes for biosensing as they don’t require external optical illumination, which dramatically
improves the signal-to-noise ratio by avoiding background auto-fluorescence. Despite the additional
advantages such systems offer, there are challenges lying ahead that need to be addressed before they
are utilized for translational types of research.
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1. Introduction

The ‘cold’ flashing light of fireflies has fascinated and intrigued people for centuries. It still
delights us, except that now we know that it is the result of an enzyme catalyzed chemical reaction,
which dissipates a minimum possible amount of heat. Besides fireflies, bioluminescence can be found
in a variety of other life forms ranging from unicellular bacteria to numerous more complex terrestrial
and aquatic organisms. While the mechanism of converting chemical energy into light is fundamentally
the same among different species, the chemical nature of the substrates varies widely and the genes
responsible for the catalytic enzymes show no homology to each other, indicating that these luminous
systems probably have evolved independently [1]. Irrespective of their origin, the substrate for the
oxidation is generically called luciferin and the enzyme is named luciferase.

A common feature among luciferases is that they all are enzymatic oxygenases. Using molecular
O2, the multistep oxidation reactions they catalyze usually occur through a peroxy (-O-O-) intermediate
(Figure 1a). The role of a peroxy intermediate is crucial as it provides a route for thermal activation
of the ground state molecule to the electronically excited product that is capable of emitting light [2,3].
For example, Renilla luciferase, found in the sea pansy Renilla reniformis, assists oxidizing of coelenterazine,
the luciferin, to produce coelenteramide and CO2 with concomitant emission of blue light (λmax~480 nm).

Sensors 2020, 20, 2909; doi:10.3390/s20102909 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0002-8902-4687
http://www.mdpi.com/1424-8220/20/10/2909?type=check_update&version=1
http://dx.doi.org/10.3390/s20102909
http://www.mdpi.com/journal/sensors


Sensors 2020, 20, 2909 2 of 16

Photons of that wavelength corresponds to ~60 Kcal/mole of energy, which is nearly eight times higher
than the hydrolysis enthalpy of one mole of ATP molecule to ADP. So it is apparent that photon-generating
reactions have to be highly exergonic. It is proposed that a stereochemically strained four-membered
energy rich cyclic peroxide forms during the course of the reaction which decomposes to produce stable
CO2 and a carbonyl (C=O) compound while releasing a large amount of energy, which thermochemical
calculations suggest is about 70–90 Kcal/mole, sufficient for the electronic excitation of the carbonyl
product—coelenteramide in this case [4,5]. Depending on the chemical nature of the substrate and
the physiological condition they are in, emission wavelengths can vary. Luciferases also play a key
role here. Specific regions in the protein have been identified where amino acid substitutions seem
to cause significant shift in the emission wavelength, and this is attributed to the change in torsion a
substrate/product experiences in the binding pocket of the enzyme that modifies the electronic states of
the enzyme-bound product (for the sake of brevity, henceforth we’ll call it Luc) [6,7].
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Figure 1. (a) Reaction mechanism of Renilla luciferase: catalyzed oxidation of coelenterazine to 
coelenteramide involving a typical strained four-membered cyclic peroxide intermediate with high 
energy content. The decomposition of the peroxide is exothermic resulting in electronic excitation of 
the product with the ability to emit light upon relaxation. (b) Plots displaying the normalized 
emission spectrum of Luc and both absorption and emission profiles of quantum dots (QD)-655 and 
the organic dye Alexa Fluor-647. While both the QD and the AF647 emit in a similar spectral range, 
due to the broad absorption spectrum of the QD and therefore large spectral overlap with the emission 
spectrum of Luc, energy transfer is far more favorable to the QD than to the dye. This is facilitated by 
the QD’s extinction coefficient of ~7,500,000 M−1cm−1 at 450 nm as compared to that of AF647 (260,000 
M−1cm−1 at 647 nm) along with their respective quantum yields of 50% and 33%, respectively. 

Emission spectra of Luc may simply look like the externally illuminated fluorescence spectra of 
the oxidized products, but often in vivo it appears to be red-shifted. This happens in the presence of 
an accessory fluorescent protein (FP), such as green fluorescent protein (GFP), when located in close 
enough proximity to allow some transfer of energy from Luc to the FP, which results in emission of 
light from the latter at a higher wavelength [8]. The mechanism of this energy transfer is called 
bioluminescence resonance energy transfer or BRET. BRET shares all the formalism of Förster 
resonance energy transfer (FRET), i.e., the transfer does not involve emission and re-absorption of 
photon and is the result of a long-range coupling between the transition-dipoles of the two 
participating fluorophores [9]. Akin to FRET, the rate of energy transfer in BRET also displays an 
inverse sixth power distance dependency. Besides distance, other factors such as the spectral overlap 
between donor luminescence and acceptor absorption spectra and mutual orientation of the relevant 
dipoles influence the energy transfer efficiency in the same way as FRET does [10]. Despite the 
similarities, BRET offers some special advantages that FRET cannot afford, primarily due to the 
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Figure 1. (a) Reaction mechanism of Renilla luciferase: catalyzed oxidation of coelenterazine to
coelenteramide involving a typical strained four-membered cyclic peroxide intermediate with high
energy content. The decomposition of the peroxide is exothermic resulting in electronic excitation of
the product with the ability to emit light upon relaxation. (b) Plots displaying the normalized emission
spectrum of Luc and both absorption and emission profiles of quantum dots (QD)-655 and the organic
dye Alexa Fluor-647. While both the QD and the AF647 emit in a similar spectral range, due to the
broad absorption spectrum of the QD and therefore large spectral overlap with the emission spectrum
of Luc, energy transfer is far more favorable to the QD than to the dye. This is facilitated by the QD’s
extinction coefficient of ~7,500,000 M−1cm−1 at 450 nm as compared to that of AF647 (260,000 M−1cm−1

at 647 nm) along with their respective quantum yields of 50% and 33%, respectively.

Emission spectra of Luc may simply look like the externally illuminated fluorescence spectra of
the oxidized products, but often in vivo it appears to be red-shifted. This happens in the presence
of an accessory fluorescent protein (FP), such as green fluorescent protein (GFP), when located in
close enough proximity to allow some transfer of energy from Luc to the FP, which results in emission
of light from the latter at a higher wavelength [8]. The mechanism of this energy transfer is called
bioluminescence resonance energy transfer or BRET. BRET shares all the formalism of Förster resonance
energy transfer (FRET), i.e., the transfer does not involve emission and re-absorption of photon
and is the result of a long-range coupling between the transition-dipoles of the two participating
fluorophores [9]. Akin to FRET, the rate of energy transfer in BRET also displays an inverse sixth
power distance dependency. Besides distance, other factors such as the spectral overlap between donor
luminescence and acceptor absorption spectra and mutual orientation of the relevant dipoles influence
the energy transfer efficiency in the same way as FRET does [10]. Despite the similarities, BRET offers
some special advantages that FRET cannot afford, primarily due to the chemical nature of excitation
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in BRET. In FRET, for example, when the donor is excited via external illumination, molecules other
than the target fluorophores abundantly present in a biological sample may also get excited and faintly
fluoresce but collectively this auto-fluorescence may substantially reduce the signal-to-noise ratio in
a FRET experiment. The same light source can also excite the acceptor fluorophore, albeit weakly,
complicating the subsequent spectral deconvolution and data analysis. Moreover, strong laser light
typically used in FRET studies may cause damage to the molecular framework of a fluorophore,
rendering them incapable of fluorescing further if a second round of excitation is required. Obviating
the need for external light, BRET is not plagued by these issues. Naturally, it has turned out to be a
powerful tool for evaluating macromolecular interactions and a basis for developing new classes of
biosensor, probes, anti-cancer agents, and even light-harvesting and directing nanodevices [11,12].

While the acceptors in BRET have traditionally been FPs, chemically conjugated organic fluorophore
dyes have also served the same purpose, [13] but the BRET acceptor pertinent to our discussion that of
an emissive inorganic nanoparticle—namely luminescent semiconductor quantum dots (QDs). QDs are
nanometer-sized colloidal nanocrystalline particles that display unique quantum confined opto-electronic
properties. As a fluorophore, QDs offer some unrivalled photophysical properties that include broad
absorption spectra in association with a narrow and symmetric photoluminescence (PL) profile—the latter
being tunable via changing of the chemical composition and/or size of the particles (Figure 1b). They also
have high quantum yields and display remarkable resistance to photo and chemical degradation. While
use of QDs as FRET donors is ubiquitous, their role as an acceptor is limited by their long PL lifetime
(5–50 nanoseconds). QDs display several unique physicochemical properties that help augment their role
as a BRET acceptor, these are outlined in Table 1. They are qualified as an acceptor only when the associated
donor has a comparable radiative lifetime, which is observed in lanthanide phosphorescence or processes
like bio or chemiluminescence but not among most of the available conventional organic fluorophore
dyes [14–17]. Their broad absorption spectra allow them to be excited at a wavelength far away from the
discrete PL, contributing to their large effective Stokes shift. This is especially advantageous for BRET as
virtually all bioluminescent proteins can be used for QD excitation and, in addition, it simplifies the task
of spectral separation of acceptor emission from that of the donor—something that tends to be far more
challenging with other BRET acceptors like dyes (Figure 1b). In addition, the large, nontrivial surface area
of the QDs allows stoichiometric attachment of multiple acceptor fluorophores around them in a relatively
centrosymmetric manner. The latter, in turn, increases the energy transfer efficiency in a controllable
manner by proportionally increasing the effective acceptor absorption cross section. Cumulatively, these
properties have spurred significant interest in developing QD–Luc conjugates, which beyond its current
application as bioimaging and sensing probes can potentially have broader impact on different facets of
scientific research requiring challenging fluorescent formats.

Table 1. Intrinsic QD physicochemical properties that augment their role as bioluminescence resonance
energy transfer (BRET) acceptors.

QD Acceptor Property Effect on BRET

Non-trivial size with large surface-to-volume (s/v) ratio.
Allows for multiple luciferases to be displayed around
the QD. 1 Allows for display of other biologicals on the
QD surface.

Display of multiple Luc around the QD. Increases the probability that BRET will occur.

Absorption increases to the blue. Large spectral overlap with Luc emission.

Long excited lifetime, high quantum yield. Bright QD acceptor PL. QD can act as donor or FRET
relay to ternary or downstream acceptors.

Size-tunable PL. Choice of QD PL emission window with large spectral
separation from Luc emission.

Resistance to photo- and chemical degradation. Allows for long-term robust use.

Can be surface functionalized with many different ligands Provides access to different bioconjugation chemistries.
1 Such display is typically in a centrosymmetric manner.
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2. System Design and Ligation Strategy

The emission maxima of natural and mutant luciferase variants typically span ~460 to ~620 nm.
Amongst varieties of natural and mutant variants, Renilla luciferase (RLuc8) and Firefly luciferase
(FLuc) are the two widely employed proteins for BRET studies, having emission maxima around 480
(blue-green) and 560 nm (yellow-green), respectively. RLuc8 differs from its native form by eight
introduced site-specific mutations and displays brighter luminescence and strong resistance against
deactivation in serum [18]. RLuc8 uses coelenterazine and O2 while FLuc, besides requiring the
substrate D-luciferin and O2, also needs ATP and Mg2+ as cofactors to generate luminescence. The ATP
dependence of the latter is often viewed as a drawback for in vivo use as the concentration of ATP in
serum is fairly low [19]. Besides these two, newly introduced NanoLuc is another mutant luciferase
that has less frequently been fused with QDs. It has an emission maxima ~20 nm blue shifted from
that of RLuc8 but displays luminescence that is nearly 150 times brighter [20]. While its brightness
in conjunction with relatively long-lived luminescence, small size, and ATP independence are quite
appealing, the substrate it uses, furimazine, is a coelenterazine derivative and currently not generically
available—so cost can be a factor here. Nevertheless, a variety of QDs can ideally be coupled to
them that can facilitate significant energy transfer-thanks to the broad absorption spectra of QDs
that lead to substantial spectral overlap with the broad emission of the donor. The metric for BRET
efficiency, formally called the BRET ratio, is expressed in terms of the ratio of integrated emission
of the acceptor to that of the luciferase. To calculate the BRET ratio, the contribution of the acceptor
and donor in a composite raw spectrum needs to be precisely evaluated. This is generally done by
deconvoluting the spectrum and deconvolution is easy and accurate if the spectrum of the two are
distinctly separated. BRET-sensitized QD emission above 640 nm can comfortably be resolved from
the Luc PL, which probably explains the popularity of utilizing the commercially available QD655
(λmax, em = 655 nm, ThermoFisher) as the BRET acceptor. QD655 is a core-shell QD where the core,
a CdSe nanocrystal, is encapsulated in a few nanometers thick shell of ZnS. Being a semiconductor
nanocrystallite, CdSe core-only QDs themselves are capable of emitting upon irradiation, but a shell of
wider band gap material such as ZnS improves their quantum yield by passivating surface defects
making them look much brighter [21]. A shell at the same time helps to reduce toxicity by preventing
Cd2+ leaching, which remains a longstanding concern for their in vivo use [22]. Cumulatively, these
added advantages have made core-shell QDs more desirable over core-only QDs for bioimaging and
biological assays, [23] with no exception when constructing QD–Luc BRET systems.

QDs, whether the final hydrophilic version or the initial hydrophobic native product, are always
coated with some kind of surface ligand. Without these surface ligands QDs cannot exist in a colloidal
state but the ligands serve other important roles too [24]. Often the ligands on hydrophilic QDs
display carboxylic acid groups that primarily serve two purposes: (i) they impart aqueous solubility
(i.e., colloidal stability in water) necessary for biological application and (ii) they can display terminal
functional groups for bioconjugating and displaying a variety of biomolecules on the QDs, including
proteins, peptides, and DNA, to name a few [25]. The first report describing BRET between luciferase
and a QD, and later other related reports, utilized surface carboxylic acid groups to ligate luciferase
to the QD by exploiting EDC-based carbodiimide coupling chemistry (Figure 2a) [26]. EDC is the
abbreviated name of the 1-ethyl-3-(3-dimethulaminopropyl)carbodiimide which is used in conjunction
with NHS (N-hydroxysuccinimide) to activate carboxylic acid groups that react to primary amines to
form amide bonds at a faster rate, yielding more product. However, primary amines and carboxylic
acid groups are ubiquitous in proteins, so crosslinking and subsequent aggregation is a common
issue. In addition to this, extensive purification is often required to remove excess reagents, unreacted
proteins, and uncoupled QDs and this process also seems to have a detrimental impact on the PL
quantum yield (QY) of the resulting construct [27].
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Figure 2. Schematic depicting two major ways of conjugating luciferase to QDs. (a) Chemical conjugation
via 1-ethyl-3-(3-dimethulaminopropyl)carbodiimide (EDC) coupling chemistry. (b) Spontaneous
self-assembly via His6 mediated metal affinity coordination where the imidazole side chain of His
residues binds to the Zn2+ of the ZnS shell of the QD. His6 motifs are usually recombinantly inserted to
one end of the enzyme for purification of Ni2+ chelate media.

The majority of reports concerning BRET from Luc to QD, however, involve a different type of
bioconjugation chemistry based on metal affinity coordination (Figure 2b). The metal ion pertinent to
our discussion is Zn2+, present on the ZnS shell of many core-shell QDs and which manifests high
affinity for imidazole functionalities on the side chain of the amino acid histidine. Histidine (His)
residues are quite common in proteins but the affinity of discrete His residues for Zn2+ is not strong
enough to ensure a robust conjugation [28]. Contiguous histidines (Hisn, where n is typically 6) can be
incorporated recombinantly into either terminus of proteins without affecting their original function.
Presently, this is a routine process practiced in molecular biology labs for purifying protein using
Ni-NTA columns where Ni2+ ions forms a chelated compound with resin–immobilized NTA and the
His-tag [29]. The same concept has been successfully adopted for appending His-tags to luciferases
and subsequently attaching them directly onto the Zn-rich QD surface [25]. The process requires
only mixing of the two components and allowing the mixture to stand for 5–10 min, within which
the assembly is believed to reach equilibrium. With a dissociation constant reportedly in the order of
10−9 M, the multidentate dative interaction is evidently much stronger and effectively gives rise to
near-stoichiometric product with a narrow distribution at higher ratio [30–33]. This approach provides
other benefits as it does not cross-link QDs and does not detrimentally affect their QY. Indeed, a slight
increase in the QD PL intensity has been observed following conjugation, probably due to better
surface passivation that is believed to reduce non-radiative electron-hole recombination events that
arise due to dangling bonds on the QD surface [34].

3. Applications

3.1. Bioimaging

Most QD–Luc constructs have found applications in sensing and bioimaging. Luciferases
themselves have been widely used to observe biomolecular processes in vivo in real time. The common
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practice there is to introduce the luciferase reporter gene into the cells of interest and allow the protein to
be expressed. This is followed by exogenous addition of respective cell-permeable luciferins, allowing
the bioluminescent cells to be seen and probed to obtain information about their trafficking, growth,
or death using highly sensitive modern microscopes [35]. The same can be achieved with fluorescent
protein, however, there are a number of issues that plague common fluorescence imaging techniques.
First and foremost is the difficulty of incident light to penetrate and excite a fluorescent probe located
deep inside a tissue due to the combined effect of absorption, scattering, and reflection of the light
in the tissue; second is the scattering and absorption of emitted light elicited again by tissue; and
third, which is applicable to thick as well as thin biological samples, is the autofluorescence from
numerous naturally occurring biomolecules contributing to background noise [26,36–38]. Cumulatively
all three ultimately reduce the signal-to-noise ratio in an acquired image or spectrum leading to an
inconclusive result. Since the need for extrinsic illumination is eliminated in bioluminescence imaging
(BLI), the question of paucity of exciting light inside deep tissue does not now arise, which improves
imaging capabilities, especially in whole animals. This comes in conjunction with a much-improved
signal-to-noise ratio due to the negligible presence of endogenous light, making BLI superior among
other optical imaging modalities in terms of sensitivity. However, the emitted light in BLI does have to
transmit through tissue and get absorbed by pigmented biomolecules therein, especially those photons
from the blue-green region (450–550 nm) of the spectrum where Luc8 and FLuc typically emit [36].
Light beyond the wavelength of 650 nm, also known as near infrared or NIR light (650–1000 nm),
is less absorbed by most of the tissues since it begins to overlap with what is referred to as the first
tissue transparency window. There are numerous QDs reported in the literature [37], and some even
are available commercially, that emit in the NIR window and these have already been used for deep
tissue imaging [38]. Therefore conjugating luciferase to such QDs can solve the issue of blue light
absorption if BRET occurs between the two. Therefore, using QD–Luc as an imaging probe, the
microscope effectively sees sensitized QD NIR emission as well as attenuated emission from luciferase
after transmission to QD and absorption by tissues on its way to reach the detector. The intensity
ratio of the two emissions can be used instead of an error-prone absolute value of light intensity as a
parameter to gauge the target biological process.

Rao’s group at Stanford University first demonstrated the use of RLuc8 conjugated QDs as
an in vivo bioimaging agent and coined the term “self-illuminating QDs” for obvious reason [26].
The conjugation was performed via the EDC coupling route and the resulting construct displayed decent
stability in biological fluids such as serum and blood, as evidenced by a strong BRET between the two.
When QD–RLuc8 was injected inside a nude mouse, subcutaneously at one site and intramuscularly in
another, and coelenterazine was then injected in the tail-vein. Irrespective of the injection sites, strong
detectable signals emanated in both cases from the BRET-sensitized QD with emission maxima at
655 nm (Figure 3a), the latter represent the commercial QD materials described above. In a control
experiment, injection of RLuc8 alone gave rise to a much weaker signal from the deep tissue due
to absorption and scattering of the short-wavelength bioluminescence. They also demonstrated the
potential application of these constructs as a multiplexed imaging unit by conjugating RLuc8 to three
different QDs with emission maxima at 655, 705 and 800 nm. BRET sensitized emissions from all of the
conjugates, separately as well in a mixture, were clearly observed at four different injected sites in the
same mouse. The only issue was some spectral cross talk between QD655 and QD700, and QD700 and
QD800, which should be resolved with the continuing development of finer optical filters. The prospect
of the conjugates for cell labeling and subsequent monitoring of their translocation inside an animal
was also explored. The approach, however, necessitated the QD–Luc particles to be functionalized with
short pieces of a polycationic peptide, again via EDC coupling, to facilitate their cell uptake [39–41].
The particles taken up inside C6-glioma cells did display substantial BRET-sensitized emission from
the QDs, which did not get attenuated when the injected cells were inside the mouse and accumulated
near its lungs (Figure 3b). For comparison purposes, fluorescence spectral imaging was performed in
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each case by exciting the QDs with external irradiation. Although relatively strong fluorescence signal
was observed from superficial depths, the signal, however, was suboptimal from deeper tissue.
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This success in using QD–Luc BRET system as an efficient bioimaging agent opened up other
avenues of research as well, for example, in protease sensing, photodynamic therapy, and imaging
specific regions of the body with a pivotal physiological function such as lymph nodes. Lymph nodes
have key roles in maintaining proper immune response and in cancer metastasis and therefore their
visualization has important clinical implications. Researchers have successfully employed the QD–Luc
BRET system for lymphatic imaging with extremely low background signal in mice [42]. They injected
commercially available QD–RLuc8 conjugates to various lymphatic sites in mice and clearly observed
the lymph nodes under an optical microscope even after an hour of coelenterazine administration.
They further envisioned, based on preliminary results, that this technology could be applied for
target specific imaging of malignant tumors if the nanocomposite is further functionalized with cancer
recognizing moieties like a monoclonal antibody. In 2016, Kamkaew and colleagues reported on similar
aspect of target specific imaging using a novel luciferase, named nano luciferase or NLuc—a mutant
version of the one originally found in a specific deep-sea shrimp [43]. The prefix ‘nano’ originates from
their relatively small size ~19 kD, compared to RLuc and FLuc having sizes 36 and 65 kD, respectively.
EDC coupling chemistry was exploited to conjugate NLuc and a target-binding unit to polymer coated
CdSe/ZnS core-shell QDs with emission maxima at 705 nm, which falls in the NIR range and suffers
minimal absorption by animal tissue. The targeting unit was a small cyclic peptide known to have
strong affinity to αvβ3 cell surface receptors overexpressed in a majority of tumor cells. Significant
BRET was observed both in vitro and in vivo, enabling visualization of specific lymph nodes even after
two hours of substrate injection. The conjugates also displayed targeting capability as BRET-sensitized
emission from the QDs were clearly visible from the expected sites within the tumor bearing mice.

Just as described in numerous reports QD surfaces have been modified with target recognizing
biomolecules [44], however, the presence of luciferase on the QD offers a unique opportunity to
append such moieties to the luciferase itself without affecting its intrinsic luminescence characteristics.
In a recent paper, researchers have developed a target specific imaging probe involving QD and a
recombinantly-expressed luciferase with a terminal His6 sequence for anchoring to the QD surface
and Annexin V for the intended role of targeting [45]. Annexin V is an endogenous protein and a
well-known probe for detecting apoptotic cells due to its strong binding affinity to cell membrane
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phospholipid phosphatidylserine that get exposed on the surface of a cell that is about to undergo
apoptosis (or in other words programmed cell death). Cancer cells evade apoptosis, so visualization of
apoptotic cells is important from a clinical perspective. The Annex V–Luc–QD conjugates displayed
distinctive binding ability to breast cancer cells where apoptosis was induced by chemical means.
The higher signal-to-noise ratio from the BRET-sensitized NIR QD emission compared to standard
fluorescent dye labeled Annexin V probe again proved the potential of these conjugates as an optical
imaging tool. The same research group applied a similar strategy for imaging of cancer cells by
targeting the overexpression of a transmembrane protein called epidermal growth factor receptor
(EGFR) which is commonly found in many cancer cells [46]. The targeting molecule was an EGFR
specific antibody, which was linked to QD-bound Luc via an antibody binding domain genetically
fused to Luc during its expression. While the detection sensitivity improved substantially compared to
standard fluorescence imaging by exciting the QDs alone, this research also opened up possibilities of
attaching a variety of other antibodies and implement the resulting constructs for various targeted
imaging application.

3.2. Biosensing

The examples described above clearly imply the potential of QD–Luc system as a powerful
imaging tool, the same may be true for their employment as a sensing probe. Rao’s group employed
Luc8 coupled QDs for detecting proteolytic activity of the matrix metalloproteinases MMP-2 and
MMP-7, which are believed to have vital roles in degrading extracellular proteins and seem to
overexpress in various other pathological conditions [47]. The detecting principle was to modulate
BRET efficiency by effecting a distance change between the donor and acceptor in the presence of the
protease. This was accomplished by inserting a peptide sequence that could act as a substrate for
the protease in question between the donor Luc8 and acceptor QD. Hydrolytic cleavage of the linker
peptide by the protease separated the donor–acceptor, allowing them to diffuse away and concurrently
resulting in a diminished BRET efficiency. The conjugate was prepared by genetically fusing the
substrate peptide and a His6 sequence to the C-terminus of Luc8 and subsequently attaching it to the
QD surface, as mediated via Ni2+ metal affinity. Elimination of the background fluorescence from
naturally occurring fluorophores greatly improved the sensitivity with a detection limit down to a few
nanograms per milliliter. The specificity of detection was also high enough to ensure simultaneous
detection of two different proteases in complex biological fluid (Figure 4) [48]. In that case, two different
proteases had to be linked to two different QDs, with emission maxima at 655 and 705 nm, via their
respective substrate peptides.

It is not always necessary to conjugate luciferase to QDs. Signal transduction can also be turned
on by the physical association of the two effected by noncovalent interaction of two different entities, a
complex biomolecule such as DNA or an antibody or a simpler analyte conjugated separately to QDs
and luciferase. However, such association can be disrupted by the presence of similar biomolecules
or analytes that competitively bind to either QD or luciferase appended biomolecules, letting the
donor/acceptor part ways and concurrently attenuating the BRET signal. This sort of competitive
binding has been widely exploited for developing biosensors [49] and in the current context the
same has been adopted for the detection of DNA and smaller molecules of special importance.
As a proof of concept for detecting a target DNA, Cissel and coworkers conjugated a DNA strand
identical to the target one to RLuc and its complementary strand to a NIR light emitting QD [50].
Hybridization of the two strands brought the RLuc and QD in close proximity, which resulted in a
strong BRET-sensitized signal from the QD when exposed to coelenterazine. Progressive addition of the
target DNA proportionally displaced the Luc labeled strand resulting in a decreased BRET-sensitized
emission from the QD, the quantification of which allowed detection of DNA at a concentration as low
as 20 nM. A similar strategy was followed for the detection of specific antibiotics, currently related
to food safety issues due to their excessive use in livestock [51]. Enrofloxacin (ENR) is one such
antibiotic that comes under the group of fluoroquinolone antibiotics and displays binding affinity to
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ScFv (abbreviation for single chain variable fragment, a fusion of the variable regions of IgG antibody),
as do other fluoroquinolones. To detect ENR, QDs were conjugated to a different fluoroquinolone
antibiotic namely norfloxacin (NOR) and RLuc was recombinantly fused to ScFv. Association of the
two turned the BRET on, but presence of ENR turned the same off by preferentially binding to the
ScFv, presumably at the same site, separating the NOR conjugated QD from the RLuc.Sensors 2020, 20, x 10 of 17 
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Figure 4. Application of QD–Luc conjugates as a protease sensor. (a) Schematic displaying the detection
principle where the target protease cleaves its substrate peptide allowing the QD and Luc to diffuse
away and concurrently reducing the BRET-sensitized QD emission. (b) Representative emission spectra
displaying reduced QD emission with increased MMP-2 concentration. (c) Simultaneous detection
of two different proteases, MMP-2 and urokinase (uPA), with two different probes, QD655-Luc and
QD705-Luc, respectively. In the presence of specific protease, a drop in QD intensity at its respective
peak was observed. Reprinted with permission from [48]. Copyright 2008 American Chemical Society.

3.3. Therapeutics

Besides being an imaging and analytical tool, QD–Luc BRET systems can have more direct impact
on therapeutics as they have been used as an internal light source for photodynamic therapy (PDT)
(Figure 5) [52]. PDT is a method for treating cancer by killing the cancer cells through generating lethal
reactive oxygen species (ROS) near or within them. ROS are produced when a photosensitive molecule,
called a photosensitizer, absorbs light of a specific wavelength, becomes electronically excited and reacts
with dissolved oxygen in aqueous biological fluids. Since the penetration of illuminating light inside a
tissue is again a concern, PDT in its standard form is not very effective unless the tumor is subcutaneous.
Researchers found an improved PDT efficiency, as reflected in a substantially delayed tumor growth
rate in live mice, when QD–RLuc was the source of light and Foscan was the photosensitizer. The QD,
besides being the BRET acceptor with tunable emission and the central assembly platform for RLuc,
played another more subtle role too. From earlier research, it appeared a shorter distance between the
internal light source and the photosensitizer could improve the efficacy of PDT. The QD–Luc typically
gets internalized via endocytosis that involves endosomes, as does the Foscan-loaded micelles used in
this example. Therefore, the chances that the two encounter each other inside the same organelle are
enhanced which in turn further improves PDT. The same may not happen with RLuc alone.
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Figure 5. (a) Schematic depicting application of a QD–Luc BRET system for photodynamic therapy.
The luciferase labeled QD and the micelle loaded photosensitizer encountered each other while
they were being taken up by the cancer cells via endocytosis. The QD–Luc conjugates served as
an endogenous light source for the photosensitizer to generate lethal reactive oxygen species (ROS).
(b) Relative tumor growth curve showing the effectiveness of photodynamic therapy (PDT). The other
traces are controls (m-F stands for micelle-Foscan). Reprinted with permission from [52]. Copyright
2013 Elsevier.

4. Developing New Designs

4.1. Anisotropic-QD–FLuc Constructs

The utility and fidelity of current QD–Luc configurations are certainly appreciated, but there is
always room for improvements. The domain to do so could be the BRET efficiency to make QD–Luc
probes look brighter or it could be the fabrication of a de novo functional nanodevice with the existing
building blocks. For example, the QD–Luc constructs we discussed earlier involved exclusively
spherical QDs that have a minimum surface area which restricts the number of luciferase that can
be arrayed around them and which, in turn, limits the BRET ratio to only ~0.5–4.0. One of the ways
researchers found to address this issue was by introducing quantum rods (QR) that have larger surface
areas. In terms of photophysical properties, QRs are not very different from their spherical counterparts
except that they display linearly polarized absorption and emission [53,54]. The polarization coupled
with dimensionality and the internal microstructure of the rods have a dictating role in the efficiency of
resonance energy transfer, which if carefully tuned can lead to a BRET ratio as high as 44. The QD’s
high photoluminescent quantum yield contributes to the overall signal by increasing the QD’s light
contribution at the portion of the spectrum where it emits. This will, in turn, help increase BRET ratio
values. Maye’s lab worked on that facet by synthesizing a series of CdSe/CdS and CdSe/CdS/ZnS
QRs with different aspect ratios and three different internal morphologies, a dot-in-dot, a dot-in-rod
and a rod-in-rod, where core CdSe is spherical in the two former types and rod shaped in the latter
(Figure 6) [55,56]. Their research unraveled the factors behind the dimensionality that actually controls
the BRET ratio, which include not only the enzyme loading but also the distance between the donor
and acceptor, and the polarization of the core. The distance between the donors, FLuc, and the
acceptor, CdSe core, is effectively shorter in a rod-in-rod morphology. It is the QR with the same
morphology that displays a strong polarization, which enhances the Förster distance (the distance at
which FRET efficiency is 50%), and in turn improves the BRET efficiency. So their research suggests
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some guidelines that one needs to consider when designing BRET systems involving quantum confined
semiconductor nanoparticles.

Sensors 2020, 20, x 12 of 17 

 

suggests some guidelines that one needs to consider when designing BRET systems involving 
quantum confined semiconductor nanoparticles.  

 
Figure 6. (a,b) BRET ratio of CdSe/CdS core/shell and CdSe/CdS/ZnS core/shell/shell quantum rods 
(QR), respectively, conjugated to the thermostable variant of firefly luciferase Photinus pyralis (Ppy) 
for two different Ppy:QR ratios of 5 and 10. (c) Schematic depicting the microstructure of various QRs 
used in the dot-in-dot configuration has the lowest aspect ratio while the dot-in-rod has the highest. 
While loading capacity increases in dot-in-rod configuration, the proteins that are too far from the 
core CdSe contribute very little to the actual BRET [55]. Copyright 2012 American Chemical Society. 

4.2. BRET-Multistep FRET Constructs 

In parallel to the development of optimized BRET efficiency, the sophistication of such systems 
has steadily grown by integrating other elements, such as organic fluorophores [57] or FPs [58] to the 
existing constructs. They can work in concert with the QD to harvest luciferase light energy and 
utilize it by spatially and spectrally propagating it in a unique fashion that can potentially broaden 
their breadth of application. As a proof of concept, our group demonstrated that BRET between Luc 
and QD could be further coupled with multistep FRET, via which excitonic energy would cascade 
down a slanted energy landscape to redder region of the spectrum [57]. Technically this was achieved 
by concentrically arraying multiple copies of two different fluorescent dye labeled peptides, which, 
being tagged with His6, readily self-assembled onto the CdSe/ZnS core-shell QDs in a ratiometric 
manner. The fluorescent dyes, Alexa Fluor 647 and Cy5.5 acted as acceptors in the sequential FRET 
steps, the efficiency of which could be tuned, to some extent, by adjusting the dye to QD ratio. 

Inspired by the ability to sensitize multiple FRET acceptors within such constructs, our group 
took a step forward by attaching fluorescent dye-decorated DNA wires to QD–Luc hybrids  
(Figure 7) [59]. The DNA wire was fabricated by self-assembling multiple short pieces of DNA that 
were covalently tethered to different fluorescent dyes. The fluorescent dyes were chosen judiciously 
so that they display significant spectral overlap with the adjacent dye, which allowed the linearly 
arrayed dye ensemble to act as a photonic wire—transporting optical energy from one end to the 
other via sequential FRET. It was indeed noticed that Luc8 emission centered around ca. 480 nm could 
be transported to a spectrally and spatially distant dye Cy5.5 (λmax, em ~ 670 nm) via an array of 
fluorophores which besides QD540 included Cy3, Cy3.5 and AF647 fluorescent dyes. As far as 
sophistication is concerned, DNA photonic wires fall on the simpler side of the vast number of DNA 
based architectures that have already been synthesized and can potentially be given virtually any 
conceivable shape [60]. DNA as a nano-construction material not only allows precise arrangement of 
fluorophore, protein, antibody, or nanoparticle, [61] the relative distance and orientation of such 

(c) (a) 

(b) 

Figure 6. (a,b) BRET ratio of CdSe/CdS core/shell and CdSe/CdS/ZnS core/shell/shell quantum rods
(QR), respectively, conjugated to the thermostable variant of firefly luciferase Photinus pyralis (Ppy) for
two different Ppy:QR ratios of 5 and 10. (c) Schematic depicting the microstructure of various QRs
used in the dot-in-dot configuration has the lowest aspect ratio while the dot-in-rod has the highest.
While loading capacity increases in dot-in-rod configuration, the proteins that are too far from the core
CdSe contribute very little to the actual BRET [55]. Copyright 2012 American Chemical Society.

4.2. BRET-Multistep FRET Constructs

In parallel to the development of optimized BRET efficiency, the sophistication of such systems
has steadily grown by integrating other elements, such as organic fluorophores [57] or FPs [58] to the
existing constructs. They can work in concert with the QD to harvest luciferase light energy and utilize
it by spatially and spectrally propagating it in a unique fashion that can potentially broaden their
breadth of application. As a proof of concept, our group demonstrated that BRET between Luc and
QD could be further coupled with multistep FRET, via which excitonic energy would cascade down
a slanted energy landscape to redder region of the spectrum [57]. Technically this was achieved by
concentrically arraying multiple copies of two different fluorescent dye labeled peptides, which, being
tagged with His6, readily self-assembled onto the CdSe/ZnS core-shell QDs in a ratiometric manner.
The fluorescent dyes, Alexa Fluor 647 and Cy5.5 acted as acceptors in the sequential FRET steps, the
efficiency of which could be tuned, to some extent, by adjusting the dye to QD ratio.

Inspired by the ability to sensitize multiple FRET acceptors within such constructs, our group took
a step forward by attaching fluorescent dye-decorated DNA wires to QD–Luc hybrids (Figure 7) [59].
The DNA wire was fabricated by self-assembling multiple short pieces of DNA that were covalently
tethered to different fluorescent dyes. The fluorescent dyes were chosen judiciously so that they display
significant spectral overlap with the adjacent dye, which allowed the linearly arrayed dye ensemble to
act as a photonic wire—transporting optical energy from one end to the other via sequential FRET.
It was indeed noticed that Luc8 emission centered around ca. 480 nm could be transported to a
spectrally and spatially distant dye Cy5.5 (λmax, em ~ 670 nm) via an array of fluorophores which
besides QD540 included Cy3, Cy3.5 and AF647 fluorescent dyes. As far as sophistication is concerned,
DNA photonic wires fall on the simpler side of the vast number of DNA based architectures that have
already been synthesized and can potentially be given virtually any conceivable shape [60]. DNA as a
nano-construction material not only allows precise arrangement of fluorophore, protein, antibody, or
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nanoparticle, [61] the relative distance and orientation of such elements can be modulated by external
stimuli, like pH [62] or target DNA strand [63]. Smart designs unifying these elements with QD and
luciferase could potentially lead to complex de novo photonic nanomaterials that could recognize a
target, activate itself, process the light energy as necessary, and give us easily a readable signal both
in vitro and in vivo, all in a standalone modality.
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Figure 7. (a) Schematic depicting a self-assembled DNA photonic wire built onto QD–Luc conjugates.
(b) The photonic wire, which was synthesized by hybridizing small fragments of DNA with pendant
fluorescent organic dyes allows spatial and spectral propagation of excitonic energy via sequential
FRET as displayed in the plot. The ratiometric self-assembly of Luc and the DNA wire, that relies upon
His6-Zn2+ coordination chemistry, provides control over energy transfer efficiency. Reprinted with
permission from [59]. Copyright 2015 American Chemical Society.

5. Conclusions and Outlook

Clearly, exploiting enzymatic-based BRET with semiconductor QDs as acceptors brings with it
several unique photophysical and chemical benefits which, if properly developed, could lead to new,
unique, and perhaps even translational bioapplications. In terms of just pure FRET-type donor-acceptor
optical characteristics, the QD’s broad absorption profile, which increases nearly linearly from its
first absorption band, allows the QD acceptor to be very effectively sensitized by the broad and
blue-shifted emission from donor Luc substrates. The typical QD’s extinction coefficient also increases
dramatically in this portion of the spectrum to values that approach several million. Such a spectral
separation also functions as an effective Stokes shift, but more in terms of separating donor and
acceptor emissions, which serves to simplify detection and deconvolution of their respective PL. This is
especially true in the case of redder, near-IR emitting QDs, for example, those with 650–800 nm centered
PL profiles. Moreover, the ability to array multiple discrete Luc enzymes around a given QD acceptor
in a somewhat centrosymmetrical manner increases the probability that its dipole will couple to that of
the excited-state substrate and engage in resonance energy transfer. The latter, however, does come
at the expense of increasing the donor emission and consuming more substrate in a quicker manner
as the number of enzymes per QD effectively increases. Nevertheless, the ability to accomplish this
in a controllable manner represents, for all intents and purposes, a viable compromise between the
desired benefit and any potential liability. Along with these properties comes the unique ability to
multiplex and sensitize multiple QD acceptors via Luc in a localized and controlled spatiotemporal
manner, as so amply demonstrated by Rao [26].

Perhaps the most unique and underexploited property of Luc–QD BRET-based sensitization is
the ability to bypass the need for an external illumination source and directly allow for localized and
controlled energy transfer. This is absolutely critical to using QDs as acceptors, since their broad
absorption coupled to their long lifetimes and high quantum yields will cumulatively result in them
being far better excited than any potential dye or FP donor they may be paired with; this confounding
situation is not something that Förster most likely envisioned in his seminal derivation of the formalism
that describes and accompanies this type of energy transfer. Beyond significantly reducing the
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background autofluorescence in a sample and any direct excitation of the QD acceptor, it actually
gives the user almost absolute control over where and when the excitation takes place through the
ability to add (or not) the chemical substrate and any accompanying cofactors. Interestingly, this is
not something that has been actively utilized or exploited in any of the QD–Luc construct sensors
and probes developed and demonstrated to date, beyond those that have been applied in vivo [26].
As to the further development of in vivo utility, be it for imaging or diagnostics, there is certainly much
potential. However, this has to be tempered with first building a full understanding of QD toxicity
in vivo. Although much work has been done to date on cellular toxicity of QDs [22,64–66], it certainly
does not provide the necessary detail needed for in vivo use nor a full appreciation of the cost–benefit
analysis that will form the basis for approved use as determined by regulatory agencies.

So where can we anticipate such QD constructs and the processes they exploit will evolve towards?
Beyond a next generation of the imaging, probe, and sensor formats that are highlighted herein,
one enticing prospect is that of creating stand-alone self-illuminating and light-harvesting/directing
nanoscale constructs. The ability to couple these functionalities to the almost unlimited possibilities
afforded by DNA nanotechnology at the nanoscale is particularly exciting [67,68]. This may allow
the creation of a myriad of nanoscale disposable (smart) sensors that can be used in environmental,
public health, medical, and point-of-care applications. Overall, this technology epitomizes what
bionanotechnology, i.e., the intersection of biotechnology and chemistry/materials science, has to offer,
and that is the creation of value-added or emergent materials and processes that can augment or drive
development of new applications.
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